首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The stereoselectivity of purified rat GSH transferases towards alpha-bromoisovaleric acid (BI) and its amide derivative alpha-bromoisovalerylurea (BIU) was investigated. GSH transferase 2-2 was the only enzyme to catalyse the conjugation of BI and was selective for the (S)-enantiomer. The conjugation of (R)- and (S)-BIU was catalysed by the isoenzymes 2-2, 3-3 and 4-4. Transferase 1-1 was less active, and no catalytic activity was observed with transferase 7-7. Isoenzymes 1-1 and 2-2 of the Alpha multigene family preferentially catalysed the conjugation of the (S)-enantiomer of BIU (and BI), whereas isoenzymes 3-3 and 4-4 of the Mu multigene family preferred (R)-BIU. The opposite stereoselectivity of conjugation of BI and BIU previously observed in isolated rat hepatocytes and the summation of activities of enzymes known to be present in hepatocytes on the basis of present data are in accord.  相似文献   

2.
B Ketterer 《Mutation research》1988,202(2):343-361
Glutathione (GSH) alone detoxifies electrophiles with an effectiveness which depends on the rate of the reaction and the concentration of GSH. If electrophiles are substrates for GSH transferase isoenzymes, the effectiveness of detoxication is much enhanced due to the increased rate of reaction and it is also independent of GSH concentration to low levels of GSH depletion, since the Km for GSH is approximately 0.1 mM. In this paper detoxication of electrophilic metabolites of the hepatocarcinogen N-methyl-4-aminoazobenzene which are not substrates for GSH transferases and the carcinogenic electrophile derived from the hepatocarcinogen aflatoxin B1 which is a poor substrate is compared with detoxication of electrophiles which are good substrates and which although bacterial mutagens are not carcinogenic in organs containing the appropriate GSH transferases. GSH transferases detoxify not only electrophiles derived from xenobiotics, but also endogenous electrophiles which are usually the consequence of free radical damage in the presence of oxygen to lipids and DNA and include lipid and DNA hydroperoxides and alkenals arising from the decomposition of lipid hydroperoxides. Studies in the rat and other mammals show the GSH transferases to be dimers in which the subunits are members of a gene super-family. There are three, perhaps four multigene families namely, alpha containing subunits 1, 2, 8 and 10; mu containing subunits 3, 4, 6 and 9; pi containing subunit 7 and subunits 5 and 5* which are so far unassigned. Subunit 5* is apparently restricted to the nucleus and is noteworthy for its activity towards DNA hydroperoxides. Studies in the human are not as advanced as in the rat but so far reveal close similarities. The ability of GSH transferases to detoxify electrophiles is important in carcinogenesis at a number of points. They may inhibit initiation and tumour proportion, but they may be advantageous to the developing tumour cell, and may be acquired in increased amounts during malignant progression. In many tumour cells the development of lines resistant to anticancer drugs is associated with an increased expression of GSH transferases, particularly GSH transferase pi in human cells.  相似文献   

3.
Hitchens TK  Mannervik B  Rule GS 《Biochemistry》2001,40(39):11660-11669
Glutathione transferases comprise a large family of cellular detoxification enzymes that function by catalyzing the conjugation of glutathione (GSH) to electron-deficient centers on carcinogens and other toxins. NMR methods have been used to characterize the structure and dynamics of a human class pi enzyme, GST P1-1, in solution. Resonance assignments have been obtained for the unliganded enzyme and the GSH and S-hexylglutathione (GS-hexyl) complexes. Differences in chemical shifts between the GSH and GS-hexyl complexes suggest more extensive structural differences between these two enzyme-ligand complexes than detected by previous crystallographic methods. The NMR studies reported here clearly show that an alpha-helix (alpha2) within the GSH binding site exists in multiple conformations at physiological temperatures in the absence of ligand. A single conformation of alpha2 is induced by the presence of either GSH or GS-hexyl or a reduction in temperature to below 290 K. The large enthalpy of the transition ( approximately 150 kJ/mol) suggests a considerable structural rearrangement of the protein. The Gibbs free energy for the transition to the unfolded form is on the order of -4 to -6 kJ/mol at physiological temperatures (37 degrees C). This order-to-disorder transition contributes substantially to the overall thermodynamics of ligand binding and should be considered in the design of selective inhibitors of class pi glutathione transferases.  相似文献   

