首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A modified version of the osmotic shock technique was used to investigate HCO3 and OH transport in the alga Chara corallina. Cell turgor was brought close to zero and then restored. When turgor was reduced to near the plasmolytic point using an osmoticum, little effect was observed on H14CO3 assimilation and OH transport. However, when turgor was recovered in these cells, there was a large reduction in HCO3 and OH transport activity. In contrast, when cells were air-dried to zero turgor, and rewetted to restore turgor, no significant effect on OH transport was observed.  相似文献   

2.
Intercellular Transport and Cytoplasmic Streaming in Chara hispida   总被引:5,自引:0,他引:5  
The correlation between the velocities of cytoplasmic streamingand of translocation of 14C-photosynthate and 32P-phosphateassociated radioactivity has been investigated in whole plantsof the green freshwater alga Chara hispida L. Tracer was suppliedto the plant's rhizoid system in a split-chamber. The velocityof cytoplasmic streaming of 52±3.3 µm s–1compares with 57±10 µm s–1 found for 14C-transportand 32±20 µm s–1 found for 32P-transport.There was no indication of intercellular translocation at avelocity faster than visible streaming. Cytochalasin B inhibitedthe translocation of 32P and cytoplasmic streaming. CytochalasinB becomes fully effective in inhibiting streaming and transportafter an incubation time of at least 5 h. Key words: Chara hispida, Cytoplasmic streaming, Intercellular transport  相似文献   

3.
The plasmalemma of Chara corallina remained excitable, whenit was treated with 1 to 100 µM of TFP. However, excitationcessation (EC) uncoupling, i.e. no cessation of cytoplasmicstreaming during an action potential, was observed in a concentrationrange of TFP between 30 to 100 µM. The percentage of occurrenceof the EC-uncoupling increased with the concentration of TFP.The EC-uncoupling effect of TFP could be removed by externalperfusion with 0.1 min or higher concentration of Ca2+ but notwith Mg2+, Ba2+, Sr2+ or Pb2+. These results suggest that excitationof the plasmalemma and EC-coupling is regulated via calmodulinor calmodulin-like system. (Received December 15, 1986; Accepted April 4, 1987)  相似文献   

4.
Water permeability of the plasma membrane of a Characean internodalcell decreased with an increase in the osmotic pressure of theoutside of the cell, suggesting that the equivalent pore radiusof the water-filled pores becomes smaller with an increase inthe osmotic pressure. In contrast, the apparent membrane resistancedid not increase with an increase in the external osmotic pressure.These facts suggest that ions pass through the membrane mainlyvia pores other than those for bulk water flow. (Received October 22, 1986; Accepted May 22, 1987)  相似文献   

5.
Biological and environmental effects of lanthanide series of elements have received much attention recently due to their wide applications. In this study, effects of La3+ treatments on calcium and magnesium concentrations as well as cytoplasmic streaming of internodal cells of Chara corallina were investigated. At all treatment concentrations (10, 100, and 1,000 μM), La3+ significantly decreased calcium concentrations in the cell-wall fractions after 5-h treatments. Calcium concentrations in the cell contents and magnesium concentrations in the cell-wall fractions were reduced by 100 and 1,000 μM La3+ treatments. However, cytoplasmic streaming as an indicator of [Ca2+]cyt was only inhibited at the highest La3+ concentration (1,000 μM). The results suggest that La3+ may affect cellular calcium homeostasis by actions other than as a simple Ca2+ antagonist. La3+ could partially compensate for calcium deficiency at certain concentrations.  相似文献   

6.
Intercellular transport of 14C-labelled photoassimilates, bothin isolated upper shoots and in isolated internode-branchletcomplexes of Chara corallina, was measured. The isolated uppershoots were composed of a primary apex, two mature internodes,and three branchlet whorls. A 10 min loading of the isolatedupper shoot with H14CO3 resulted in a greater accumulationof 14C in the apical complex and branchlets than in the internodes,while a subsequent 50 min chase with unlabelled solution inthe light resulted in a greater accumulation of 14C in internodesthan in other parts of the shoot. In the isolated internode-branchlet complex, when the apex wasnot detached, the amount of 14C transported from branchletsto internodes was about fives times that transported from internodesto branchlets. Removal of the apex resulted in a decrease intransport from branchlets to internodes and an increase in transportin the opposite direction. In an attempt to explain the mechanism of the polar transportof photosynthetically fixed carbon between branchlets and internodes,photosynthetic activities of both types of cells were investigated.Detached branchlets have higher photosynthetic 14C-fixationactivities than those of internodes. Chlorophyll contents, measuredin terms of surface area, in internodes and branchlets werealmost identical. The ribulose-l,5-bisphosphate carboxylase(RuBPCase) activity of branchlets was 1.6 times that of internodes,and the rate of ferricyanide-dependent evolution of oxygen inbranchlets was 1.4 times that in internodes. Key words: Chara, internode, branchlet, polar transport, photosynthesis  相似文献   

