首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Progestins have recently been shown to augment gonadotropin-stimulated progesterone and 20 alpha-hydroxypregn-4-en-3-one (20 alpha-OH-P) biosynthesis in cultured rat granulosa cells. The mechanism by which progestins autoregulate ovarian progestin biosynthesis was investigated by studying the modulation of pregnenolone biosynthesis as well as the activities of the enzymes 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) and 20 alpha-hydroxysteroid dehydrogenase (20 alpha-HSD). Granulosa cells obtained from immature hypophysectomized, estrogen-treated rats were cultured with FSH and/or progestins. Pregnenolone production was measured in the presence of cyanoketone (10(-6) M) to inhibit 3 beta-HSD activity. Enzymatic activities of 3 beta-HSD and 20 alpha-HSD were determined in cell homogenates by direct enzyme assays. FSH stimulated pregnenolone production, while treatment with progesterone or R5020 alone was ineffective. Concomitant treatment with the progestins further enhanced FSH-stimulated pregnenolone production in a dose-dependent manner with minimal effective doses of 10(-8) and 10(-7) M for R5020 and progesterone, respectively. In FSH-primed cells, LH increased pregnenolone accumulation, and concomitant treatment with R5020 also enhanced the LH action. Furthermore, the gonadotropins stimulated the activity of 3 beta-HSD, and this effect was further enhanced by concomitant treatment with either R5020 or progesterone in a dose-dependent manner. In addition, the 20 alpha-HSD activities were enhanced by progestins in cells treated with FSH but not with LH. Thus, both natural and synthetic progestins stimulate the gonadotropin-induced progesterone production in cultured granulosa cells via enhancing the 3 beta-HSD enzyme as well as pregnenolone biosynthesis.  相似文献   

2.
In the present investigation the influence of androgens and progestins on the FSH modulation of progesterone biosynthesis was studied in cultured rat granulosa cells. Cells obtained from the ovaries of immature estrogen treated rats were cultured for three days in serum free medium or in medium supplemented with FSH or CPA, with or without reduced androgen DHT or the synthetic progestin R5020 alone or in combination with the anti-androgen CPA. Treatment with FSH increased pregnenolone, progesterone and 20 alpha-OHP accumulation in the culture medium 20-, 14- and 7-fold, respectively. Furthermore FSH increased the activity of the enzyme 3 beta-HSD. Concurrent treatment with DHT or R5020 augmented the FSH stimulated steroidogenesis of cultured cells. The androgen enhancement of FSH stimulated steroidogenesis of cultured granulosa cells was blocked by concomitant treatment with CPA, whereas treatment of cultures with anti-androgen did not affect the stimulatory effect of the synthetic progestin R5020.  相似文献   

3.
The effects of estrogens on gonadotropin-stimulated luteinizing hormone (LH) receptor formation were examined in primary cultures of rat granulosa cells. Granulosa cells were cultured for 3 days with increasing concentrations of follicle-stimulating hormone (FSH) in the presence or absence of native and synthetic estrogens. Follicle-stimulating hormone stimulated LH receptor formation in a dose-dependent fashion, and estrogens enhanced the FSH-stimulated LH receptor content by decreasing the apparent ED50 of FSH. At 6.25 ng/ml FSH, the enhancement in LH receptor was estrogen dose dependent, with an ED50 value of about 3 X 10(-9) M for 17 beta-estradiol. The increased LH receptor content seen in cells treated with FSH and estrogen was correlated with increased cAMP production by these cells in response to LH stimulation. Time course studies revealed enhancement of FSH-stimulated LH receptor induction at 48 and 72 h of culture. Granulosa cells were also cultured with FSH for 2 days to induce functional LH receptors, then further cultured for 3 days with LH in the presence or absence of estrogens. At 30 ng/ml LH, increasing concentrations of estrogens maintained LH receptor content in a dose-dependent fashion, with their relative estrogenic potencies in keeping with reported binding affinities to estrogen receptors. An autocrine role of estrogens on LH receptor formation was further tested in granulosa cells treated with FSH and an aromatase substrate (androstenedione) to increase estrogen biosynthesis. Cotreatment with semipurified estrogen antibodies partially blocked the FSH stimulation of LH receptors, whereas nonimmune serum was ineffective. Also, inclusion of diethylstilbestrol prevented the inhibitory effect of the estrogen antibodies. Thus, local estrogens in ovarian follicles may play an autocrine role in granulosa cells to enhance LH receptor formation and to increase granulosa cell responsiveness to the LH surge, with subsequent ovulation and adequate corpus luteum formation.  相似文献   