4.
Purified and microsomal preparations of prostaglandin H synthase catalyzed the arachidonic acid-dependent polymerization of acetaminophen and, in the presence of GSH, catalyzed the formation of 3-(glutathion-S-yl)acetaminophen. The formation of these products was inhibited by indomethacin and by purging reaction mixtures with argon. When H2O2 replaced arachidonic acid, neither indomethacin nor argon purging inhibited product formation. These results suggest that the peroxidase activity of prostaglandin H synthase catalyzed the oxidation of acetaminophen. Addition of GSH to reaction mixtures decreased acetaminophen polymerization; however, 3-(glutathion-S-yl)acetaminophen formation was maximal with 40 microM GSH, and higher concentrations of GSH did not substantially alter its formation. In the presence of GSH, either ascorbic acid or NADPH decreased polymerization by greater than 97% while 3-(glutathion-S-yl)acetaminophen formation was still observed. These data suggest that polymers and conjugates were formed by two different pathways. Since polymerization of acetaminophen involves radical termination of N-acetyl-p-benzosemiquinone imine whereas 3-(glutathion-S-yl)acetaminophen is formed by conjugation of N-acetyl-p-benzoquinone imine with GSH, the data suggest that prostaglandin H synthase catalyzed both the overall 1- and 2-electron oxidation of acetaminophen.  相似文献   

5.
P Zhang  S Liu  S O Shan  X Ji  G L Gilliland  R N Armstrong 《Biochemistry》1992,31(42):10185-10193
Exons 1 and 2 and exon 8 of the mu class GSH transferases from rat encode sequence-variable regions 1 and 4 of mu class isoenzymes, respectively. These two of four variable regions are located at the N- and C-termini of this isoenzyme class and impinge on the active site. In order to assess the influence of these variable regions on the catalytic diversity of the class mu isoenzymes, seven chimeric isoenzymes were constructed by transplantation of the variable regions of the sequence of the type 4 subunit into the corresponding regions of the type 3 subunit. The chimeric isoenzymes exhibit unique catalytic properties. Replacement of all, or part, of variable region 4 of the type 3 subunit with that of the type 4 subunit results in chimeric catalysts with higher turnover numbers in nucleophilic aromatic substitution reactions. Analysis of the crystal structure of isoenzyme 3-3 [Ji, X., Zhang, P., Armstrong, R. N., & Gilliland, G. L. (1992) Biochemistry (preceding paper in this issue)] suggests that interaction of the flexible C-terminal tail with the N-terminal domain helps limit the rate of product release from the active site of isoenzyme 3-3 in this type of reaction. Substitution of all, or part, of the sequence-variable region 1 of subunit 3 with that of subunit 4 results in chimeric isoenzymes that mimic the high stereoselectivity but not the catalytic efficiency of isoenzyme 4-4 toward alpha,beta-unsaturated ketones.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
In the present study, the enzymatic conjugation of the isoprene monoepoxides 3,4 epoxy-3-methyl-1-butene (EPOX-I) and 3,4-epoxy-2-methyl-1-butene (EPOX-II) with glutathione was investigated, using purified glutathione S-transferases (GSTs) of the alpha, mu, pi and theta-class of rat and man. HPLC analysis of incubations of EPOX-I and EPOX-II with [35S]glutathione (GSH) showed the formation of two radioactive fractions for each isoprene monoepoxide. The structures of the EPOX-I and EPOX-II GSH conjugates were elucidated with 1H-NMR analysis. As expected, two sites of conjugation were found for both isoprene epoxides. EPOX-II was conjugated more efficiently than EPOX-I. In addition, the mu and theta class glutathione S-transferases were much more efficient than the alpha and pi class glutathione S-transferases, both for rat and man. Because the mu- and theta-class glutathione S-transferases are expressed in about 50 and 40-90% of the human population, respectively, this may have significant consequences for the detoxification of isoprene monoepoxides in individuals who lack these enzymes. Rat glutathione S-transferases were more efficient than human glu tathione S-transferases: rat GST T1-1 showed about 2.1-6.5-fold higher activities than human GST T1-1 for the conjugation of both EPOX-I and EPOX-II, while rat GST M1-1 and GST M2-2 showed about 5.2-14-fold higher activities than human GST M1a-1a. Most of the glutathione S-transferases showed first order kinetics at the concentration range used (50-2000 microM). In addition to differences in activities between GST-classes, differences between sites of conjugation were found. EPOX-I was almost exclusively conjugated with glutathione at the C4-position by all glutathione S-transferases, with exception of rat GST M1-1, which also showed significant conjugation at the C3-position. This selectivity was not observed for the conjugation of EPOX-II. Incubations with EPOX-I and EPOX-II and hepatic S9 fractions of mouse, rat and man, showed similar rates of GSH conjugation for mouse and rat. Compared to mouse and rat, human liver S9 showed a 25-50-fold lower rate of GSH conjugation.  相似文献   

