首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Nucleoporin Nup154 is a Drosophila component of the nuclear pore complex (NPC), evolutionarily conserved from yeast to humans. While functional studies carried out in both yeast and metazoan cells indicated that Nup154 homologs are key elements of the NPC framework, the striking phenotypic specificity displayed by nup154 hypomorphic mutant alleles suggested that Nup154 might play additional roles in the context of the NPC. Actually, genetic analyses demonstrated that mutant nurse-cell nuclei do not undergo a normal chromosome dispersal process, uncovering an essential requirement for nup154 gene function during oogenesis. In this report, we show that Nup154 interacts genetically and physically with Cup, a germline-specific protein implicated in multiple aspects of female gametogenesis, including the regulation of the nurse-cell chromosome structure. The two proteins colocalize in vivo and are co-immunoprecipitated from ovarian extracts. Moreover, cup, nup154 double mutants exhibit much stronger oogenesis defects than single mutants. Our findings delineate an intriguing scenario where an ubiquitous nucleoporin might directly influence specialized developmental events.  相似文献   

3.
V. Doye  R. Wepf    E. C. Hurt 《The EMBO journal》1994,13(24):6062-6075
Temperature-sensitive nucleoporin nup49-316 mutant cells accumulate poly(A)+ RNA inside the nucleus when shifted to restrictive temperature. We performed a synthetic lethal screen with this mutant allele to identify further components of the mRNA export machinery. A synthetic lethal mutant slv21 was isolated, which exhibited a ts phenotype and showed nuclear accumulation of poly(A)+ RNA at 37 degrees C. The wild-type gene complementing slv21 was cloned and sequenced. It encodes a novel protein Nup133p which is located at the nuclear pore complex. NUP133 is not an essential gene, but cells in which NUP133 is disrupted grow slowly at permissive temperatures and stop growing at 37 degrees C. Concomitant with the growth inhibition, nup133- cells accumulate poly(A)+ RNA inside the nucleus whereas nuclear import of a karyophilic reporter protein is not altered. Strikingly, nup133- cells display extensive clustering of nuclear pore complexes at a few sites on the nuclear envelope. However, the nuclear pore clustering phenotype and intranuclear accumulation of poly(A)+ RNA are not obligatorily linked, since an amino-terminally truncated Nup133p allows normal poly(A)+ RNA export, but does not complement the clustering phenotype of nup133- cells.  相似文献   

4.
The Nup154 gene of Drosophila encodes a protein showing similarity with known nucleoporins: rat Nup155 and yeast Nup170 and Nup157. Hypomorphic mutant alleles of Nup154 affected female and male fertility, allowing investigation of the gene function in various steps of oogenesis and spermatogenesis. Nup154 was required in testes for cyst formation, control of spermatocyte proliferation and meiotic progression. In ovaries, Nup154 was essential for egg chamber development and oocyte growth. In both the male and female germ line, as well as in several other cell types, the Nup154 protein was detected at the nuclear membrane, but was also present inside the nucleus. Intranuclear localization has not previously been described for rat Nup155 or yeast Nup170 and Nup157. In mutant egg chambers the Nup154 protein accumulated in the cytoplasm, while it was only barely detected at the nuclear envelopes. FG repeats containing nucleoporins detected with mAb414 antibody were also mislocalized to a certain extent in Nup154 mutant alleles. This suggests that Nup154 could be required for localizing other nucleoporins within the nuclear pore complex, as previously demonstrated for the yeast Nup170. On the other hand, no evident defects in lamin localization were observed, indicating that Nup155 mutations did not affect the overall integrity of the nuclear envelope. However, ultrastructural analyses revealed that in mutant cells the morphology of the nuclear envelope was altered near the nuclear pore complexes. Finally, the multiplicity of phenotypes observed in Nup154 mutant alleles suggests that this gene plays a crucial role in cell physiology.  相似文献   

