首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Park PH  Aroor AR  Shukla SD 《Life sciences》2006,79(25):2357-2363
Angiotensin II plays a role in both liver cell proliferation and liver injury but the effects of ethanol on angiotensin II signaling in liver are not clearly understood. We have investigated the role of Ras in ethanol modulation of p42/p44 mitogen-activated protein kinase (MAPK) stimulated by angiotensin II (Ang II) in primary cultures of rat hepatocytes. Hepatocytes were incubated with ethanol (100 mM) for 24 h, then stimulated with Ang II (100 nM). The level of p42/p44 MAPK phosphorylation was measured by Western blot analysis and Ras activation was assessed by specific binding of Ras-GTP (activated form) to a GST-RBD fusion protein containing Ras-binding domain (RBD) of Raf-1. Ethanol potentiated p42/p44 MAPK activation by Ang II, whereas ethanol alone did not significantly affect phosphorylation of p42/p44 MAPK. Ang II increased Ras activity by about 2 fold. Ethanol exposure increased Ang II stimulated Ras activity by an additional about 2 fold. Ethanol alone elicited a small increase in basal Ras activity. Pretreatment with manumycin A (10 microM), a Ras farnesylation inhibitor, partially blocked both Ang II-activated and ethanol-potentiated MAPK activities. These data provided the first evidence that ethanol potentiation of Ang II stimulated p42/p44 MAPK is mediated, in part, by Ras in hepatocytes.  相似文献   

2.
We previously found that addition of cAMP and a Ca(2+)/PKC-dependent agonist causes synergism or potentiation of protein secretion from rat lacrimal gland acini. In the present study we determined whether cAMP decreases p44/p42 mitogen-activated protein kinase (MAPK) activity in the lacrimal gland. Since we know that activation of MAPK attenuates protein secretion stimulated by Ca(2+)- and PKC-dependent agonists, we also determined whether this activation causes potentiation of secretion. Freshly prepared rat lacrimal gland acinar cells were incubated with dibutyryl cAMP (DBcAMP), carbachol (a cholinergic agonist), phenylephrine (an alpha(1)-adrenergic agonist), or epidermal growth factor (EGF). The latter three agonists are known to activate p44/p42 MAPK. p44/p42 MAPK activity and protein secretion were measured. As measured by Western blot analysis, DBcAMP inhibited both basal and agonist-stimulated p44/p42 MAPK activity. Cellular cAMP levels were increased by 1) using two different cell-permeant cAMP analogs, 2) activating adenylyl cyclase (L-858051), or 3) activation of G(s)-coupled receptors (VIP). The cell-permeant cAMP analogs, L-858051, and VIP inhibited basal p44/p42 MAPK activity by 50, 40, and 40%, respectively. DBcAMP and VIP inhibited carbachol- and EGF-stimulated MAPK activity. cAMP, but not VIP, inhibited phenylephrine-stimulated MAPK activity. Potentiation of secretion was detected when carbachol, phenylephrine, or EGF was simultaneously added with DBcAMP. We conclude that increasing cellular cAMP levels inhibits p44/p42 MAPK activity and that this could account for potentiation of secretion obtained when cAMP was elevated and Ca(2+) and PKC were increased by agonists.  相似文献   

