首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Caspase activation and apoptosis can be initiated by the introduction of serine proteinases into the cytoplasm of a cell. Cytotoxic lymphocytes have evolved at least one serine proteinase with specific pro-apoptotic activity (granzyme B), as well as the mechanisms to deliver it into a target cell, and recent evidence suggests that other leucocyte granule proteinases may also have the capacity to kill if released into the interior of cells. For example, the monocyte/granulocyte proteinase cathepsin G can activate caspases in vitro, and will induce apoptosis if its entry into cells is mediated by a bacterial pore-forming protein. The potent pro-apoptotic activity of granzyme B and cathepsin G suggests that cells producing these (or other) proteinases would be at risk from self-induced death if the systems involved in packaging, degranulation or targeting fail and allow proteinases to enter the host cell cytoplasm. The purpose of the present review is to describe recent work on a group of intracellular serine proteinase inhibitors (serpins) which may function in leucocytes to prevent autolysis induced by the granule serine proteinases.  相似文献   

2.
alpha 2-macroglobulin was isolated by polyethylene glycol precipitation, gel filtration on Sephacryl S-300 and DE-52 cellulose chromatography, with 20% yield. The preparation obtained was homogenous as tested by biochemical and immunological criteria. Its molecular mass was estimated at 800,000, comprising of four identical subunits. The isoelectric point of our preparation was 4.8 and two molecules of serine proteinases per 1 molecule of inhibitor were bound.  相似文献   

3.
4.
Highly purified horse leucocyte proteinases 1, 2A and 2B hydrolyze synthetic substrates which are decomposed also by human leucocyte elastase but they are unable to hydrolyze typical substrates of cathepsin G. Thus in distinction to other mammalian species horse leucocytes are devoid of cathepsin G and contain only elastases.  相似文献   

5.
Bronchial leucocyte proteinase inhibitor (BLPI) is an 11 000 Mr protein found in human mucous secretions. This inhibitor apparently controls the serine proteinases elastase and cathepsin G, released from extravascular polymorphonuclear leucocytes. A simple, single-step chromatographic procedure for the isolation of BLPI based on its affinity for chymotrypsin was developed. The purified inhibitor was homogeneous by electrophoresis and gel filtration. Amino acid analyses were in close agreement with previous reports, and showed BLPI to be rich in proline and cystine, but lacking histidine. We have further characterized the role of BLPI with respect to human leucocyte elastase and cathepsin G by close examination of the kinetic parameters. Additionally, we have determined the kinetics of association (kon) and dissociation (koff) for BLPI with bovine trypsin and chymotrypsin. Equilibrium dissociation constants (Ki) of 1.87 X 10(-10) M, 4.18 X 10(-9) M, 8.28 X 10(-9) M and 2.63 X 10(-8) M were obtained for human leucocyte elastase, cathepsin G, bovine trypsin and chymotrypsin, respectively. These results are discussed with respect to BLPI's possible function in vivo and its role relative to other inhibitors in bronchial secretions.  相似文献   

6.
Fourteen monocyclic analogues of trypsin inhibitor SFTI-1 isolated from sunflower seeds were synthesized by the solid-phase method. The purpose of this work was to establish the role of a disulfide bridge present in inhibitor’s side chains of Cys3 and Cys11 in association with serine proteinases. This cyclic fragment was replaced by the disulfide bridges formed by l-pencillamine (Pen), homo-l-cysteine (Hcy), N-sulfanylethylglycine (Nhcy) or combination of the three with Cys. As in the substrate specificity the P1 position of the synthesized analogues Lys, Nlys [N-(4-aminobutyl)glycine], Phe or Nphe (N-benzylglycine) were present, and they were checked for trypsin and chymotrypsin inhibitory activity. The results clearly indicated that Pen and Nhcy were not acceptable at the position 3, yielding inactive analogues, whereas another residue (Cys11) could be substituted without any significant impact on the affinity towards proteinase. On the other hand, elongation of the Cys3 side chain by introduction of Hcy did not affect inhibitory activity, and an analogue with the Hcy–Hcy disulfide bridge was more than twice as effective as the reference compound ([Phe5] SFTI-1) in inhibition of bovine α-chymotrypsin.  相似文献   