5.
Nup1p is a yeast nuclear pore complex protein (nucleoporin) required for nuclear protein import, mRNA export and maintenance of normal nuclear architecture. We have used a genetic approach to identify other proteins that interact functionally with Nup1p. Here we describe the isolation of seventeen mutants that confer a requirement for Nup1p in a background in which this protein is normally not essential. Some of the mutants require wild-type Nup1p, while others are viable in combination with specific nup1 alleles. Several of the mutants show nonallelic noncomplementation, suggesting that the products may be part of a hetero-oligomeric complex. One is allelic to srp1 which, although it was identified in an unrelated screen, was shown to encode a protein that is localized to the nuclear envelope (Yano, R., M. Oakes, M. Yamaghishi, J. A. Dodd, and M. Nomura. 1992. Mol. Cell. Biol. 12:5640- 5651). We have used immunoprecipitation and fusion protein precipitation to show that Srp1p forms distinct complexes with both Nup1p and the related nucleoporin Nup2p, indicating that Srp1p is a component of the nuclear pore complex. The distant sequence similarity between Srp1p and the beta-catenin/desmoplakin family, coupled with the altered structure of the nuclear envelope in nup1 mutants, suggests that Srp1p may function in attachment of the nuclear pore complex to an underlying nuclear skeleton.  相似文献   

6.
We have isolated and characterized the gene encoding a fourth yeast glycine-leucine-phenylalanine-glycine (GLFG) repeat nucleoporin with a calculated molecular mass of 145.3 kD, and therefore termed NUP145. The amino-terminal half of Nup145p is similar to two previously identified GLFG nucleoporins, Nup116p and Nup100p (Wente, S. R., M. P. Rout, and G. Blobel. 1992. J. Cell Biol. 119:705-723). A deletion/disruption in the amino-terminal half of NUP145 (nup145 delta N) had only a slight effect on cell growth at temperatures between 17 and 37 degrees C. However, immunofluorescence microscopy of nup145 delta N cells with antinucleoporin antibodies showed that the characteristic punctate nuclear staining normally seen in wild-type yeast cells was reduced, with the majority of the signal located in one or two intense spots at the nuclear periphery. Thin section electron microscopy analysis revealed the presence of what appeared to be successive herniations of the nuclear envelope forming grape-like structures at primarily one site on the nup145 delta N nuclei. These successive herniations contained numerous NPC-like structures, correlating to the limited bright patches of anti-nucleoporin immunofluorescence signal. In some cases the successive herniations were small. Occasionally, however, multi-lobulated nuclei were seen. We suggest that the ultrastructural phenotype of nup145 delta N cells is due to a defective interaction of nup145 delta N NPCs with the surrounding pore membrane domain of the nuclear envelope. We have also analyzed the synthetic lethal phenotypes among GLFG nucleoporin mutant alleles, and found that strains harboring nup116 and either nup100 or nup145 mutations were not viable. This, in combination with the morphological analysis, may reflect overlapping yet distinct roles for these three GLFG nucleoporins in NPC-nuclear envelope interactions.  相似文献   

7.
The NUP1 gene of Saccharomyces cerevisiae encodes one member of a family of nuclear pore complex proteins (nucleoporins) conserved from yeast to vertebrates. We have used mutational analysis to investigate the function of Nup1p. Deletion of either the amino- or carboxy- terminal domain confers a lethal phenotype, but partial truncations at either end affect growth to varying extents. Amino-terminal truncation causes mislocalization and degradation of the mutant protein, suggesting that this domain is required for targeting Nup1p to the nuclear pore complex. Carboxy-terminal mutants are stable but do not have wild-type function, and confer a temperature sensitive phenotype. Both import of nuclear proteins and export of poly(A) RNA are defective at the nonpermissive temperature. In addition, nup1 mutant cells become multinucleate at all temperatures, a phenotype suggestive of a defect in nuclear migration. Tubulin staining revealed that the mitotic spindle appears to be oriented randomly with respect to the bud, in spite of the presence of apparently normal cytoplasmic microtubules connecting one spindle pole body to the bud tip. EM analysis showed that the nuclear envelope forms long projections extending into the cytoplasm, which appear to have detached from the bulk of the nucleus. Our results suggest that Nup1p may be required to retain the structural integrity between the nuclear envelope and an underlying nuclear scaffold, and that this connection is required to allow reorientation of the nucleus in response to cytoskeletal forces.  相似文献   

