共查询到20条相似文献,搜索用时 0 毫秒
1.
Vicente JA Peixoto F Lopes ML Madeira VM 《Journal of biochemical and molecular toxicology》2001,15(6):322-330
Paraquat herbicide is toxic to animals, including humans, via putative toxicity mechanisms associated to microsomal and mitochondrial redox systems. It is also believed to act in plants by generating highly reactive oxygen free radicals from electrons of photosystem I on exposure to light. Paraquat also acts on non-chlorophyllous plant tissues, where mitochondria are candidate targets, as in animal tissues. Therefore, we compared the interaction of paraquat with the mitochondrial bioenergetics of potato tuber, using rat liver mitochondria as a reference. Paraquat depressed succinate-dependent mitochondrial Delta(psi), with simultaneous stimulation of state 4 O2 consumption. It also induced a slow time-dependent effect for respiration of succinate, exogenous NADH, and N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD)/ascorbate, which was more pronounced in rat than in potato mitochondria. However, with potato tuber mitochondria, the Delta(psi) promoted by complex-I-dependent respiration is insensitive to this effect, indicating a protection against paraquat radical afforded by complex I redox activity, which was just the reverse of to the findings for rat liver mitochondria. The experimental set up with the tetraphenyl phosphonium (TPP+)-electrode also indicated production of the paraquat radical in mitochondria, also suggesting its accessibility to the outside space. The different activities of protective antioxidant agents can contribute to explain the different sensitivities of both kinds of mitochondria. Values of SOD activity and alpha-tocopherol detected in potato mitochondria were significantly higher than in rat mitochondria, which, in turn, revealed higher values of lipid peroxidation induced by paraquat. 相似文献
2.
Kaszycki P Fedorovych D Ksheminska H Babyak L Wójcik D Koloczek H 《Microbiological research》2004,159(1):11-17
Yeast tolerance to Cr (III) and Cr (VI) as well as chromium accumulation potential were shown to depend on treatment time, metal concentration, biomass density and the phase of growth. Kinetic studies as exemplified by Pichia guilliermondii ATCC 201911 revealed a biphasic mode of Cr (III) uptake: a rapid sorption phase was followed by a slow process of accumulation, in which the contribution of the cell-bound Cr fraction increased, while the total cellular Cr level remained constant. Cr (VI) uptake was characterized by a time-dependent increase of total Cr and by a constant fractional contribution of the cell-adsorbed chromium, which suggests that the amount of cell-accumulated Cr also tended to increase over time. The resistance to Cr and metal accumulation levels were substantially elevated for a given strain when cultures were treated at high initial biomass densities (1 mg dry weight/ml) of exponentially proliferating cells. Maximum accumulation capabilities ranged between 4.0 and 13 mg Cr (III)/g dry weight and 2-6.7 mg Cr (VI)/g dry weight. The total cell-accumulated Cr contained 29.3% and 52.3% of organically bound chromium for the treatment of P. guilliermondii with Cr (III) and Cr (VI), respectively. Selected yeast strains, under specified physiological conditions, can be applied for bioremediation of environmental Cr contamination, and might be useful too for attempts to obtain chromium-enriched biomass containing biostabilized and nontoxic Cr forms for nutritional applications. 相似文献
3.
Elingold I Isollabella MP Casanova MB Celentano AM Pérez C Cabrera JL Diez RA Dubin M 《Chemico-biological interactions》2008,171(3):294-305
The prenylated flavanone 2'-4'-dihidroxy-5'-(1" '-dimethylallyl)-6-prenylpinocembrin) (6PP), isolated from the roots of Dalea elegans, shows antimicrobial activity. The aim of this study was to evaluate mitochondrial toxicity and antioxidant properties of 6PP. Addition of micromolar concentrations of 6PP to rat liver mitochondria, stimulated O2 uptake in state 4 and inhibited it in state 3 when malate-glutamate was the respiratory substrate, and inhibited O2 uptake in state 3 when succinate was the substrate. Highest concentration of 6PP also inhibited O2 uptake in state 4 in the latter case; in both conditions, respiratory control index values were decreased. This flavanone collapsed the mitochondrial membrane potential in a concentration-dependent manner. 6PP also inhibited F0F1-ATPase activity in coupled mitochondria and in submitochondrial particles. In the latter, this compound also inhibited NADH oxidase and succinate dehydrogenase activities. HEp-2 cells were incubated for 24 h with 6PP in presence or absence of 0.5% albumin. As measured by reduction of the mitochondrial-related probe MTT, in the albumin-free condition, 6PP was cytotoxic in a concentration-dependent manner; on the other hand, albumin decreased 6PP effect. In addition, in rat liver microsomes 6PP: (1) inhibited the enzymatic lipid peroxidation, (2) exhibited significant scavenging activity, measured by DPPH reduction assay and (3) demonstrated significant antioxidant activity by decreasing the reduction of Mo(VI) to Mo(V). We suggest that 6PP impairs the hepatic energy metabolism by acting as mitochondrial uncoupler and by inhibiting enzymatic activities linked to the respiratory chain. 6PP also exerts both antioxidant and antiradical activities. Due to its cytotoxicity, this molecule, and its future structure developments, can be considered as a potentially promising therapeutic agent, for instance in cancer chemotherapy. 相似文献
4.