7.
Homologies between thrombin and other serine proteinases.   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

8.
SQN-5 is a mouse serpin that is highly similar to the human serpins SCCA1 (SERPINB3) and SCCA2 (SERPINB4). Previous studies characterizing the biochemical activity of SQN-5 showed that this serpin, like SCCA2, inhibited the chymotrypsin-like enzymes mast cell chymase and cathepsin G. Using an expanded panel of papain-like cysteine proteinases, we now show that SQN-5, like SCCA1, inhibited cathepsins K, L, S, and V but not cathepsin B or H. These interactions were characterized by stoichiometries of inhibition that were nearly 1:1 and second-order rate constants of >10(4) M(-1) s(-1). Reactive site loop (RSL) cleavage analysis showed that SQN-5 employed different reactive centers to neutralize the serine and cysteine proteinases. To our knowledge, this is the first serpin that serves as a dual inhibitor of both chymotrypsin-like serine and the papain-like cysteine proteinases by employing an RSL-dependent inhibitory mechanism. The ability of serpins to inhibit both serine and/or papain-like cysteine proteinases may not be a recent event in mammalian evolution. Phylogenetic studies suggested that the SCCA and SQN genes evolved from a common ancestor approximately 250-280 million years ago. When the fact that mammals and birds diverged approximately 310 million years ago is considered, an ancestral SCCA/SQN-like serpin with dual inhibitory activity may be present in many mammalian genomes.  相似文献   

9.
The interaction of domains of the Kazal-type inhibitor protein dipetalin with the serine proteinases thrombin and trypsin is studied. The functional studies of the recombinantly expressed domains (Dip-I+II, Dip-I and Dip-II) allow the dissection of the thrombin inhibitory properties and the identification of Dip-I as a key contributor to thrombin/dipetalin complex stability and its inhibitory potency. Furthermore, Dip-I, but not Dip-II, forms a complex with trypsin resulting in an inhibition of the trypsin activity directed towards protein substrates. The high resolution NMR structure of the Dip-I domain is determined using multi-dimensional heteronuclear NMR spectroscopy. Dip-I exhibits the canonical Kazal-type fold with a central alpha-helix and a short two-stranded antiparallel beta-sheet. Molecular regions essential for inhibitor complex formation with thrombin and trypsin are identified. A comparison with molecular complexes of other Kazal-type thrombin and trypsin inhibitors by molecular modeling shows that the N-terminal segment of Dip-I fulfills the structural prerequisites for inhibitory interactions with either proteinase and explains the capacity of this single Kazal-type domain to interact with different proteinases.  相似文献   

10.
We report our progress in understanding the structure-function relationship of the interaction between protein inhibitors and several serine proteases. Recently, we have determined high resolution solution structures of two inhibitors Apis mellifera chymotrypsin inhibitor-1 (AMCI-I) and Linum usitatissimum trypsin inhibitor (LUTI) in the free state and an ultra high resolution X-ray structure of BPTI. All three inhibitors, despite totally different scaffolds, contain a solvent exposed loop of similar conformation which is highly complementary to the enzyme active site. Isothermal calo- rimetry data show that the interaction between wild type BPTI and chymotrypsin is entropy driven and that the enthalpy component opposes complex formation. Our research is focused on extensive mutagenesis of the four positions from the protease binding loop of BPTI: P1, P1', P3, and P4. We mutated these residues to different amino acids and the variants were characterized by determination of the association constants, stability parameters and crystal structures of protease-inhibitor complexes. Accommodation of the P1 residue in the S1 pocket of four proteases: chymotrypsin, trypsin, neutrophil elastase and cathepsin G was probed with 18 P1 variants. High resolution X-ray structures of ten complexes between bovine trypsin and P1 variants of BPTI have been determined and compared with the cognate P1 Lys side chain. Mutations of the wild type Ala16 (P1') to larger side chains always caused a drop of the association constant. According to the crystal structure of the Leu16 BPTI-trypsin complex, introduction of the larger residue at the P1' position leads to steric conflicts in the vicinity of the mutation. Finally, mutations at the P4 site allowed an improvement of the association with several serine proteases involved in blood clotting. Conversely, introduction of Ser, Val, and Phe in place of Gly12 (P4) had invariably a destabilizing effect on the complex with these proteases.  相似文献   