8.
To follow the dynamics of nuclear pore distribution in living yeast cells, we have generated fusion proteins between the green fluorescent protein (GFP) and the yeast nucleoporins Nup49p and Nup133p. In nup133 dividing cells that display a constitutive nuclear pore clustering, in vivo analysis of GFP-Nup49p localization revealed changes in the distribution of nuclear pore complex (NPC) clusters. Furthermore, upon induction of Nup133p expression in a GAL-nup133 strain, a progressive fragmentation of the NPC aggregates was observed that in turn led to a wild-type nuclear pore distribution. To try to uncouple Nup133p- induced NPC redistribution from successive nuclear divisions and nuclear pore biogenesis, we devised an assay based on the formation of heterokaryons between nup133 mutants and cells either expressing or overexpressing Nup133p. Under these conditions, the use of GFP-Nup133p and GFP-Nup49p fusion proteins revealed that Nup133p can be rapidly targeted to the clustered nuclear pores, where its amino-terminal domain is required to promote the redistribution of preexisting NPCs.  相似文献   

9.
Miao M  Ryan KJ  Wente SR 《Genetics》2006,172(3):1441-1457
Here we have examined the function of Pom34p, a novel membrane protein in Saccharomyces cerevisiae, localized to nuclear pore complexes (NPCs). Membrane topology analysis revealed that Pom34p is a double-pass transmembrane protein with both the amino (N) and carboxy (C) termini positioned on the cytosolic/pore face. The network of genetic interactions between POM34 and genes encoding other nucleoporins was established and showed specific links between Pom34p function and Nup170p, Nup188p, Nup59p, Gle2p, Nup159p, and Nup82p. The transmembrane domains of Pom34p in addition to either the N- or C-terminal region were necessary for its function in different double mutants. We further characterized the pom34deltaN nup188delta mutant and found it to be perturbed in both NPC structure and function. Mislocalization of a subset of nucleoporins harboring phenylalanine-glycine repeats was observed, and nuclear import capacity for the Kap104p and Kap121p pathways was inhibited. In contrast, the pom34delta pom152delta double mutant was viable at all temperatures and showed no such defects. Interestingly, POM152 overexpression suppressed the synthetic lethality of pom34delta nup170delta and pom34delta nup59delta mutants. We speculate that multiple integral membrane proteins, either within the nuclear pore domain or in the nuclear envelope, execute coordinated roles in NPC structure and function.  相似文献   

10.
Human Nup93, the homologue of yeast Nic96p, is associated with a 205-kDa protein whose intracellular location and function is unknown. We show here that the yeast open reading frame YJL039c, which is homologous to this human p205, encodes the so far largest yeast nucleoporin. Accordingly, green fluorescent protein (GFP)-tagged YJL039c was localized to the nuclear pores and therefore named Nup192p. Affinity purification of ProtA-Nic96p from glutaraldehyde-fixed spheroplasts reveals association with Nup192p. NUP192 is essential for cell growth. A temperature-sensitive mutant nup192-15 is neither impaired in nuclear import of a SV40 nuclear localization sequence-containing reporter protein nor in mRNA export, but association of Nup49-GFP with nuclear pores is inhibited at the non-permissive temperature. By immunoelectron microscopy, Nup192p-ProtA is seen at the inner site of the nuclear pores, at a distance of 60 +/- 15 nm from the central plane of the pore. This suggests that Nup192p is an evolutionarily conserved structural component of the nuclear pore complex with a preferential location at the inner site of the nuclear membrane.  相似文献   