3.
Zhang Y  Venugopal SK  He S  Liu P  Wu J  Zern MA 《Cellular signalling》2007,19(11):2339-2350
Ethanol abuse is one of the major etiologies of cirrhosis. Ethanol has been shown to induce apoptosis via activation of oxidative stress, mitogen-activated protein kinases (MAPK), and tyrosine kinases. However, there is a paucity of data that examine the interplay among these molecules. In the present study we have systematically elucidated the role of novel protein kinase C isoforms (nPKC; PKCdelta and PKCepsilon) in ethanol-induced apoptosis in hepatocytes. Ethanol enhanced membrane translocation of PKCdelta and PKCepsilon, which was associated with the phosphorylation of p38MAPK, p42/44MAPK and JNK1/2, and the nuclear translocation of NF-kappaB and AP-1. This resulted in increased apoptosis in primary rat hepatocytes. Inhibition of both PKCdelta and PKCepsilon resulted in a decreased MAPK activation, decreased nuclear translocation of NF-kappaB and AP-1, and inhibition of apoptosis. In addition, ethanol activated the tyrosine phosphorylation of PKCdelta via tyrosine kinase in hepatocytes. The tyrosine phosphorylated PKCdelta was cleaved by caspase-3 and these fragments were translocated to the nucleus. Inhibition of ethanol-induced oxidative stress blocked the membrane translocation of PKCdelta and PKCepsilon, and the tyrosine phosphorylation of PKCdelta in hepatocytes. Inhibition of oxidative stress, tyrosine kinase or caspase-3 activity caused a decreased nuclear translocation of PKCdelta in response to ethanol, and was associated with less apoptosis. Conclusion: These results provide a newly-described mechanism by which ethanol induces apoptosis via activation of nPKC isoforms in hepatocytes.  相似文献   

4.
The aim of this study was to determine the pathway(s) by which ethanol activates mitogen-activated protein kinase (MAPK) signaling and to determine the role of Ca2+ in the signaling process. MAPK signaling was determined by assessing MAPK activity, measuring phosphorylated extracellular signaling-regulated kinase (pp 44 ERK-1 and pp 42 ERK-2) expression and ERK activity by measuring ERK-2-dependent phosphorylation of a synthetic peptide as a MAPK substrate in rat vascular smooth muscle cells. Ethanol activated extracellular signal-regulated kinase expression (ERK 1 and 2) could be observed when vascular smooth muscle cells (VSMCs) were stimulated for 5 min or less, but was inhibited when cells are treated for 10 min or more with 1-16 mM of ethanol. Maximum ethanol-induced MAPK activity was observed within 5 min with 4 or 8 mM. Ethanol stimulated MAPK activity was blocked by the protein kinase C (PKC) inhibitor (GF109203X) and epidermal growth factor (EGF) receptor antagonist (PD153035) by 41 +/- 24 and 34 +/- 12.3%, respectively. The calcium channel blocker, diltiazem and the chelating agent, BAPTA, reduced the activation of MAPK activity by ethanol, significantly. The data demonstrate that ethanol-stimulated MAPK expression is mediated partially through both the EGF-receptor and PKC intermediates and that activation through the PKC intermediate is calcium-dependent.  相似文献   

5.
6.
Both oxidative stress and epidermal growth factor (EGF) contribute to the initiation and progression of renal proximal tubular dysfunction under pathophysiologic conditions. Thus, this study was performed (1) to examine both the individual, and the combined effects of H2O2 and EGF on alpha-methyl-D-glucopyranoside uptake (alpha-MG uptake) in the primary cultured renal proximal tubule cells (PTCs), and (2) to elucidate the involvement of p44/42 mitogen activated protein kinase (MAPK) and phospholipase A2 in mediating these actions. Both H2O2 and EGF inhibited alpha-MG uptake individually, while the combination of H2O2 and EGF further potentiated the inhibitory effect on alpha-MG uptake, which was elicited by each agent. H2O2 not only caused a rapid increase in the phosphorylation of p44/42 MAPK, but also promoted the translocation of cytosolic phospholipase A2 (cPLA2) from the cytosolic to particulate fraction, and stimulated cellular [3H]-arachidonic acid (AA) release. EGF similarly activates phosphorylation of p44/42 MAPK and stimulates [3H]-AA release. When PTCs were exposed to 100 microM H2O2 and 50 ng/ml EGF simultaneously, a further increase in the phosphorylation of p44/42 MAPK, of [3H]-AA release, and of prostaglandin E2 (PGE2) production was elicited as compared with the effects of each individual agonist alone. Moreover, the additive phosphorylation of p44/42 MAPK, [3H]-AA release, and PGE2 production by H2O2 and EGF was almost completely inhibited by the p44/42 MAPK inhibitor, PD 98059. In conclusion, these results are consistent with the hypothesis that under conditions of oxidative stress, the H2O2-induced inhibition of alpha-MG uptake in the renal proximal tubule is mediated through a modulation of the EGF signaling pathway, promoting further phosphorylation of p44/42 MAPK, activation of PLA2.  相似文献   