Tai‐Long Pan Pei‐Wen Wang Chun‐Ming Huang Chih‐Chieh Chen Jia‐You Fang 《Proteomics》2009,9(22):5120-5131
Chromium compounds are known to be associated with cytotoxicity and carcinogenicity when applied via a skin route. The aim of this study was to evaluate the skin permeability and toxicological profiles of four chromium species. Chromium permeation across the skin, as determined by an in vitro Franz cell, decreased in the order of sodium chromate>potassium chromate>potassium dichromate>chromium nitrate. The uptake of chromium species within the skin generally showed a contrary trend to the results of permeation, although differences among the various compounds were not large. Levels of in vivo skin deposition of the four compounds showed no statistically significant differences. Potassium chromate produced the greatest disruption of the skin structure as determined by HE staining, followed in order by sodium chromate, potassium dichromate, and chromium nitrate. This indicates that hexavalent chromium elicited greater toxicity to the skin compared to trivalent chromium. A similar result was observed for the viability of skin fibroblasts. To improve our understanding of the molecular mechanisms leading to functional changes in proteins, proteomic tools, including 2‐DE and MS techniques combined with sequence database correlations, were applied to identify target proteins altered by pathologic states. Eight protein spots, corresponding to cutaneous enzymes involved in energy metabolism and chaperon proteins, which were identified and discussed in this study, were associated with skin cytotoxicity, immunity, and carcinogenesis. In addition, functional proteomics of skin tissues may provide a promising tool for developing therapeutic strategies and can serve as the basis for further research. 相似文献
5.
Despite the knowledge about heavy metals toxicity on humans, its use is widely spread mainly for industrial processes. Chromium is an element that belongs to this group and although it is present in our daily diet, it can also be harmful for humans, causing skin allergies and increasing the risk of lung cancer, among other health effects reported. In this review, we highlight its nutritional role, its toxicokinetic and toxicodynamic in humans, its regulation in the industry and the biomonitoring proposal of this element in blood and urine samples with the aim to control the level of exposure of the workers in military industry and also of the general population. 相似文献
6.
Haritos VS Dojchinov G 《Comparative biochemistry and physiology. Toxicology & pharmacology : CBP》2003,136(2):135-143
Volatile alkyl formates are potential replacements for the ozone-depleting fumigant, methyl bromide, as postharvest insecticides and here we have investigated their mode of insecticidal action. Firstly, a range of alkyl esters, ethanol and formic acid were tested in mortality bioassays with adults of the rice weevil, Sitophilus oryzae (L.) and the grain borer, Rhyzopertha dominica (F.) to determine whether the intact ester or one of its components was the toxic moiety. Volatile alkyl formates and formic acid caused similar levels of mortality (LC(50) 131-165 micromol l(-1)) to S. oryzae and were more potent than non-formate containing alkyl esters and ethanol (LC(50)>275 micromol l(-1)). The order of potency was the same in R. dominica. Ethyl formate was rapidly metabolised in vitro to formic acid when incubated with insect homogenates, presumably through the action of esterases. S. oryzae and R. dominica fumigated with a lethal dose of ethyl formate had eight and 17-fold higher concentrations of formic acid, respectively, in their bodies than untreated controls. When tested against isolated mitochondria from S. oryzae, alkyl esters, alcohols, acetate and propionate salts were not inhibitory towards cytochrome c oxidase (EC 1.9.3.1), but sodium cyanide and sodium formate were inhibitory with IC(50) values of 0.0015 mM and 59 mM, respectively. Volatile formate esters were more toxic than other alkyl esters, and this was found to be due, at least in part, to their hydrolysis to formic acid and its inhibition of cytochrome c oxidase. 相似文献
7.