4.
The gonadotrophic regulation of progesterone production by rat granulosa cells was examined in a chemically-defined medium containing FSH, dibutyryl cyclic AMP [Bu)2cAMP) and the calcium ionophore, A23187. FSH and A23187 alone significantly enhanced the production of pregnenolone, progesterone and its metabolite, 20 alpha-hydroxypregn-4-en-3-one (20 alpha-OH-P) from endogenous substrate(s). Stimulation of progesterone production by A23187 was accompanied by an increase in 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) but not 20 alpha-hydroxysteroid dehydrogenase (20 alpha-HSD) activity, as attested by enhancement of the metabolism of exogenous pregnenolone to progesterone but not of progesterone to 20 alpha-OH-P. In contrast, although (Bu)2cAMP increased pregnenolone and progesterone production and the metabolism of exogenous progesterone to 20 alpha-OH-P, it failed to stimulate the conversion of exogenous pregnenolone to progesterone. The increase in progesterone production and in the conversion of exogenous pregnenolone to progesterone by FSH and A23187 was concentration- and time-dependent. Whereas maximal stimulation of de-novo progesterone synthesis by FSH was evident by 6 h (earliest time examined), a significant increase in the conversion of exogenous pregnenolone to progesterone in the presence of FSH or the ionophore was not noted until 12 h of incubation. Although a small but significant increase in progesterone production was also noted as early as 6 h of incubation in the presence of the calcium ionophore, this was markedly smaller than that elicited by FSH. We conclude that the calcium ionophore A23187 and (Bu)2cAMP have similar as well as distinct effects on progesterone production in rat granulosa cells in vitro.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Luteinization stimulator (LS), an intrafollicular compound of preovulatory (5-8 mm) follicles, increased both the basal and gonadotropins-stimulated production of progesterone by immature (1-3 mm) granulosa cells. The mechanism by which LS enhance steroidogenesis was investigated by studying the modulation of progesterone biosynthesis from exogenous cholesterol and pregnenolone in cultured porcine granulosa cells in serum-free medium. Progesterone production by cultured granulosa cells was stimulated by FSH, while treatment with 22-OH-cholesterol further enhanced the gonadotropin action. The activity of LS was found in cell conditioned media obtained after 3-day cultivation of preovulatory granulosa cells. Conversion of 22-OH-cholesterol into progesterone by granulosa cells isolated from small follicles was significantly stimulated in the presence LS in culture media. Also, progesterone production by granulosa cells in the presence of pregnenolone was increased considerably. Concomitant treatment with LS led to a further augmentation in progesterone synthesis. Endogenous formation of pregnenolone was inhibited by aminoglutethimide. Thus, LS enhancement of progesterone production in cultured porcine granulosa cells is associated with an increase in the activity of cytochrome P450 cholesterol side-chain cleavage and 3beta hydroxysteroid dehydrogenase enzymes.  相似文献   