7.
Insulin-like growth factor-binding protein-3 (IGFBP-3) is inhibitory to the growth of many breast cancer cells in vitro; however, a high level of expression of IGFBP-3 in breast tumors correlates with poor prognosis, suggesting that IGFBP-3 may be associated with growth stimulation in some breast cancers. We have shown previously in MCF-10A breast epithelial cells that chronic activation of Ras-p44/42 mitogen-activated protein (MAP) kinase confers resistance to the growth-inhibitory effects of IGFBP-3 (Martin, J. L., and Baxter, R. C. (1999) J. Biol. Chem. 274, 16407-16411). Here we show that, in the same cell line, IGFBP-3 potentiates DNA synthesis and cell proliferation stimulated by epidermal growth factor (EGF), a potent activator of Ras. A mutant of IGFBP-3, which fails to translocate to the nucleus and has reduced ability to cell-associate, similarly enhanced EGF action in these cells. By contrast, the structurally related IGFBP-5, which shares many functional features with IGFBP-3, was slightly inhibitory to DNA synthesis in the presence of EGF. IGFBP-3 primes MCF-10A cells to respond to EGF because pre-incubation caused a similar degree of EGF potentiation as co-incubation. In IGFBP-3-primed cells, EGF-stimulated EGF receptor phosphorylation at Tyr-1068 was increased relative to unprimed cells, as was phosphorylation and activity of p44/42 and p38 MAP kinases, but not Akt/PKB. Partial blockade of the p44/42 and p38 MAP kinase pathways abolished the potentiation by IGFBP-3 of EGF-stimulated DNA synthesis. Collectively, these findings indicate that IGFBP-3 enhances EGF signaling and proliferative effects in breast epithelial cells via increased EGF receptor phosphorylation and activation of p44/42 and p38 MAP kinase signaling pathways.  相似文献   

8.
9.
We report here that the nerve growth factor (NGF) and lysophosphatidate (LPA) receptor signaling systems interact to regulate the p42/p44 MAPK pathway in PC12 cells. This is based upon several lines of evidence. First, the treatment of PC12 cells, which express LPA(1) receptors, with a sub-maximal concentration of LPA and NGF induced synergistic activation of p42/p44 MAPK. Second, the transfection of PC12 cells with LPA(1) receptor anti-sense construct, which reduced the expression of LPA(1), abrogated both LPA- and NGF-stimulated activation of p42/p44 MAPK. Third, the over-expression of recombinant LPA(1) receptor potentiated LPA- and NGF-dependent activation of p42/p44 MAPK. Fourth, the over-expression of C-terminal GRK2 peptide (which sequesters G-protein betagamma subunits) or beta-arrestin I clathrin binding domain (amino acids: 319-418) or pre-treatment of cells with pertussis toxin reduced the LPA- and NGF-dependent stimulation of p42/p44 MAPK. These findings support a model in which the Trk A receptor uses a G-protein-mediated mechanism to regulate the p42/p44 MAPK pathway. Such G-protein-mediated signaling is activated by the LPA(1) receptor as a means of cross-talk regulation with the Trk A receptor. Fifth, the treatment of cells with LPA induced the transactivation of the Trk A receptor. Sixth, LPA and/or NGF stimulated the translocation of tyrosine phosphorylated Trk A receptor and LPA(1) receptor to the nucleus. Taken together, these findings suggest that NGF and LPA exert cross-talk regulation both at the level of p42/p44 MAPK signaling and in the nuclear translocation of LPA(1) and Trk A receptors.  相似文献   