7.
DNA peroxidized by exposure to ionizing radiation in the presence of oxygen is a substrate for the Se-independent GSH peroxidase activity of several GSH transferases, GSH transferases 5-5, 3-3 and 4-4 being the most active in the rat liver soluble supernatant fraction (500, 35 and 20 nmol/min per mg of protein respectively) and GSH transferases mu and pi the most active, so far found, in the human liver soluble supernatant fraction (80 and 10 nmol/min per mg respectively). Although the GSH transferase content of the rat nucleus was found to be much lower than that of the soluble supernatant, nuclear GSH transferases are likely to be more important in the detoxification of DNA hydroperoxide produced in vivo. Two nuclear fractions were studied, one extracted with 0.075 M-saline/0.025 M-EDTA, pH 8.0, and the other extracted from the residue with 8.5 M-urea. The saline/EDTA fraction contained subunits 1, 2, 3, 4 and a novel subunit, similar but not identical to 5, provisionally referred to as 5*, in the proportions 40:25:5:5:25 respectively. The 8.5 M-urea-extracted fraction contained principally subunit 5* together with a small amount of subunit 6 in the proportion 95:5 respectively. GSH transferase 5*-5* purified from the 8.5 M-urea extract has the highest activity towards DNA hydroperoxide of any GSH transferase so far studied (1.5 mumol/min per mg). A Se-dependent GSH peroxidase fraction from rat liver was also active towards DNA hydroperoxide; however, since this enzyme accounts for only 14% of the GSH peroxidase activity detectable in the nucleus, GSH transferases may be the more important source of this activity. The possible role of GSH transferases, in particular GSH transferase 5*-5*, in DNA repair is discussed.  相似文献   

8.
The oxidation of linoleic acid leads to the generation of several products with biological activity, including 13-oxooctadeca-9,11-dienoic acid (13-OXO), a bioactive 2,4-dienone that has been linked to cell differentiation. In the current work, the conjugation of 13-OXO by human glutathione transferases (GSTs) of the alpha (A1-1, A4-4), mu (M1-1, M2-2) and pi (the allelic variants P1-1/ile, and P1-1/val) classes, and a rat theta (rT2-2) class enzyme has been evaluated. The kinetics and stereoselectivity of the production of the 13-OXO-glutathione conjugate (13-OXO-SG) have been examined. In contrast to many xenobiotic substrates, the endogenous substrate 13-OXO does not exhibit an appreciable non-enzymatic rate of conjugation under physiological conditions. Therefore, the GST-catalyzed conjugation takes on greater significance as it provides the only realistic means for formation of 13-OXO-SG in most biological systems. Alpha class enzymes are most efficient at catalyzing the formation of 13-OXO-SG with kcat/Km values of 8.9 mM(-1) s(-1) for GST A1-1 and 2.14 mM(-1) s(-1) for GST A4-4. In comparison, enzymes from the mu and pi classes exhibit specificity constants from 0.4 to 0.8 mM(-1) s(-1). Conjugation of 13-OXO with glutathione at C-9 of the substrate can yield a pair of diastereomers that can be resolved by chiral HPLC. GSTs from the mu and pi classes are the most stereoselective enzymes and there is no apparent relationship between catalytic efficiency and stereoselectivity. The role of GST in the metabolic disposition of the bioactive oxidation products of linoleic acid has implications for the regulation of normal cellular functions by these versatile enzymes.  相似文献   

9.
K H Tan  D J Meyer  B Coles  B Ketterer 《FEBS letters》1986,207(2):231-233
The thymine hydroperoxide, 5-hydroperoxymethyluracil, is a substrate for Se-dependent glutathione (GSH) peroxidase and the Se-independent GSH peroxidase activity associated with the GSH transferase fraction. These enzymes may contribute to repair mechanisms for damage caused by oxygen radicals. GSH transferases 1-1, 2-2, 3-3, 4-4, 6-6, and 7-7 [(1984) Biochem. Pharmacol. 33, 2539-2540] are shown to differ considerably in their ability to utilize this substrate. For example, high activity is found in GSH transferase 6-6 which is the major isoenzyme in spermatogenic tubules where DNA synthesis is so active and faithful DNA replication so important. The activity of the purified GSH transferase isoenzymes towards 5-hydroperoxymethyluracil is comparable with their activity towards other endogenous substrates related to cellular peroxidation such as linoleate hydroperoxide and 4-hydroxynon-2-enal or biologically important xenobiotic metabolites such as benzo(a)pyrene-7,8-diol-9,10-oxide.  相似文献   