6.
Alterations of progesterone metabolism and especially of 20 alpha-hydroxysteroid dehydrogenase (20 alpha-HSD) activity were studied in cultured rat granulosa cells following various treatments. The cells were incubated for up to 48 h with or without follicle-stimulating hormone (FSH), androgens, hydroxyflutamide, estrogens, chlorea toxin, and dibutyryl cAMP [Bu2 cAMP]. Subsequently, the cells were incubated for 3 h with [4-14 C] progesterone (0.5 microM). The progesterone utilization and accumulation of 20 alpha-reduced and 5 alpha-reduced metabolites were assessed following thin-layer chromatography separation of radiolabeled steroids. Both FSH (1 microgram/ml) and testosterone (0.5 microM) decreased the 20 alpha-HSD activity by decreasing the maximal velocity (by 52% and 37%, respectively) without changing significantly the Km value. The inhibition of 20 alpha-HSD was demonstrable following 12 and 24 h exposure to FSH and following 24 and 48 h exposure to testosterone. Effects comparable to that induced by testosterone were elicited by other androgens (androstenedione and 5 alpha-dihydrotestosterone), but not by estrogens (estradiol-17 beta and estrone). Hydroxyflutamide reversed testosterone-induced effects: the increase of endogenous progesterone accumulation and the decrease of 20 alpha-HSD activity. Both cholera toxin (0.001-10 micrograms/ml) and Bu2 cAMP (62.5-1000 micrograms/ml) caused a dose-dependent inhibition of 20 alpha-HSD activity. Present results indicate that: the inhibition of 20 alpha-HSD by both FSH and androgens may be of a noncompetitive nature; androgen action on 20 alpha-HSD may be a true androgenic, receptor-mediated effect; and cAMP may mediate the FSH action on 20 alpha-HSD activity.  相似文献   

7.
Bovine theca and granulosa cells interact to promote androgen production   总被引:1,自引:0,他引:1  
Pieces of theca interna or follicle wall (theca interna + attached granulosa cells), obtained from bovine preovulatory follicles prior to the surge of luteinizing hormone (LH) and cultured for 3 days, secreted androstenedione. Luteinizing hormone, but not follicle-stimulating hormone (FSH), increased production of androstenedione 3 to 4-fold. In both the presence and absence of LH, follicle wall preparations secreted about 4-fold more androstenedione than did equivalent amounts of theca interna tissue. Isolated granulosa cells produced only negligible quantities of androstenedione, which suggests that they may contribute to the greater production of androstenedione by follicle wall by supplying progestin precursor to the theca cells. The addition of pregnenolone or progesterone to isolated theca interna increased the secretion of androstenedione, but pregnenolone was by far the more effective precursor. This suggested that the delta 5 (delta 5) pathway is the preferred pathway for androstenedione synthesis by bovine theca cells and that granulosa cells might supply progestin precursor in the form of pregnenolone. Follicle wall and granulosa cell cultures secreted 2 and 7 times more pregnenolone, respectively, than did theca cultures. Luteinizing hormone, but not FSH, increased production of pregnenolone by the follicle wall, whereas the gonadotropins had no effect on secretion by either granulosa or theca cells. Since exogenous testosterone enhanced the production of pregnenolone by granulosa cells, thecal androgen (which is stimulated by LH) may increase the ability of granulosa cells to make pregnenolone and explain the stimulatory effect of LH on pregnenolone secretion by follicle wall.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The influence of follicular maturation on progesterone production by collagenase-dispersed hen granulosa cells was measured in short-term incubations. Granulosa cells of the largest follicle (F1) produced up to ten times more progesterone than cells from smaller follicles (F3-F5), not only in response to luteinizing hormone (LH), but also when stimulated by exogenous cyclic AMP or forskolin, both of which raise intracellular cyclic AMP levels by nonreceptor-mediated mechanisms. Moreover, when granulosa cell progesterone synthesis was stimulated by incorporating 25-hydroxy-cholesterol into the incubation medium, an identical pattern was obtained. This could be attributed to a corresponding increase in the specific activity of the mitochondrial cholesterol side-chain cleavage enzyme (20,22 desmolase). An increase in the apparent Vmax was observed without a change in the apparent Km values. Pregnenolone substrate at concentrations which raised progesterone production to levels similar to those observed in response to LH stimulation was utilized equally by granulosa cells of mature and developing follicles. However, at high pregnenolone concentrations, granulosa cells of mature follicles converted significantly more of the precursor to progesterone. Assay of 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) showed that the enzyme has two Kms: a low Km present in cells of both mature and developing follicles, and a high Km found only in granulosa cells of more mature follicles. It is concluded that LH-promoted progesterone synthesis in granulosa cells of developing chicken follicles is restricted not so much by the availability of receptors and the competence of the adenylate cyclase/cyclic AMP system, but by the activity of key enzymes, principally the cholesterol-20,22 desmolase.  相似文献   