10.
Oxalate, a metabolic end product, is an important factor in the pathogenesis of renal stone disease. Oxalate exposure to renal epithelial cells results in re-initiation of the DNA synthesis, altered gene expression, and apoptosis, but the signaling pathways involved in these diverse effects have not been evaluated. The effects of oxalate on mitogen- and stress-activated protein kinase signaling pathways were studied in LLC-PK1 cells. Exposure to oxalate (1 mM) rapidly stimulated robust phosphorylation and activation of p38 MAPK. Oxalate exposure also induced modest activation of JNK, as monitored by phosphorylation of c-Jun. In contrast, oxalate exposure had no effect on phosphorylation and enzyme activity of p42/44 MAPK. We also show that specific inhibition of p38 MAPK by 4(4-(fluorophenyl)-2-(4-methylsulfonylphenyl)-5-(4-pyridyl)imidazole (SB203580) or by overexpression of a kinase-dead dominant negative mutant of p38 MAPK abolishes oxalate induced re-initiation of DNA synthesis in LLC-PK1 cells. The inhibition is dose-dependent and correlates with in situ activity of native p38 MAP kinase, determined as MAPK-activated protein kinase-2 activity in cell extracts. Thus, this study not only provides the first demonstration of selective activation of p38 MAPK and JNK signaling pathways by oxalate but also suggests that p38 MAPK activity is essential for the effects of oxalate on re-initiation of DNA synthesis.  相似文献   

11.
Oxidized low-density lipoprotein (OxLDL) is a risk factor in atherosclerosis and stimulates multiple signaling pathways, including activation of phosphatidylinositol 3-kinase (PI3-K)/Akt and p42/p44 mitogen-activated protein kinase (MAPK), which are involved in mitogenesis of vascular smooth muscle cells (VSMCs). We therefore investigated the relationship between PI3-K/Akt and p42/p44 MAPK activation and cell proliferation induced by OxLDL. OxLDL stimulated Akt phosphorylation in a time- and concentration-dependent manner, as determined by Western blot analysis. Phosphorylation of Akt stimulated by OxLDL and epidermal growth factor (EGF) was attenuated by inhibitors of PI3-K (wortmannin and LY294002) and intracellular Ca2+ chelator (BAPTA/AM) plus EDTA. Pretreatment of VSMCs with pertussis toxin, cholera toxin, and forskolin for 24 h also attenuated the OxLDL-stimulated Akt phosphorylation. In addition, pretreatment of VSMCs with wortmannin or LY294002 inhibited OxLDL-stimulated p42/p44 MAPK phosphorylation and [3H]thymidine incorporation. Furthermore, treatment with U0126, an inhibitor of MAPK kinase (MEK)1/2, attenuated the p42/p44 MAPK phosphorylation, but had no effect on Akt activation in response to OxLDL and EGF. Overexpression of p85-DN or Akt-DN mutants attenuated MEK1/2 and p42/p44 MAPK phosphorylation stimulated by OxLDL and EGF. These results suggest that the mitogenic effect of OxLDL is, at least in part, mediated through activation of PI3-K/Akt/MEK/MAPK pathway in VSMCs.  相似文献   