11.
A series of six CMTI I variants mutated in the P(2)-P(4)' region of the canonical binding loop were used to probe the role of single amino acid substitutions on binding to the following human proteinases involved in blood clotting: plasmin, plasma kallikrein, factors X(a) and XII(a). The mutants were expressed as fusion proteins with the LE1413 hydrophobic polypeptide in Escherichia coli, purified from inclusion bodies, followed by cyanobromide cleavage and refolding. The mutants inhibited the proteinases with the association constants in the range 10(3)-10(9) M(-1). Inhibition of plasma kallikrein and factors X(a) and XII(a) could be improved up to 30-fold by single mutations. In contrast, neither of the introduced mutations increased inhibitory properties of CMTI I against plasmin. Additionally, using two inhibitors of natural origin, CMTI I (P(1) Arg) and CPTI II (P(1) Lys), we determined the effect of Lys-->Arg on binding to four proteinases. With the exception of plasmin (no effect), P(1) Arg resulted in up to 30-fold stronger binding than P(1) Lys.  相似文献   

12.
A Dubin  A Koj    J Chudzik 《The Biochemical journal》1976,153(2):389-396
Cytoplasmic granules were isolated from horse blood polymorphonuclear leucocytes by the heparin method and extracted with 0.9% NaCl by repeated freezing. Soluble proteins were separated on a column of Sephadex G-75 followed by chromatography on a column of CM-Sephadex with a NaCl gradient. Gel filtration, density-gradient centrifugation, isoelectric focusing and 0.1% sodium dodecyl sulphate/polyacrylamide-gel electrophoresis at pH 7.0 and at pH 4.5 were used to determine molecular parameters of proteinases. Three enzymes hydrolysing both casein and N-benzyloxycarbonyl-L-alanine nitrophenyl ester were found in the granule extract: proteinase 1, mol.wt. 38000, pI5.3; proteinase 2A, mol.wt. 24500, pI8.8; and proteinase 2B, mol.wt. 20500, pI above 10. The latter two elastase-like proteinases were purified to apparent homogeneity.  相似文献   

13.
To characterize the mode of action of heparin, the kinetics of inhibition of thrombin, factor Xa, and plasmin by antithrombin III was studied without and in the presence of heparin. Following the concentration dependence of inactivation a linear dependence was found between the apparent first-order inactivation rate constant and the anti-thrombin III concentration. This behaviour is typical of enzyme-activator interaction. Values of kinetic constants of the inactivation reaction could be determined. Thus, heparin acts obviously as an activator of the enzymes and enhances their affinity for antithrombin III.  相似文献   

14.
We report our progress in understanding the structure-function relationships for the interaction between BPTI and serine proteases. We focused on extensive mutagenesis of four crucial positions from the protease binding loop of BPTI. Selected variants were characterized by determination of association constants, stability parameters and structures of protease-inhibitor complexes.  相似文献   

15.
The effect of modifications of Met, Arg, and Lys residues on the inhibitory activity of a serine proteinase-inhibiting 21-kD protein from potato tubers has been studied. The data indicate that the 21-kD protein has two independent reactive sites for human leukocyte elastase (or chymotrypsin) and trypsin. It is concluded that the 21-kD inhibitor has Met and Arg residues in the P1 position of the reactive sites responsible for interactions with elastase (or chymotrypsin) and trypsin. It is shown that the 21-kD protein is capable of forming a triple complex binding simultaneously one molecule of trypsin and one molecule of chymotrypsin.  相似文献   

16.
Mononuclear phagocytes have the capacity to directly participate in extracellular matrix turnover via secretion of neutral proteinases. We have studied the effects of in vivo and in vitro differentiation upon cellular content or secretion of a spectrum of neutral proteinases, along with a counter-regulatory metalloproteinase inhibitor (TIMP). We found 1) matrix-degradative serine proteinases (leukocyte elastase and cathepsin G) were lost during cellular maturation and/or differentiation; 2) the 92-kDa type IV/type V collagenase and TIMP were secreted earliest in mononuclear phagocyte differentiation, whereas stromelysin secretion was observed only by LPS-stimulated alveolar macrophages; 3) exposure of alveolar macrophages, but not monocytes, to phorbol esters and LPS resulted in markedly augmented secretion of all studied metalloproteinases and TIMP; 4) monocyte-derived macrophages partially (but not completely) mimicked the metalloproteinase secretory phenotype of alveolar macrophages; and 5) the secretory phenotype of alveolar macrophages for interstitial collagenase (but not TIMP) was largely lost during in vitro culture. These results underscore the complexity of the process of differentiation in human mononuclear phagocytes, and provide insights into the variable capacity of mononuclear phagocytes to degrade extracellular matrix components. Moreover, we anticipate that human mononuclear phagocytes at various stages of differentiation will provide a useful model system for study of the variable regulation of secretion of human matrix-degrading metalloproteinases.  相似文献   