9.
The modulation of ovarian steroidogenesis by epidermal growth factor (EGF) was investigated in cultured rat granulosa cells. Granulosa cells, obtained from ovaries of immature, hypophysectomized, estrogen-treated rats, were incubated for 2 days with EGF, follicle-stimulating hormone (FSH), or EGF plus FSH. Treatment with EGF did not affect estrogen production, but stimulated progestin (i.e. progesterone and 20 alpha-hydroxy-pregn-4-en-3-one) production in a dose-dependent manner. Stimulation of progestin production by EGF appears to be the result of an increase in pregnenolone biosynthesis as well as increases in the activities of 20 alpha-hydroxysteroid dehydrogenase and 3 beta-hydroxysteroid dehydrogenase/isomerase. Treatment with FSH increased both estrogen and progestin production by cultured granulosa cells. When cells were treated concomitantly with EGF, FSH-stimulated estrogen production was inhibited, while progestin production was further enhanced. The EGF enhancement of FSH-stimulated progestin production appears to be the result of synergistic increases in pregnenolone biosynthesis and 20 alpha-hydroxysteroid dehydrogenase activity, resulting in substantial increases in 20 alpha-hydroxypregn-4-en-3-one but not progesterone production. The effects of EGF were shown to be time-dependent. The concept of a direct action of EGF on rat granulosa cells is reinforced by the demonstration of high affinity (Kd approximately 3 X 10(-10) M), low capacity (approximately 5,000 sites/cell) EGF binding sites in these cells. Thus, EGF interacts with specific granulosa cell receptors to stimulate progestin but to inhibit estrogen biosynthesis.  相似文献   

10.
Vasoactive intestinal peptide (VIP) and VIPergic nerve fibers are present in the ovaries of several mammalian species, suggesting a possible ovarian action of VIP. We have investigated the direct effects of synthetic porcine VIP on rat granulosa cell steroidogenesis in vitro. The cells were obtained from immature, hypophysectomized, estrogen-primed rats, and cultured in a serum-free medium for 24 h in the absence or presence of varying amounts of VIP. Medium steroids were then determined by specific radioimmunoassay. Vasoactive intestinal peptide dose-dependently stimulated progesterone, 20 alpha-hydroxypregn-4-ene-3-one (20 alpha-OH-progesterone), and estrogen production with an approximate ED50 value of 3 X 10(-8) M. Maximum steroid production induced by VIP ranged from 15% to 28% of that seen with maximal follicle-stimulating hormone (FSH) stimulation. In contrast to the ability of FSH to induce luteinizing hormone (LH) receptor formation, treatment with VIP did not increase [125I]iodo-human chorionic gonadotropin (hCG) binding to granulosa cells. The ability of several gastrointestinal peptides, having 17-44% sequence identity to VIP, to stimulate granulosa cell steroidogenesis was also tested. The most closely related peptide, PHM-27 was less effective than VIP, and the least closely related, secretin and glucagon, were ineffective at 10(-6) M. Vasoactive intestinal peptide seems to act at least partly through cyclic 3',5'-adenosine monophosphate (cAMP)-dependent processes: addition of a phosphodiesterase inhibitor significantly potentiated the VIP stimulation of granulosa cell steroidogenesis, and VIP was capable of producing a dose- and time-dependent increase in both intracellular and medium cAMP levels. Vasoactive intestinal peptide stimulation of estrogen production seemed to be a result of increased aromatase activity. The increased progesterone production was associated with increased pregnenolone production, increased rate of conversion of pregnenolone to progesterone via 3 beta-hydroxysteroid dehydrogenase, and decreased metabolism of progesterone via 20 alpha-hydroxysteroid dehydrogenase. These results indicate that VIP exerts a specific action on granulosa cells to increase estrogen and progestin production. The observed direct effects of VIP, coupled with its identification in the ovary, suggest that VIP may be a physiologically important regulator of ovarian activity.  相似文献   