7.
Cytoplasmic pH (pHc) in Chara corallina was measured (from [14C]stribution)as a function of external pH (pH0)and temperature. With pH0near 7, pHc at 25?C is 7.80; pHcincreases by 0.005 pH units?C–1 temperature decrease, i.e. pHc at 5 ?C is 7.90. WithpH? near 5.5, the increase in pHc with decreasing temperatureis 0.015 units ?C–1 between 25 and 15?C, but 0.005 units?C–1 between 15 and 5?C. This implies a more precise regulationof pHc with variations in pHo at 5 or 15 ?C compared with 25?C. The observed dp Hc/dT is generally smaller than the –0.017units ?C–1 needed to maintain a constant H+/OH–1,or a constant fractional ionization of histidine in protein,with variation in temperature. It is closer to that needed tomaintain the fractional ionization of phosphorylated compoundsor of CO2–HCO3 The value of dpHc/dT has importantimplications for several regulatory aspects of cell metabolism.These include (all as a function of temperature) the rates ofenzyme reactions, the H+ at the plasmalemma(and hence the energy available for cotransport processes),and the mechanism for pHc regulation by the control of bidirectionalH+ fluxes at the plasmalemma.  相似文献   

8.
The mechanism of polar transport of 14C-photoassimilates betweenChara corallina branchlets and internodes was investigated usingan intracellular perfusion procedure. When the apex remained,more 14C-photoassimilates were transported from branchlet tointernode than in the opposite direction. When the apex wasdetached, this polarity disappeared. To study the polar transportmechanism, we examined the subcellular distribution of 14C-photoassimilatesin the three main intracellular compartments, the cortical chloroplastlayer, streaming sol endoplasm and vacuole. When the internode or branchlet of an internode-branchiet complexwas exposed to 14C-bicarbonate for 10 min, 70 to 80% of thetotal fixed carbon was found in the sol endoplasm. In the subsequent3 h chase, the 14C-photoassimilates in the sol endoplasm ofthe source cell decreased greatly to 20 to 40% of the totallabelled substances. When the apex remained, the branchlet showed higher photosyntheticactivity than the internode, which resulted in a concentrationgradient of 13·5 mol m–3 in the sol endoplasm frombranchlet to internode after photosynthesis for 10 mm. In the3 h chase period, this gradient decreased to about 1·0mol m–3. In the other three cases, involving transportfrom branchlet to internode when the apex was detached, or transportfrom internode with or without apex to branchlet, the intercellulargradient of 14C after 10 mm photosynthesis was about 70 molm–3 in the sol endoplasm. Thus, when the apex remains,the greater gradient of photoassimilates between the sol endoplasmof branchlet and internode seems to be one of the reasons forpolar intercellular transport. Key words: Chara corallina, polar transport, 14C photoassimilates  相似文献   

9.
The electrophysiological properties of cytoplasm-rich fragments (single membrane samples) prepared from internodal cells of Chara corallina were explored in conjunction with K+-sensitive microelectrode and current-voltage (I-V) measurements. This system eliminated the problem of the inaccessible cytoplasmic layer, while preserving many of the electrical characteristics of the intact cells. In 0.1 millimolar external K concentration (Ko+), the resting conductance (membrane conductance Gm, 0.85 ± 0.25 Siemens per square meter (±standard error)) of the single membrane samples, was dominated by the proton pump, as suggested by the response of the near-linear I-V characteristic to changes in external pH. Initial cytoplasmic K+ activities (aK+), judged most reliable, gave values of 117 ± 67 millimolar; stable aK+ values were 77 ± 31 millimolar. Equilibrium potentials for K+ (Nernst equilibrium potential) (EK) calculated, using either of these data sets, were near the mean membrane potential (Vm). On a cell-to-cell basis, however, EK was generally negative of the Vm, despite an electrogenic contribution from the Chara proton pump. When Ko+ was increased to 1.0 millimolar or above, Gm rose (by 8- to 10-fold in 10 millimolar Ko+), the steady state I-V characteristics showed a region of negative slope conductance, and Vm followed EK. These results confirm previous studies which implicated a Ko+-induced and voltage-dependent permeability to K+ at the Chara plasma membrane. They provide an explanation for transitions between apparent Ko+-insensitive and Ko+-sensitive (`K+ electrode') behavior displayed by the membrane potential, as recorded in many algae and higher plant cells.  相似文献   