11.
The long terminal repeat (LTR)-containing retrotransposon Tf1 propagates within the fission yeast Schizosaccharomyces pombe as the result of several mechanisms that are typical of both retrotransposons and retroviruses. To identify host factors that contribute to the transposition process, we mutagenized cultures of S. pombe and screened them for strains that were unable to support Tf1 transposition. One such strain contained a mutation in a gene we named nup124. The product of this gene contains 11 FXFG repeats and is a component of the nuclear pore complex. In addition to the reduced levels of Tf1 transposition, the nup124-1 allele caused a significant reduction in the nuclear localization of Tf1 Gag. Surprisingly, the mutation in nup124-1 did not cause any reduction in the growth rate, the nuclear localization of specific nuclear localization signal-containing proteins, or the cytoplasmic localization of poly(A) mRNA. A two-hybrid analysis and an in vitro precipitation assay both identified an interaction between Tf1 Gag and the N terminus of Nup124p. These results provide evidence for an unusual mechanism of nuclear import that relies on a direct interaction between a nuclear pore factor and Tf1 Gag.  相似文献   

12.
Nup159p/Rat7p is an essential FG repeat–containing nucleoporin localized at the cytoplasmic face of the nuclear pore complex (NPC) and involved in poly(A)+ RNA export and NPC distribution. A detailed structural–functional analysis of this nucleoporin previously demonstrated that Nup159p is anchored within the NPC through its essential carboxyl-terminal domain. In this study, we demonstrate that Nup159p specifically interacts through this domain with both Nsp1p and Nup82p. Further analysis of the interactions within the Nup159p/Nsp1p/Nup82p subcomplex using the nup82Δ108 mutant strain revealed that a deletion within the carboxyl-terminal domain of Nup82p prevents its interaction with Nsp1p but does not affect the interaction between Nup159p and Nsp1p. Moreover, immunofluorescence analysis demonstrated that Nup159p is delocalized from the NPC in nup82Δ108 cells grown at 37°C, a temperature at which the Nup82Δ108p mutant protein becomes degraded. This suggests that Nup82p may act as a docking site for a core complex composed of the repeat-containing nucleoporins Nup159p and Nsp1p. In vivo transport assays further revealed that nup82Δ108 and nup159-1/rat7-1 mutant strains have little if any defect in nuclear protein import and protein export. Together our data suggest that the poly(A)+ RNA export defect previously observed in nup82 mutant cells might be due to the loss from the NPCs of the repeat-containing nucleoporin Nup159p.  相似文献   

13.
Nup116p and Nup100p are highly related yeast GLFG nucleoporins, but only Nup116p is stoichiometrically bound to Gle2p, a previously identified mRNA export factor. A short Gle2p-binding sequence within Nup116p (GLEBS; residues 110-166) is sufficient and necessary to anchor Gle2p at the nuclear pores, whereas the carboxy-terminal domain of Nup116p mediates its own nuclear pore complex (NPC) association. The GLEBS is evolutionarily conserved and found in rat/Xenopus Nup98 and an uncharacterized Caenorhabditis elegans ORF, but is absent from Nup100p. When the GLEBS is deleted from Nup116p, Gle2p dissociates from the nuclear envelope and clusters of herniated nuclear pores form. When the GLEBS is inserted into Nup100p, Nup100p-GLEBS complements both the thermosensitive and NPC-herniated phenotype of nup116- cells, and Gle2p is retargeted concomitantly to the NPCs. Thus, the in vivo function of Gle2p is strictly coupled to the short GLEBS within Nup116p which links this putative mRNA transport factor to the nuclear pores.  相似文献   

14.
Production of inositol hexakisphosphate (IP6) by Ipk1, the inositol-1,3,4,5,6-pentakisphosphate 2-kinase, is required for Gle1-mediated mRNA export in Saccharomyces cerevisiae cells. To examine the network of interactions that require IP6 production, an analysis of fitness defects was conducted in mutants harboring both an ipk1 null allele and a mutant allele in genes encoding nucleoporins or transport factors. Enhanced lethality was observed with a specific subset of mutants, including nup42, nup116, nup159, dbp5, and gle2, all of which had been previously connected to Gle1 function. Complementation of the nup116Deltaipk1Delta and nup42Deltaipk1Delta double mutants did not require the Phe-Gly repeat domains in the respective nucleoporins, suggesting that IP6 was acting subsequent to heterogeneous nuclear ribonucleoprotein targeting to the nuclear pore complex. With Nup42 and Nup159 localized exclusively to the nuclear pore complex cytoplasmic side, we speculated that IP6 may regulate a cytoplasmic step in mRNA export. To test this prediction, the spatial requirements for the production of IP6 were investigated. Restriction of Ipk1 to the cytoplasm did not block IP6 production. Moreover, coincident sequestering of both Ipk1 and Mss4 (an enzyme required for phosphatidylinositol 4,5-bisphosphate production) to the cytoplasm also did not block IP6 production. Given that the kinase required for inositol 1,3,4,5,6-pentakisphosphate production (Ipk2) is localized in the nucleus, these results indicated that soluble inositides were diffusing between the nucleus and the cytoplasm. Additionally, the cytoplasmic production of IP6 by plasma membrane-anchored Ipk1 rescued a gle1-2 ipk1-4 synthetic lethal mutant. Thus, cytoplasmic IP6 production is sufficient for mediating the Gle1-mRNA export pathway.  相似文献   