11.
The effects of estrogens on ovarian aromatase activity were investigated in vitro using granulosa cells from immature hypophysectomized estrogen-primed rats. The cells were cultured for 3 days in an androgen-free medium in the presence of follicle-stimulating hormone (FSH), with or without the specified estrogen. After washing, the cells were reincubated for 5 h with 10(-7) M androstenedione, and the formation of estrogens was measured. Estrogen production by control and diethylstilbestrol-treated cells was negligible, while FSH stimulated aromatase activity. Furthermore, concomitant treatment with diethylstilbestrol led to dose-dependent increases in the FSH-induced aromatase activity with an ED50 value of 4 X 10(-9) M and an apparent Vmax value 12- to 16-fold higher than those induced by FSH alone. The direct stimulatory effect of estrogens was time-dependent and was not accounted for by increases in cell protein. Various native and synthetic estrogens also augmented the FSH induction of aromatases (native estrogens: estradiol-17 beta = estrone greater than estradiol-17 alpha greater than estriol; synthetic estrogens: hexestrol greater than moxestrol greater than ethinyl estradiol much greater than chlorotrianisene and mestranol). The effect of estradiol-17 beta was dose-dependent with an ED50 value of 9 X 10(-9) M, which is within the physiological levels of follicular estradiol-17 beta. Although treatment with androgens also enhanced the FSH-induced aromatases, treatment with a progestin (R5020) or a mineralocorticoid (aldosterone) was without effect. Thus, estrogens directly augment the stimulation of granulosa cell aromatase activity by FSH. Follicular estrogens may activate intraovarian autoregulatory positive feedback mechanisms to enhance their own production, resulting in selective follicle maturation and the preovulatory estrogen surge.  相似文献   

12.
Undifferentiated granulosa cells from prehierarchal (6- to 8-mm-diameter) hen follicles express very low to undetectable levels of LH receptor (LH-R) mRNA, P450 cholesterol side chain cleavage (P450scc) enzyme activity, and steroidogenic acute regulatory (StAR) protein, and produce negligible progesterone, in vitro, following an acute (3-h) challenge with either FSH or LH. It has previously been established that culturing such cells with FSH for 18-20 h induces LH-R, P450scc, and StAR expression, which enables the initiation of progesterone production. The present studies were conducted to characterize the ability of activin and transforming growth factor (TGF) beta, both alone and in combination with FSH, to promote hen granulosa cell differentiation, in vitro. A 20-h culture of prehierarchal follicle granulosa cells with activin A or transforming growth factor beta (TGFbeta)1 increased LH-R mRNA levels compared with control cultured cells. Activin A and TGFbeta1 also promoted FSH-receptor (FSH-R) mRNA expression when combined with FSH treatment. Neither activin A nor TGFbeta1 alone stimulated progesterone production after 20 h culture. However, preculture with either factor for 20 h (to induce gonadotropin receptor mRNA expression) followed by a 3-h challenge with FSH or LH potentiated StAR expression and progesterone production compared with cells challenged with gonadotropin in the absence of activin A or TGFbeta1 preculture. Significantly, activation of the mitogen-activated protein (MAP) kinase pathway with transforming growth factor alpha (TGFalpha) (monitored by Erk phosphorylation) blocked TGFbeta1-induced LH-R expression, and this effect was associated with the inhibition of Smad2 phosphorylation. We conclude that a primary differentiation-inducing action of activin A and TGFbeta1 on hen granulosa cells from prehierarchal follicles is directed toward LH-R expression. Enhanced LH-R levels subsequently sensitize granulosa cells to LH, which in turn promotes StAR plus P450scc expression and subsequently an increase in P4 production. Significantly, the finding that TGFbeta signaling is negatively regulated by MAP kinase signaling is proposed to represent a mechanism that prevents premature differentiation of granulosa cells.  相似文献   