10.
Isolation and sequence of a cDNA for human pro-(cathepsin L).   总被引:8,自引:1,他引:7       下载免费PDF全文
The conjugation of 4-nitroquinoline 1-oxide with GSH by human, rat and mouse liver cytosols, by purified mouse GSH transferases and by extrahepatic organ cytosols of male and female mice was investigated. 4-Nitroquinoline 1-oxide was as effectively conjugated by human liver cytosol as was 1-chloro-2,4-dinitrobenzene, at a substrate concentration of 0.1 mM. Mouse isoenzymes composed of Yb1 and Yf subunits exhibited high activity towards 4-nitroquinoline 1-oxide. Human, rat and mouse hepatic activities towards this substrate correlated with the hepatic isoenzyme compositions.  相似文献   

11.
The ultimate diol epoxide carcinogens derived from polycyclic aromatic hydrocarbons, such as benzo[a]pyrene (BP), are metabolized primarily by glutathione (GSH) conjugation reaction catalyzed by GSH transferases (GSTs). In human liver and probably lung, the alpha class GSTs are likely to be responsible for the majority of this reaction because of their high abundance. The catalytic efficiency for GSH conjugation of the carcinogenic (+)-anti-benzo[a]pyrene-7,8-diol-9,10-epoxide [(+)-anti-BPDE] is more than 5-fold higher for hGSTA1-1 than for hGSTA2-2. Here, we demonstrate that mutation of isoleucine-11 of hGSTA2-2, a residue located in the hydrophobic substrate-binding site (H-site) of the enzyme, to alanine (which is present in the same position in hGSTA1-1) results in about a 7-fold increase in catalytic efficiency for (+)-anti-BPDE-GSH conjugation. Thus, a single amino acid substitution is sufficient to convert hGSTA2-2 to a protein that matches hGSTA1-1 in its catalytic efficiency. The increased catalytic efficiency of hGSTA2/I11A is accompanied by greater enantioselectivity for the carcinogenic (+)-anti-BPDE over (-)-anti-BPDE. Further remodeling of the H-site of hGSTA2-2 to resemble that of hGSTA1-1 (S9F, I11A, F110V, and S215A mutations, SIFS mutant) results in an enzyme whose catalytic efficiency is approximately 13.5-fold higher than that of the wild-type hGSTA2-2, and about 2.5-fold higher than that of the wild-type hGSTA1-1. The increased activity upon mutations can be rationalized by the interactions of the amino acid side chains with the substrate and the orientation of the substrate in the active site, as visualized by molecular modeling. Interestingly, the catalytic efficiency of hGSTA2-2 toward (-)-anti-BPDE was increased to a level close to that of hGSTA1-1 upon F110V, not I11A, mutation. Similar to (+)-anti-BPDE, however, the SIFS mutant was the most efficient enzyme for GSH conjugation of (-)-anti-BPDE.  相似文献   

12.
Isoelectric focusing of a cytosol fraction from human foetal liver revealed the existence of an acidic and a basic isoenzyme of GSH transferase. The acidic and basic forms of GSH transferase were purified in good yield by use of ion-exchange chromatography on DEAE-cellulose followed by affinity chromatography on S-hexyl-GSH coupled to epoxy-activated Sepharose 6B. The content of the acidic and the basic isoenzymes of GSH transferase together was calculated to constitute 1-2% of the soluble proteins in the hepatic cytoplasm. Physical, catalytic and immunological analyses of the acidic and the basic isoenzymes from foetal liver demonstrated unambiguously that the two forms are different structures with distinct properties. On the other hand, the results show clearly extensive similarities between the foetal acidic transferase and transferase pi from human placenta as well as between the foetal basic form and the basic isoenzymes isolated from adult liver. An exception is that both foetal enzymes seem to be considerably more efficient in catalysing the conjugation of GSH with styrene 7,8-epoxide than the corresponding adult forms of GSH transferase.  相似文献   