17.
18.
A series of 12 bovine pancreatic trypsin inhibitor variants mutated in the P(4) and P(3) positions of the canonical binding loop containing additional K15R and M52L mutations were used to probe the role of single amino acid substitutions on binding to bovine trypsin and to the following human proteinases involved in blood clotting: plasmin, plasma kallikrein, factors X(a) and XII(a), thrombin, and protein C. The mutants were expressed in Escherichia coli as fusion proteins with the LE1413 hydrophobic polypeptide and purified from inclusion bodies; these steps were followed by CNBr cleavage and oxidative refolding. The mutants inhibited the blood-clotting proteinases with association constants in the range of 10(3)-10(10) m(-)(1). Inhibition of plasma kallikrein, factors X(a) and XII(a), thrombin, and protein C could be improved by up to 2 orders of magnitude by the K15R substitution. The highest increase in the association constant for P(3) mutant was measured for factor XII(a); P13S substitution increased the K(a) value 58-fold. Several other substitutions at P(3) resulted in about 10-fold increase for factor X(a), thrombin, and protein C. The cumulative P(3) and P(1) effects on K(a) values for the strongest mutant compared with the wild type bovine pancreatic trypsin inhibitor were in the range of 2.2- (plasmin) to 4,000-fold (factors XII(a) and X(a)). The substitutions at the P(4) site always caused negative effects (a decrease in the range from over 1,000- to 1.3-fold) on binding to all studied enzymes, including trypsin. Thermal stability studies showed a very large decrease of the denaturation temperature (about 22 degrees C) for all P(4) mutants, suggesting that substitution of the wild type Gly-12 residue leads to a change in the binding loop conformation manifesting itself in non-optimal binding to the proteinase active site.  相似文献   

19.
【目的】为了调查激素和限食处理对家蚕幼虫丝氨酸蛋白酶(SPs)与丝氨酸蛋白酶抑制剂(Serpins)基因表达的影响。【方法】使用RT-PCR、实时定量PCR以及Western-blot的方法研究了部分SPs、Serpins基因在m RNA和蛋白质水平上的表达情况,以及20-羟基蜕皮酮(20-hydroxyecdysone,20E)、保幼激素类似物(JHA)和限食处理后SPs与Serpins家族基因的变化。【结果】调查的基因在m RNA和蛋白质水平上的表达情况一致,SPs基因在中肠中特异表达,5龄中期达到顶峰,而Serpins基因主要在丝腺中表达,5龄中后期的表达较高;20E处理5龄3日家蚕幼虫,SPs和Serpins基因呈现不同的调控趋势,JHA对这两类基因的表达具有类似的正调控作用,激素对基因的调控主要与发育时期及激素剂量有关;Spi1基因在幼虫饥饿处理后出现下调比Spp晚,暗示Serpins受取食的直接影响比SPs慢,也说明了食物供需对丝腺的反应迟于对中肠的影响。SPs和Serpins基因的这种组织表达特异性,为它们参与相应组织中的特异性转录调控提供了佐证,而发育时期表达差异和激素及限食处理后调控变化体现了基因执行功能上的时序性和特殊性。【结论】家蚕丝物质合成效率与SPs及Serpins基因在m RNA和蛋白水平上的表达有关,这将有助于更好地理解家蚕丝物质形成和积累的调控机理。  相似文献   

20.
In comparative-evolutionary aspect, the experimental data are considered about activity, biochemical properties, and peculiarities of structural organization of proteins of the calpain family in some invertebrates and fish. Peculiarities of calpain-like proteins of invertebrates—the predecessors of calpains of higher animals are revealed. By the example of the studied taxa, there is traced complication of the structural organization and mechanisms of control of the calpain activities, which reflects stages of molecular evolution of the protein family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号