13.
We investigated the effects of theca cells or FSH on granulosa cell differentiation and steroid production during bovine early follicular growth, using a co-culture system in which granulosa and theca cells were cultured on opposite sides of a collagen membrane. Follicular cells were isolated from early antral follicles (2-4 mm) that were assumed to be in gonadotropin-independent phase and just before recruitment into a follicular wave. Granulosa cells were cultured under serum-free conditions with and without theca cells or recombinant human FSH to test their effects on granulosa cell differentiation. Messenger RNA levels for P450 aromatase (aromatase), P450 cholesterol side chain cleavage (P450scc), 3beta-hydroxysteroid dehydrogenase (3beta-HSD), LH receptor (LHr), and steroidogenic acute regulatory protein (StAR) in granulosa cells were measured by real-time quantitative RT-PCR analysis. FSH enhanced aromatase mRNA expression in granulosa cells, but did not alter estradiol production. FSH also enhanced mRNA expression for P450scc, LHr, and StAR in granulosa cells, resulting in an increase in progesterone production. In contrast, theca cells enhanced aromatase mRNA expression in granulosa cells resulting in an increase in estradiol production. Theca cells did not alter progesterone production and mRNA expression in granulosa cells for P450scc, 3beta-HSD, LHr, and StAR. The results of the present study indicate that theca cells are involved in both rate-limiting steps in estrogen production, i.e., androgen substrate production and aromatase regulation, and that theca cell-derived factors regulate estradiol and progesterone production in a way that reflects steroidogenesis during the follicular phase of the estrous cycle.  相似文献   

14.
A decrease in serum progesterone at the end of pregnancy is essential for the induction of parturition in rats. We have previously demonstrated that LH participates in this process through: 1) inhibiting 3beta-hydroxysteroid dehydrogenase (3beta-HSD) activity and 2) stimulating progesterone catabolism by inducing 20alpha-hydroxysteroid dehydrogenase (20alpha-HSD) activity. The objective of this investigation was to determine the effect of LH and progesterone on the luteal expression of the steroidogenic acute regulatory protein (StAR), cytochrome P450 side-chain cleavage (P450(scc)), 3beta-HSD, and 20alpha-HSD genes. Gene expression was analyzed by Northern blot analysis 24 and 48 h after administration of LH or vehicle on Day 19 of pregnancy. StAR and 3beta-HSD mRNA levels were lower in LH-treated rats than in rats administered with vehicle at both time points studied. P450(scc) mRNA levels were unaffected by LH. The 20alpha-HSD mRNA levels were not different between LH and control rats 24 h after treatment; however, greater expression of 20alpha-HSD, with respect to controls, was observed in LH-treated rats 48 h after treatment. Luteal progesterone content dropped in LH-treated rats at both time points studied, whereas serum progesterone decreased after 48 h only. In a second set of experiments, the anti-progesterone RU486 was injected intrabursally on Day 20 of pregnancy. RU486 had no effect on 3beta-HSD or P450(scc) expression but increased 20alpha-HSD mRNA levels after 8 h treatment. In conclusion, the luteolytic effect of LH is mediated by a drop in StAR and 3beta-HSD expression without effect on P450(scc) expression. We also provide the first in vivo evidence indicating that a decrease in luteal progesterone content may be an essential step toward the induction of 20alpha-HSD expression at the end of pregnancy in rats.  相似文献   

15.
FSH in vitro, but not LH, increased the O2 uptake of isolated granulosa cells from 23 day old rats previously treated with DES or with DES and FSH. Dose response studies showed that the cells were most sensitive to FSH when the cellular binding of FSH was highest. LH increased the O2 uptake of granulosa cells of untreated 30 day old rats. DES treatment inhibited the LH induced rise in O2 uptake when the rats were implanted with DES capsules unless FSH was injected to induce LH receptors. Addition of dbcAMP in vitro increased O2 uptake of granulosa cells from 30 day old rats at concentrations 10X lower than those required to stimulate O2 uptake in cells from 23 day old rats treated with DES alone.FSH in vitro increased lactate formation in the absence of added substrates but did not do so when glucose was added to the media. In contrast, LH greatly increased lactate formation with added glucose. Dose response studies showed that less than 0.6 ug/ml LH S21 was effective in increasing lactate above control levels. These data suggest that FSH affects aerobic pathways while LH affects anaerobic pathways in the process of the differentiation of granulosa cells toward luteal cells.It is well known that FSH and LH interact with their target cells in the ovary by binding to specific receptors and that FSH stimulates LH-receptor production (1). Receptor binding by either hormone activates adenylate cyclase (2) raising cyclic adenosine monosphosphate (cAMP) levels (3) and increasing protein kinase activity (4). Such changes probably trigger changes in the major metabolic pathways that support follicular development because cells of corpora lutea have glycogen (5) which is not present in follicular granulosa cells (6–9). Several studies suggest that FSH and LH may regulate metabolic processes in the ovary. LH increases lactate in whole prepuberal ovaries (10,11,12) and also increases the uptake of glucose (13). FSH increases oxygen uptake in chick ovaries (14), rat ovaries (15) and prairie dog ovaries (16). However, only one study has been done using isolated ovarian cells. Hamberger (17) has reported that FSH increased the oxygen uptake of thecal cells of immature rats while LH increased the oxygen uptake of granulosa cells. Since granulosa cells from immature rats are reported to have FSH receptors while theca cells have LH receptors the effects of these hormones appear unclear.The present studies were undertaken to more accurately characterize the actions of FSH, LH, and dibutyryl cAMP (dbcAMP) on the oxygen uptake of isolated granulosa cells and remaining tissues of immature ovaries and to determine the effects of FSH and LH on the production of lactate by granulosa cells.  相似文献   