15.
We have characterized Schizosaccharomyces pombe open reading frames encoding potential orthologues of constituents of the evolutionarily conserved Saccharomyces cerevisiae Nup84 vertebrate Nup107-160 nuclear pore subcomplex, namely Nup133a, Nup133b, Nup120, Nup107, Nup85, and Seh1. In spite of rather weak sequence conservation, in vivo analyses demonstrated that these S. pombe proteins are localized at the nuclear envelope. Biochemical data confirmed the organization of these nucleoporins within conserved complexes. Although examination of the S. cerevisiae and S. pombe deletion mutants revealed different viability phenotypes, functional studies indicated that the involvement of this complex in nuclear pore distribution and mRNA export has been conserved between these highly divergent yeasts. Unexpectedly, microscopic analyses of some of the S. pombe mutants revealed cell division defects at the restrictive temperature (abnormal septa and mitotic spindles and chromosome missegregation) that were reminiscent of defects occurring in several S. pombe GTPase Ran (Ran(Sp))/Spi1 cycle mutants. Furthermore, deletion of nup120 moderately altered the nuclear location of Ran(Sp)/Spi1, whereas overexpression of a nonfunctional Ran(Sp)/Spi1-GFP allele was specifically toxic in the Deltanup120 and Deltanup133b mutant strains, indicating a functional and genetic link between constituents of the S. pombe Nup107-120 complex and of the Ran(Sp)/Spi1 pathway.  相似文献   

16.
17.
The small GTPase Ran/Gsp1p plays an essential role in nuclear trafficking of macromolecules, as Ran/Gsp1p regulates many transport processes across the nuclear pore complex (NPC). To determine the role of nucleoporins in the generation of the nucleocytoplasmic Gsp1p concentration gradient, mutations in various nucleoporin genes were analyzed in the yeast Saccharomyces cerevisiae. We show that the nucleoporins Nup133p, Rat2p/Nup120p, Nup85p, Nic96p, and the enzyme acetyl-CoA carboxylase (MTR7) control the distribution and cellular concentration of Gsp1p. At the restrictive temperature the reporter protein GFP-Gsp1p, which is too large to diffuse across the nuclear envelope, fails to concentrate in nuclei of nup133delta, rat2-1, nup85delta, nic96deltaC, and mtr7-1 cells, demonstrating that GFP-Gsp1p nuclear import is deficient. In addition, the concentration of Gsp1p is severely reduced in mutants nup133Delta and mtr7-1 under these conditions. We have now identified the molecular mechanisms that contribute to the dissipation of the Gsp1p concentration gradient in these mutants. Loss of the Gsp1p gradient in nup133delta and rat2-1 can be explained by reduced binding of the Gsp1p nuclear carrier Ntf2p to NPCs. Likewise, nup85delta cells that mislocalize GFP-Gsp1p at the permissive as well as non-permissive temperature have a diminished association of Ntf2p-GFP with nuclear envelopes under both conditions. Moreover, under restrictive conditions Prp20p, the guanine nucleotide exchange factor for Gsp1p, mislocalizes to the cytoplasm in nup85delta, nic96deltaC, and mtr7-1 cells, thereby contributing to a collapse of the Gsp1p gradient. Taken together, components of the NPC subcomplex containing Rat2p/Nup120p, Nup133p, and Nup85p, in addition to proteins Nic96p and Mtr7p, are shown to be crucial for the formation of a nucleocytoplasmic Gsp1p gradient.  相似文献   