12.
13.
In addition to its well known stimulation of cAMP production, the human melanocortin type 4 (hMC4) receptor recently has been shown to mediate p44/42 MAPK activation. This finding opens new questions about the structural and signaling mechanisms that connect the receptor to this alternate cell signaling pathway. Point mutants in the hMC4 receptor that have been associated with obesity were constructed and transfected into HEK 293 cells. Functional analyses then were done to determine if these mutations would similarly impact cAMP formation and p44/42 MAPK signaling. Whereas a D90N mutation in the second transmembrane domain and a D298A mutation in the seventh transmembrane domain impaired both cAMP formation and p44/42 MAPK activation, a more conservative D298N mutation retained cAMP formation but abolished p44/42 MAPK activation. The D298N mutation identified, for the first time, differential structural requirements of the hMC4 receptor for activation of the cAMP and p44/42 MAPK pathways. Furthermore, functional characterizations of a series of chimeric receptors combining the hMC4 receptor and the hMC3 subtype, a receptor that does not couple to p44/42 MAPK activation despite stimulating adenylyl cyclase, indicate that the hMC4 cytoplasmic tail is a necessary structural element for p44/42 MAPK signaling. Subsequent investigation of the signaling requirements for p44/42 MAPK activation demonstrated that the adenylyl cyclase inhibitor 2', 5'-dideoxyadenosine blocked agonist-induced p44/42 MAPK activation, but the PKA inhibitor Rp cAMPS did not. Taken together, these data indicate that cAMP is required, but not sufficient for p44/42 MAPK activation and suggest structural elements required for hMC4 receptor signaling.  相似文献   

14.
The G protein-coupled receptor encoded by Kaposi's sarcoma-associated herpesvirus, also referred to as ORF74, has been shown to stimulate oncogenic and angiogenic signaling pathways in a constitutively active manner. The biochemical routes linking ORF74 to these signaling pathways are poorly defined. In this study, we show that ORF74 constitutively activates p44/p42 mitogen-activated protein kinase (MAPK) and Akt via G(i)- and phospholipase C (PLC)-mediated signaling pathways. Activation of Akt by ORF74 appears to be phosphatidylinositol 3-kinase (PI3-K) dependent but, interestingly, is also mediated by activation of protein kinase C (PKC) and p44/p42 MAPK. ORF74 may signal to Akt via p44/p42 MAPK, which can be activated by G(i), through activation of PI3-K or through PKC via the PLC pathway. Signaling of ORF74 to these proliferative and antiapoptotic signaling pathways can be further modulated positively by growth-related oncogene (GROalpha/CXCL1) and negatively by human gamma interferon-inducible protein 10 (IP-10/CXCL10), thus acting as an agonist and an inverse agonist, respectively. Despite the ability of the cytomegalovirus-encoded chemokine receptor US28 to constitutively activate PLC, this receptor does not increase phosphorylation of p44/p42 MAPK or Akt in COS-7 cells. Hence, ORF74 appears to signal through a larger diversity of G proteins than US28, allowing it to couple to proliferative and antiapoptotic signaling pathways. ORF74 can therefore be envisioned as an attractive target for novel treatment of Kaposi's sarcoma.  相似文献   

15.
Fibroblast growth factor-2 (FGF-2) interacts with a dual receptor system consisting of tyrosine kinase receptors and heparan sulfate proteoglycans (HSPGs). In rat mammary fibroblasts, FGF-2 stimulated DNA synthesis and induced a sustained phosphorylation of p42/44(MAPK) and of its downstream target, p90(RSK). Moreover, FGF-2 also stimulated the transient degradation of IkappaBalpha and IkappaBbeta. PD098059, a specific inhibitor of p42/44(MAPK) phosphorylation, inhibited FGF-2-stimulated DNA synthesis, phosphorylation of p42/44(MAPK) and p90(RSK), and degradation of IkappaBbeta. In contrast, in chlorate-treated and hence sulfated glycosaminoglycan-deficient cells, FGF-2 was unable to stimulate DNA synthesis. However, FGF-2 was able to trigger a transient phosphorylation of both p42/44(MAPK) and p90(RSK), which peaked at 15 min and returned to control levels at 30 min. In these sulfated glycosaminoglycan-deficient cells, no degradation of IkappaBalpha and IkappaBbeta was observed after FGF-2 addition. However, in chlorate-treated cells, the addition of heparin or purified HSPGs simultaneously with FGF-2 restored DNA synthesis, the sustained phosphorylation of p42/44(MAPK) and p90(RSK), and the degradation of IkappaBalpha and IkappaBbeta. These results suggest that the HSPG receptor for FGF-2 not only influences the outcome of FGF-2 signaling, e.g. cell proliferation, but importantly regulates the immediate-early signals generated by this growth factor.  相似文献   