13.
Analogues of GSH in which either the gamma-glutamyl or the glycyl moiety is modified were synthesized and tested as both substrates for and inhibitors of glutathione S-transferases (GSTs) 7-7 and 8-8. Acceptor substrates for GST 7-7 were 1-chloro-2,4-dinitrobenzene (CDNB) and ethacrynic acid (ETA) and for GST 8-8 CDNB, ETA and 4-hydroxynon-trans-2-enal (HNE). The relative ability of each combination of enzyme and GSH analogue to catalyse the conjugation of all acceptor substrates was similar with the exception of the combination of GST 7-7 and gamma-L-Glu-L-Cys-L-Asp, which used CDNB but not ETA as acceptor substrate. In general, GST 7-7 was better than GST 8-8 in utilizing these analogues as substrates, and glycyl analogues were better than gamma-glutamyl analogues as both substrates and inhibitors. These results are compared with those obtained earlier with GSH analogues and GST isoenzymes 1-1, 2-2, 3-3 and 4-4 [Adang, Brussee, Meyer, Coles, Ketterer, van der Gen & Mulder (1988) Biochem. J. 255, 721-724] and the implications with respect to the nature of their active sites are discussed.  相似文献   

14.
The steady-state kinetics of the dimeric glutathione transferases deviate from Michaelis-Menten kinetics, but have hyperbolic binding isotherms for substrates and products of the enzymic reaction. The possibility of subunit interactions during catalysis as an explanation for the rate behaviour was investigated by use of rat isoenzymes composed of subunits 1, 2, 3 and 4, which have distinct substrate specificities. The kinetic parameter kcat./Km was determined with 1-chloro-2,4-dinitrobenzene, 4-hydroxyalk-2-enals, ethacrynic acid and trans-4-phenylbut-3-en-2-one as electrophilic substrates for six isoenzymes: rat glutathione transferases 1-1, 1-2, 2-2, 3-3, 3-4 and 4-4. It was found that the kcat./Km values for the heterodimeric transferases 1-2 and 3-4 could be predicted from the kcat./Km values of the corresponding homodimers. Likewise, the initial velocities determined with transferases 3-3, 3-4 and 4-4 at different degrees of saturation with glutathione and 1-chloro-2,4-dinitrobenzene demonstrated that the kinetic properties of the subunits are additive. These results show that the subunits of glutathione transferase are kinetically independent.  相似文献   

15.
This study describes immunohistochemical localization, purification and characterization of glutathione S-transferase (GST) of human urinary bladder. Even though all the three major classes of isoenzymes (alpha, mu, and pi) were expressed in human bladder, more than 90% of total GST activity was accounted for by a pi class anionic form. Human bladder alpha, mu, and pi class GSTs were immunologically related to respective isoenzymes of other human tissues. GST pi was present in all 13 samples analyzed, whereas GST alpha and mu were detected in nine and eleven samples, respectively. GST alpha of human bladder appeared to be unique, because unlike this class of GSTs of other human tissues, bladder enzyme had lower affinity for GSH linked to epoxy-activated Sepharose 6B affinity resin. Immunohistochemical staining indicated localization of GST alpha in epithelial surface cells, underlying submucosa and smooth muscle, whereas mu and pi class isoenzymes were predominantly distributed in epithelial surface cells. These results suggest that human bladder GSTs may play an important role in providing protection against xenobiotics because epithelium is considered a target for several carcinogens and all the three classes of isoenzymes are expressed in these cells.  相似文献   

16.
The oxidation of linoleic acid leads to the generation of several products with biological activity, including 13-oxooctadeca-9,11-dienoic acid (13-OXO), a bioactive 2,4-dienone that has been linked to cell differentiation. In the current work, the conjugation of 13-OXO by human glutathione transferases (GSTs) of the alpha (A1–1, A4–4), mu (M1–1, M2–2) and pi (the allelic variants P1–1/ile, and P1–1/val) classes, and a rat theta (rT2–2) class enzyme has been evaluated. The kinetics and stereoselectivity of the production of the 13-OXO-glutathione conjugate (13-OXO-SG) have been examined. In contrast to many xenobiotic substrates, the endogenous substrate 13-OXO does not exhibit an appreciable non-enzymatic rate of conjugation under physiological conditions. Therefore, the GST-catalyzed conjugation takes on greater significance as it provides the only realistic means for formation of 13-OXO-SG in most biological systems. Alpha class enzymes are most efficient at catalyzing the formation of 13-OXO-SG with kcat/Km values of 8.9 mM−1 s−1 for GST A1–1 and 2.14 mM−1 s−1 for GST A4–4. In comparison, enzymes from the mu and pi classes exhibit specificity constants from 0.4 to 0.8 mM−1 s−1. Conjugation of 13-OXO with glutathione at C-9 of the substrate can yield a pair of diastereomers that can be resolved by chiral HPLC. GSTs from the mu and pi classes are the most stereoselective enzymes and there is no apparent relationship between catalytic efficiency and stereoselectivity. The role of GST in the metabolic disposition of the bioactive oxidation products of linoleic acid has implications for the regulation of normal cellular functions by these versatile enzymes.  相似文献   