10.
In Chara corallina, the membrane potential may stay much morenegative than the equilibrium potential for potassium in thedark, indicating that the proton pump is operative. The highproton conductance which occurs at high external pH, as indicatedby a high membrane conductance and a membrane potential nearthe equilibrium potential for protons, is not seen in the darkat pH 11. This effect is likely to be related to inhibitionof photosynthesis since DCMU has the same effect. The effectis similar but not identical to the effect of a decreased internalpH. Key words: Light, dark, membrane potential, Chara  相似文献   

11.
A range of polymeric compounds was examined for their suitabilityas pressure-stabilizing agents in liquid membrane pH micro-electrodesfor intracellular use in plant cells. Of the compounds tested,mixtures of liquid proton sensor and nitrocellulose were foundto be superior to epoxy resins, polyvinylchloride and ethylcellulose. The electrical resistance of silicone rubber mixtureswas too high for micro-electrodes with tip diameters of 1.0µm. Double-barrelled micro-electrodes containing nitrocellulosemaintained excellent pH sensitivity for up to 1.0 impalementsof charophyte cells. Measurements of cytoplasmic pH were madein both internodal and whorl cells of Chora corallina over arange of experimental conditions. The response of cytoplasmicpH to rapid changes in external pH or illumination occurredover several minutes. The advantages of the use of double-barrelledpH micro-electrodes over other methods of intracellular pH measurementsuch as the distribution of weak acids (DMO), 31P-NMR and single-barrelledmicro-electrodes is discussed. Key words: pH micro-electrodes, cytoplasmic pH, charophytes  相似文献   

12.
The contribution of membrane transport to regulation of cytoplasmicpH in Chara corallina has been measured during proton-loadingby uptake of butyric acid. In the short-term (i.e. up to 20min) uptake of butyric acid is not affected by removal of externalK+, Na+ or Cl but over longer periods uptake is decreased(by 20–50% in different experiments) in the absence ofexternal Na+ or, sometimes, K+. Influxes of both Na+ and K+increase temporarily after addition of butyrate, Na+ immediatelyand K+ after a lag. Effects on Cl influx are small butCl efflux increases enormously after a short lag. Anapproximate comparison of internal butyrate with changes inthe concentration of K+, Na+, and Cl suggests that initially(i.e. for a few min) cytoplasmic pH is determined by bufferingand possibly by some decarboxylation of organic acids (biochemicalpH regulation), and that biophysical pH regulation involvingefflux of H+ balanced by influxes of K+, Na+ and especiallyefflux of Cl progressively becomes dominant. When butyric acid is washed out of the cells, cytoplasmic pHis restored completely or partially (depending on the butyrateconcentration used) and this is independent of the presenceor absence of external Cl. Where Cl is present,its influx is relatively small. It is suggested that cytoplasmicpH is then controlled biochemically, involving the synthesisof an (unidentified) organic acid and the accumulation of acidicanions in place of butyurate lost from the cell. During thesecond application of butyrate, net Cl efflux is small:it is suggested that control of cytoplasmic pH then involvesdecarboxylation of the organic acid anions. The questions of the source of Cl lost from the cell(cytoplasm or vacuole) and of possible cytoplasmic swellingassociated with the accumulation of butyrate are discussed. Key words: Chara corallina, butyric acid, cytoplasmic pH, membrane transport  相似文献   