18.
The yeast Saccharomyces cerevisiae nucleoporin Nup116p serves as a docking site for both nuclear import and export factors. However, the mechanism for assembling Nup116p into the nuclear pore complex (NPC) has not been resolved. By conducting a two-hybrid screen with the carboxy (C)-terminal Nup116p region as bait, we identified Nup82p. The predicted coiled-coil region of Nup82p was not required for Nup116p interaction, making the binding requirements distinct from those for the Nsp1p-Nup82p-Nup159p subcomplex (N. Belgareh, C. Snay-Hodge, F. Pasteau, S. Dagher, C. N. Cole, and V. Doye, Mol. Biol. Cell 9:3475-3492, 1998). Immunoprecipitation experiments using yeast cell lysates resulted in the coisolation of a Nup116p-Nup82p subcomplex. Although the absence of Nup116p had no effect on the NPC localization of Nup82p, overexpression of C-terminal Nup116p in a nup116 null mutant resulted in Nup82p mislocalization. Moreover, NPC localization of Nup116p was specifically diminished in a nup82-Delta108 mutant after growth at 37 degrees C. Immunoelectron microscopy analysis showed Nup116p was localized on both the cytoplasmic and nuclear NPC faces. Its distribution was asymmetric with the majority at the cytoplasmic face. Taken together, these results suggest that Nup82p and Nup116p interact at the cytoplasmic NPC face, with nucleoplasmic Nup116p localization utilizing novel binding partners.  相似文献   

19.
Nuclear export of proteins containing leucine-rich nuclear export signals (NESs) is mediated by the export receptor CRM1/exportin1. However, additional protein factors interacting with leucine-rich NESs have been described. Here, we investigate human immunodeficiency virus type 1 (HIV-1) Rev-mediated nuclear export and Mason-Pfizer monkey virus (MPMV) constitutive transport element (CTE)-mediated nuclear export in microinjected Xenopus laevis oocytes. We show that eukaryotic initiation factor 5A (eIF-5A) is essential for Rev and Rev-mediated viral RNA export, but not for nuclear export of CTE RNA. In vitro binding studies demonstrate that eIF-5A is required for efficient interaction of Rev-NES with CRM1/exportin1 and that eIF-5A interacts with the nucleoporins CAN/nup214, nup153, nup98, and nup62. Quite unexpectedly, nuclear actin was also identified as an eIF-5A binding protein. We show that actin is associated with the nucleoplasmic filaments of nuclear pore complexes and is critically involved in export processes. Finally, actin- and energy-dependent nuclear export of HIV-1 Rev is reconstituted by using a novel in vitro egg extract system. In summary, our data provide evidence that actin plays an important functional role in nuclear export not only of retroviral RNAs but also of host proteins such as protein kinase inhibitor (PKI).  相似文献   

20.
The Nup84p complex consists of five nucleoporins (Nup84p, Nup85p, Nup120p, Nup145p-C, and Seh1p) and Sec13p, a bona fide subunit of the COPII coat complex. We show that a pool of green fluorescent protein-tagged Sec13p localizes to the nuclear pores in vivo, and identify sec13 mutant alleles that are synthetically lethal with nup85Delta and affect the localization of a green fluorescent protein-Nup49p reporter protein. In the electron microscope, sec13 mutants exhibit structural defects in nuclear pore complex (NPC) and nuclear envelope organization. For the assembly of the complex, Nup85p, Nup120p, and Nup145p-C are essential. A highly purified Nup84p complex was isolated from yeast under native conditions and its molecular mass was determined to be 375 kD by quantitative scanning transmission electron microscopy and analytical ultracentrifugation, consistent with a monomeric complex. Furthermore, the Nup84p complex exhibits a Y-shaped, triskelion-like morphology 25 nm in diameter in the transmission electron microscope. Thus, the Nup84p complex constitutes a paradigm of an NPC structural module with distinct composition, structure, and a role in nuclear mRNA export and NPC bio- genesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号