17.
Levels of reduced glutathione (GSH) in C3H/10T1/2 cells were selectively altered to determine what quantitative role GSH transferase-catalyzed conjugation plays in regulating the cytotoxic effects of benzo(a)pyrene anti-7,8-dihydrodiol 9,10-epoxide (r-7,t-8-dihydroxy-t-9,10-oxy-7,8,9,10-tetrahydrobenzo(a)pyrene, anti-diol epoxide). A 65% decrease in 10T1/2 cell GSH content from 0.16 mM (control cell GSH concentration) to 0.06 mM was accompanied by a 46% decrease in the anti-diol epoxide LD80; a 98% increase in GSH content resulted in a 44% increase in anti-diol epoxide LD80. This nonlinear relationship between changes in cellular GSH concentration and anti-diol epoxide LD80 was directly relatable to the nonlinear change in the rate of anti-diol epoxide conjugation which was catalyzed by 10T1/2 cell GSH transferases. Purified 10T1/2 cell cytosol catalyzed the GSH conjugation of anti-diol epoxide to yield a GSH conjugation product with a distinct UV absorbance spectrum; the apparent GSH Km for this cell cytosol-catalyzed reaction was 0.20 mM. Variations in the cellular GSH concentration around the GSH Km resulted in a nonlinear change in the amount of anti-diol epoxide-GSH conjugate formed, and a reciprocal change in the amount of free anti-diol epoxide available for cytotoxic alkylation events. These results clarify in quantitative, biochemical terms how GSH transferase-catalyzed conjugation can regulate the level of an electrophilic carcinogen metabolite in a biological system.  相似文献   

18.
The developmental expression of the alpha, mu and pi class glutathione S-transferases has been defined in human liver using radioimmunoassay and immunohistochemistry. Expression of alpha and mu class isoenzymes increased significantly at birth, while that of the pi isoenzyme declined during the first trimester. Mu-class isoenzymes (GST1 1, GST1 2, GST1 2-1) were expressed in hepatocytes but not in other liver cell types.  相似文献   

19.
Deltorphin N-terminal tetrapeptides [DEL A: H-Tyr-D-Met-Phe-His-R, where R = -NH2, -NH-NH2, -OCH3, -OH, -NH-NH-CO-R' (R' = -CH3 or adamantane); DEL C: H-Tyr-D-Ala-Asp-R (R = -OH, -NHCH3)], were used in a receptor binding assay with [3H]DADLE and [3H]DPDPE for delta sites, and [3H]DAGO for mu sites; tetrapeptide Ki delta values were similar with either [3H]-delta ligand. DEL A tetrapeptides C-terminally substituted with -NH2, -NH-NH2, -OCH3, and -OH had 10 to greater than 1,000-fold decreased Ki delta values, while Ki mu increased 5 to 100-fold to yield mu selectivity. C-Terminal substitution with -NH-NH2 and -OCH3 conferred highest mu selectivities; adamantyl and acetyl hydrazide derivatives were non-selective. DEL-(1-4)-OH peptides had decreased delta and mu affinities: DEL A-[Asp4]-(1-4)-OH and DEL C-(1-4)-OH had low affinities (greater than 1 microM), however, the Ki delta of the former was 5-fold greater than the latter, and the Ki mu was less by 15-fold. The data suggest that the "message" domain of DEL exhibits receptor selectivity different from that of the heptapeptide.  相似文献   

20.
Cytosolic GSH transferases have been purified from rat lung by affinity chromatography followed by chromatofocusing. On the criteria of order of elution, substrate specificity, apparent subunit Mr, sensitivity to inhibitors, and reaction with antibodies, transferase subunits equivalent to subunits 2, 3, and 4, in the binary combinations occurring in liver, were identified. However, subunit 1 (and therefore transferases 1-1 and 1-2) was not detected. The most conspicuous difference is the presence in lung of a new form, eluting at pH 8.7, which is not detected in rat liver. This isoenzyme (transferase "pH 8.7") is characterized by its low apparent subunit Mr and high efficiency in the conjugation of glutathione with anti-benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide, considered the ultimate carcinogen of benzo(a)-pyrene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号