13.
Rapid changes in turgor pressure (P:) and temperature (T:) are giving new information about the mechanisms of plant growth. In the present work, single internode cells of the large-celled alga Chara corallina were used as a model for plant growth. P was changed without altering the chemical environment of the wall while observing growth without elastic changes. When P: was measured before any changes, the original growth rate bore no relationship to the original P. However, if P of growing cells was decreased, growth responded immediately without evidence for rapid changes in wall physical properties. Growth occurred only above a 0.3 MPa threshold, and increasing P caused small increases in growth that became progressively larger as P rose, resulting in a curvilinear response overall. The small changes in growth close to the threshold may explain early failures to detect these responses. When T was lowered, the elastic properties of the cell were unaffected, but growth was immediately inhibited. The lower T caused P to decrease, but returning P to its original value did not return growth to its original rate. The decreased P at low T occurred because of T effects on the osmotic potential of the cell. At above-normal P, growth partially resumed at low T Therefore, growth required a P-sensitive process that was also T-sensitive. Because elastic properties were little affected by T, but growth was markedly affected, the process is likely to involve metabolism. The rapidity of its response to P and T probably excludes the participation of changes in gene expression.  相似文献   

14.
The assumption of a single exponential change for the voltageresponse caused by a square current of subthreshold intensityis not necessarily an adequate explanation of the situationin the Chara membrane. By improving the speed of electronicsfor current clamping and the accuracy of data simulation, itwas found that an additional process, which can be generallysimulated with another exponential function, was superimposedon the voltage response. Such an additional exponential processmay be partly atributed to the response of the tonoplast, ifthe internal potential measuring microelectrode is in the vacuole.However, this additional process still remained in the voltageresponse of the plasmalemma of the Chara internode when thetonoplast and a large amount of endoplasm were removed by internalperfusion with an glycol ether diaminetetraacetic acid solution.The additional exponential component arose from the change ofthe electromotive force of the single membrane during applicationof the test current pulse. The increase of the conductance of the plasmalemma alone waslarge during excitation, while that of the elecrostatic capacitancewas negligible. On the other hand, the conductance and capacitancewhich reflect an additional exponential ionic process duringthe test pulse both increased greatly around the peak of excitation.This rise is the main reason for an apparent large increaseof membrane capacitance which was deduced from a simple approximationof the membrane with a single time constant model. (Received January 6, 1982; Accepted June 23, 1982)  相似文献   

15.
Effects of external pH (pHo) on the cytoplasmic pH (pHc) ofChara corallina have been measured with the weak acid 5, 5-dimethyloxazolidine-2,4-dione (DMO) following standardized pretreatment of cells insolutions at pHo 4.5, 6.3 and 8.3. Irrespective of pHc duringpretreatment, pHo responded to pHo during the experimental periodsof 150–180 min or (in one experiment) 90–110 min.There were increases or decreases of about 0.5 in pHo when cellswere transferred from pHo 4.5 to 8.3 or vice versa. In the darkpHc was 0.2–0.3 units lower than the corresponding valuein the light. The results are discussed in relation to the factorsinvolved in the regulation of pHc in C. corallina, which maybegin to break down below about pHo4.5, as indicated by relativelylarge decreases in pHc at low pHo. Key words: Chara corallina, Cytoplasmic pH, External pH, DMO  相似文献   

16.
Lucas, W. J. and Ogata, K. 1985. Hydroxyl– and bicarbonate–associatedtransport processes in Chara corallintr. Studies on the light–darkregulation mechanism.—J. exp. Bot. 36: 1947–1958.Experiments were undertaken on the fresh water alga Chara corallinato investigate the nature of the coupling between the chloroplastsand the light–dependent OH and -associated plasmalemma transport systems. Electrophysiologicalexperiments, in which DCMU was employed, revealed that thischemical could elicit a hyperpolarization of the membrane potentialthat was identical to that normally obtained by turning offthe light. This DCMU–induced hyperpolarization was obtainedunder control () and phosphate–decoupled conditions (). Measurements of the extracellular electric potentialswhich are associated with the acidic () and alkaline (OH) regions, indicated that, in the presenceof control ()or phosphate–decoupled conditions, normal profiles were established under air, oxygenor nitrogen environments. These results indicate that the generationof the control signal(s) is related to events associated withchloroplast electron transport, rather than to changes in theflow or levels of carbon intermediates within the reductivepentose phosphate or photorespiratory cycles. Although the levelof oxygen was found to have no effect on the light–inducedactivation of the OH regions, we found that in pure oxygen thedark–induced inactivation of the OH efflux systemwas delayed, and that partial transport function could be maintainedin the dark. The possible involvement of changes in either theratio of oxidized to reduced ferridoxin or NADP? to NADPH, aspart of this light–mediated control signal, is discussed. Key words: Chara corallina, Plasma membrance transport, OH and , regulation  相似文献   