16.
The regulation of the production of steroids and steroid sulfates and the activity of aromatase in human luteinized granulosa cells were investigated. The cells were cultured for 48 h in the presence or absence of hCG and FSH. Basal production of pregnenolone (Pre, 0.3 +/- 0.03 ng/micrograms protein) and progesterone (P, 19.3 +/- 1.7 ng/micrograms protein) were high compared with that of other steroids beyond P in the steroidogenic pathway. The concentration of 17 alpha-hydroxyprogesterone (17-OHP) was lower 0.17 +/- 0.06 ng/micrograms and that of other steroids in the 4-ene and 5-ene pathways and steroid sulfates less than 0.05 ng/micrograms. Both hCG and FSH (100 ng/ml) stimulated the production of Pre and P 3- to 5-fold, but only minimal stimulation of other steroids and steroid sulfates was observed. Aromatase activity of granulosa-luteal cells was measured from the rate of formation of 3H2O from 1 beta-[3H]androstenedione (1 beta[3H]A) after exposing the cells to hCG, FSH or estradiol (E2) for 48 h. Basal aromatase activity was relatively low, but hCG and FSH stimulated aromatase 8- and 4-fold, respectively. The incubation of granulosa-luteal cells with E2 did not affect basal aromatase activity, but E2 augmented FSH-stimulated aromatase 1.4-fold (P less than 0.025). The results suggest that there is low 17 alpha-hydroxylase and steroid sulfokinase activity in human granulosa-luteal cells. Aromatase activity in these cells is regulated by both hCG and FSH, and intra-ovarian estrogens may regulate granulosa cell aromatase activity.  相似文献   

17.
The effects of glucocorticoids on the steroidogenesis of ovarian granulosa cells were investigated. Cortisol and dexamethasone inhibited the increase in aromatase activity induced by FSH in cultured rat granulosa cells. In the same cultures progesterone production was stimulated to a maximum of 167% of the control level. This differential effect of glucocorticoids on estrogen and progesterone production by the granulosa cells indicates that glucocorticoids exert specific inhibition of the induction of aromatase by FSH and do not cause a general suppression of granulosa cell activity. In contrast to their inhibition of the FSH induction of aromatase enzymes, glucocorticoids did not interfere with the activity of pre-existing aromatase enzymes. In granulosa cells containing fun aromatase activity, treatment with cortisol and dexamethasone did not inhibit aromatization of androstenedione to estrogens whereas two known aromatase inhibitors (dihydrotestosterone and 4-androstene-3, 6, 17-trione) were effective. These results indicate that the glucocorticoids exert a selective inhibition of the FSH-induction of aromatase activity in rat granulosa cells by a mechanism other than directly interfering with the aromatization reaction.  相似文献   