16.
17.
The role of ethanol or its metabolites on breast neoplasm has not been characterized. We hypothesized that ethanol may alter the growth rate of human breast tumor epithelial cells by modulating putative growth-promoting signaling pathways such as p44/42 mitogen-activated protein kinases (MAPKs). The MCF-7 cell line, considered a suitable model, was used in these studies to investigate the effects of ethanol on [(3)H]thymidine incorporation, cell number, and p44/42 MAPK activities in the presence or absence of a MAPK or extracellular signal-regulated kinase ERK-1, and (MEK1) inhibitor (PD098059). Treatment of MCF-7 cells with a physiologically relevant concentration of ethanol (0.3% or 65 mM) increased p44/42 activities by an average of 400% (P < 0.02), and subsequent cell growth by 200% (P < 0.05) in a MEK1 inhibitor (PD098059)-sensitive fashion, thus suggesting that the Ras/MEK/MAPK signaling pathways are crucial for ethanol-induced MCF-7 cell growth.  相似文献   

18.
Activation and nuclear translocation of mitogen activated protein (MAP) kinases in ethanol-treated embryonic liver cells (BNLCL2) was investigated. The relative amount of MAPK proteins, MAP kinase activity and MAPK/LDH (lactate dehydrogenase) ratios were determined in nuclear and cytosolic fractions before and after serum stimulation. In ethanol-treated cells, serum-stimulated MAPK activation was potentiated in both cytosolic and nuclear fractions. Levels of both the p42 and p44 MAPK proteins increased in nuclear fractions from cells treated with ethanol alone for 24 h. Serum-stimulated nuclear translocation of both p42 and p44 MAPK was potentiated in ethanol-treated cells. Nuclear fractions from ethanol-treated cells had a modest increase in MAP kinase activity concurrent with the increased MAPK protein levels. The ratio of MAPK/LDH increased in nuclear fractions with increasing concentrations of ethanol and after serum stimulation. This further confirmed the nuclear translocation of MAPK and also demonstrated that it is not a non-specific effect of ethanol. These results demonstrate, for the first time, that in BNLCL2 liver cells ethanol treatment has dual effects. First, ethanol triggered nuclear translocation of MAPK without causing its activation. Second, it potentiated serum-stimulated activation and translocation of MAPK in the nucleus. These findings provide a novel mechanism through which ethanol may affect cellular and nuclear processes in liver cells.  相似文献   

19.
In this paper, we report that SB202190 alone, a specific inhibitor of p38(MAPK), induces low density lipoprotein (LDL) receptor expression (6-8-fold) in a sterol-sensitive manner in HepG2 cells. Consistent with this finding, selective activation of the p38(MAPK) signaling pathway by expression of MKK6b(E), a constitutive activator of p38(MAPK), significantly reduced LDL receptor promoter activity. Expression of the p38(MAPK) alpha-isoform had a similar effect, whereas expression of the p38(MAPK) betaII-isoform had no significant effect on LDL receptor promoter activity. SB202190-dependent increase in LDL receptor expression was accompanied by induction of p42/44(MAPK), and inhibition of this pathway completely prevented SB202190-induced LDL receptor expression, suggesting that p38(MAPK) negatively regulates the p42/44(MAPK) cascade and the responses mediated by this kinase. Cross-talk between these kinases appears to be one-way because modulation of p42/44(MAPK) activity did not affect p38(MAPK) activation by a variety of stress inducers. Taken together, these findings reveal a hitherto unrecognized one-way communication that exists between p38(MAPK) and p42/44(MAPK) and provide the first evidence that through the p42/44(MAPK) signaling cascade, the p38(MAPK) alpha-isoform negatively regulates LDL receptor expression, thus representing a novel mechanism of fine tuning cellular levels of cholesterol in response to a diverse set of environmental cues.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号