17.
The pH of the cytoplasm of Chara corallina cells has been measuredwith the weak acid 5,5-dimethyloxazolidine-2,4-dione (DM0).Over an external pH range 4·5–9·5 the resultsfit the regression equation pHcytoplasm=6·28+0·22pHout. Using measured values of the electric potential difference acrossthe plasmalemma we have calculated the electrochemical potentialdifference across this membrane for H+ and Cl. Thesedata are used to test the hypothesis that the inward transportof Cl is coupled to the inthix of H+ or, which comesto the same thing, efflux of OH. One-for-one couplingwill not give net Cl uptake from solutions with pH greaterthan about 7·2, unless the cytoplasmic Cl concentrationis lower than 10 mM, or the pH just outside the membrane islower than that in the bulk solution. It is shown that net Cluptake proceeds from solutions with pH up to 9. The alternative possibility is that Cl transport is broughtabout by co-transport of two H+ for each Cl; this isnot ruled out by the results reported. Such a mechanism mightbe detectable by its electrogenic effect: although such effectshave not been detected, it is shown that they would be smallunder most conditions. Other possible mechanisms are discussed.  相似文献   

18.
Abstract. The interrelationships of leaf diffusive conductance, tap root cell turgor pressure and the diameter of the tap root of sugarbeet were studied. The study was conducted on well-watered plants growing in pots under artificial light in the glasshouse. In a typical experiment, on illumination (400 μmol m−2 s−1) leaf conductance increased from 0.6 to 7.4 mm s−1. Cell turgor pressure in the tap root decreased from 0.8 MPa to 0.45 MPa and the root diameter (9.0 cm) contracted by 145μm. Removal of light resulted in the reversal of each of the above parameters to their previous values. Quantitively similar results were obtained when sugar beet plants were uprooted and the response of each of the parameters was measured. The sequence of events however was different. On stimulation by light, changes in leaf diffusive conductance preceded the turgor and root diameter changes (which were simultaneous) by some 15–20min. In contrast, on uprooting the simultaneous changes in root turgor pressure and diameter preceded the changes in leaf conductance. The lag times between changes in diffusive conductance and turgor pressure in the root were between 20 and 30 min.
Tap root turgor pressure and diameter correlated strongly and permitted the calculation of an apparent whole root volumetric elastic modules (55–63 MPa). The small changes in tissue volume relative to the transpiration rate suggest that the tap root is not a significant source of transpirational water during the day.  相似文献   

19.
An experimental system was designed to test the obligate couplingbetween HCO3 and OH fluxes (i. e. a ‘Mitchell-type’antiporter) proposed by Lucas and Smith (1973). The resultsof these experiments demonstrated categorically that the OHefflux process can function in the absence of exogenous HCO3at the actual OH efflux site. Hence, the obligate couplinghypothesis is invalid. It is proposed that HCO3 and OHare transported across the plasmalemma ‘independently’,on quite distinct carriers. It is possible, therefore, thatthese fluxes contribute towards determining the electrical propertiesof this membrane when the bathing solution pH value is 6.5.It was also found that HCO3 can be transported acrossthe dark segment of a partly illuminated cell. The observedrates were always much less than those obtained in the illuminatedcell segment. The significance of this result is discussed.  相似文献   

20.
Ammonium and methylammonium ions greatly increase the rate ofCl transport in Chara corallian. This effect is dependenton the pH of the bathing solution. The amine-stimulated Clinflux is small at pH 5·5, increases to a maximum atpH 6·5–7·5, and decreases again as the pHis raised to 8·5. Increased Cl influx is accompaniedby an increase in cytoplasmic pH, as calculated from the distributionof DMO. When the external pH lies between 5·5 and 7·3,cytoplasmic pH in the absence of amine is 7·65–7·70,with an increase of 0·15–0·25 in the presenceof amine. As external pH is increased above 7·3, cytoplasmicpH also increases, with progessively less effect of amine. Although the relationship between Cl influx and cytoplasmicpH is not simple, the results provide evidence in accord withthe hypothesis that Cl transport in Chara involves H+—Clsymport, or the equivalent OH—Cl antiport.The possible role of cytoplasmic pH as a factor involved inthe regulation of membrane transport in Chara is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号