18.
The detection of galectin-1 (gal-1) in pig granulosa cell lysates by immunoblotting and its cytosolic as well as membrane-associated localization prompted us to study its effects on cell proliferation and regulation of progesterone synthesis. The lectin stimulated the proliferation of granulosa cells from pig ovaries cultured in serum-free medium. Gal-1 inhibited the FSH-stimulated progesterone synthesis of granulosa cells. This inhibitory effect was strongly reduced by the disaccharidic competitor lactose at 30 mM. The absence of inhibitory effects on dibutyryl-cAMP (db-cAMP), forskolin, and pregnenolone-enhanced cellular progesterone synthesis suggests that gal-1interferes with the receptor-dependent mechanism of FSH-stimulated progesterone production. In FSH-stimulated granulosa cells, western blot analysis revealed the gal-1-mediated suppression of the cytochrome P450-dependent cholesterol side chain cleavage enzyme (P450(SCC)) that catalyzes the conversion of cholesterol to pregnenolone. In the presence of 30 mM lactose, the gal-1-reduced P450(SCC) expression was prevented. Strongly reduced mRNA levels were recorded for P450(SCC) and 3beta-hydroxysteroid dehydrogenase/isomerase (3beta-HSD) when FSH-stimulated granulosa cells were cultured in the presence of gal-1. We conclude that gal-1 exerts its inhibitory effect on steroidogenic activity of granulosa cells by interfering the hormone-receptor interaction resulting in decreased responses to FSH stimulation.  相似文献   

19.
Physiologic characterization of transformed and cloned rat granulosa cells   总被引:1,自引:0,他引:1  
Properties of a clonal line of SV40-transformed rat granulosa cells (DC3 cells) were elucidated. DC3 cells were maintained in vitro in Iscove Modified Dulbecco Medium that contained 20% fetal bovine serum. The cells had a logarithmic growth phase doubling time of approximately 18 h and produced detectable quantities of estrone, estradiol, and progesterone. Steroidogenesis was increased by supplementation with either steroidogenic substrates or agents that stimulated activity of adenylate cyclase. Production of progesterone and estrogens was enhanced when medium was supplemented with 25-hydroxycholesterol, and production of estradiol was enhanced by medium supplementation with androstenedione. Treatments with forskolin and cholera toxin resulted in marked increases of cyclic adenosine 3',5'-monophosphate (cAMP) in medium and cells and enhanced steroidogenesis. Isoproterenol and vasoactive intestinal peptide, but not follicle-stimulating hormone (FSH), luteinizing hormone (LH), insulin or prolactin, stimulated cAMP secretion by suspended cells. DC3 cells had small but detectable levels of binding to FSH, but binding of LH and epidermal growth factor could not be detected. DC3 cells possess characteristics expected of granulosa cells arrested in an early stage of differentiation and may provide a useful model for studies of "immature" granulosa cell functions.  相似文献   

20.
Although it is widely accepted that estrogens exert a major trophic effect on follicular growth, their mechanism of action has not been established. We examined the effect of estrogen treatment in vivo or in vitro on DNA synthesis in rat granulosa cells cultured under defined conditions (DMEM:F12, collagen-coated plastic wells). Treatment with diethylstilbestrol (DES) in vivo (silastic implants containing 5 mg DES) for at least 2 days was required to observe a significant stimulation of 3H-thymidine incorporation by insulin (1 microgram/ml) in culture. Rat thecal/interstitial cells (TI) were isolated from DES-treated rats and cultured under the same conditions as granulosa cells. Conditioned media from TI cells stimulated DNA synthesis in granulosa cell cultures (as much as twofold). This effect was markedly amplified by estradiol treatment (1 microgram/ml) of the TI cell cultures. Addition of estradiol to granulosa cell cultures enhanced the effect of conditioned medium from nontreated TI cells. Conditioned medium from estradiol-treated TI cells stimulated DNA synthesis in granulosa cells from both DES-treated and nontreated rats. Estradiol had no effect when added directly to purified granulosa cell cultures but stimulated 3H-thymidine incorporation in crude preparations of ovarian cells. The stimulatory effects of TI cell-conditioned medium and insulin were reflected in the final cell densities achieved after 9 days in culture. We conclude that the mitogenic actions of estrogens in the ovary involve sensitization of granulosa cells to locally present mitogens like insulin and a TI cell-derived growth factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号