BackgroundBeing an essential trace element, copper is involved in diverse physiological processes. However, excess levels might lead to adverse effects. Disrupted copper homeostasis, particularly in the brain, has been associated with human diseases including the neurodegenerative disorders Wilson and Alzheimer’s disease. In this context, astrocytes play an important role in the regulation of the copper homeostasis in the brain and likely in the prevention against neuronal toxicity, consequently pointing them out as a potential target for the neurotoxicity of copper. Major toxic mechanisms are discussed to be directed against mitochondria probably via oxidative stress. However, the toxic potential and mode of action of copper in astrocytes is poorly understood, so far.MethodsIn this study, excess copper levels affecting human astrocytic cell model and their involvement in the neurotoxic mode of action of copper, as well as, effects on the homeostasis of other trace elements (Mn, Fe, Ca and Mg) were investigated.ResultsCopper induced substantial cytotoxic effects in the human astrocytic cell line following 48 h incubation (EC30: 250 μM) and affected mitochondrial function, as observed via reduction of mitochondrial membrane potential and increased ROS production, likely originating from mitochondria. Moreover, cellular GSH metabolism was altered as well. Interestingly, not only cellular copper levels were affected, but also the homeostasis of other elements (Ca, Fe and Mn) were disrupted.ConclusionOne potential toxic mode of action of copper seems to be effects on the mitochondria along with induction of oxidative stress in the human astrocytic cell model. Moreover, excess copper levels seem to interact with the homeostasis of other essential elements such as Ca, Fe and Mn. Disrupted element homeostasis might also contribute to the induction of oxidative stress, likely involved in the onset and progression of neurodegenerative disorders. These insights in the toxic mechanisms will help to develop ideas and approaches for therapeutic strategies against copper-mediated diseases. 相似文献
8.
The in vitro toxicity of multiple hydrophobic compounds was the focus of this study. A mitochondrial respiratory assay, sensitive to perturbations caused by hydrophobic chemicals, was utilized to measure the effects of individual aromatic hydrocarbon pollutants and their mixtures on mitochondrial respiratory function. Benzene, naphthalene, acenaphthene, and 1-chloronaphthalene, common industrial solvents shown to interact additively in vivo, were evaluated using this in vitro assay system. Mitochondrial respiration was inhibited 50% (EC50) by 525 ppm (6.7 mM) benzene, 15 ppm (117 μM) naphthalene, 3.9 ppm (25.5 μM) acenaphthene, or 3.8 ppm (23.4 μM) 1-chloronaphthalene. NADH:O2 oxidoreductase (NADH → O2), NADH: ubiquinone oxidoreductase, and ubiquinol:O2 oxidoreductase activities were inhibited by all four compounds, whereas succinate:O2 oxidoreductase, cytochrome c oxidase, and duroquinol: O2 oxidoreductase activities were not inhibited. Inhibition of mitochondrial respiration occurred at the level of ubiquinone (coenzyme Q10) for all four aromatic hydrocarbons. The ultraviolet absorbance spectrum of isolated Q10 was also altered by naphthalene, acenaphthene, or 1-chloronaphthalene, suggesting a specific interaction between that component of the respiratory chain and these aromatic hydrocarbons. Inhibition by a mixture of 2, 3, or 4 of the compounds tested was additive, reflecting a summation effect of each compound present in the mixture. This additive nature is consistent with previously reported effects of these compounds in vivo and with compounds having similar modes of action. The similar mode of action in vitro is a specific interaction with coenzyme Q10, not a generalized membrane perturbation as speculated to occur in vivo, and is the likely mechanism for the observed additive toxicity. 相似文献
9.
Robert A. DiSilvestro Emily Dy 《Journal of trace elements in medicine and biology》2007,21(2):120-124
Chromium (Cr) supplements are available as picolinate, nicotinate or chloride (the latter primarily in multivitamin-mineral supplements). The picolinate form has been reported to be the best absorbed and most efficacious, but some reports question which form has superior absorption. The present study examined acute Cr absorption, based on 24h urinary Cr values, for picolinate, two types of nicotinate, and chloride in young adult, non-overweight females. College-aged women were given 200 microg of Cr as each of the four supplement types in random order accompanied by a small standardized meal, separated by at least a week washout. Cr picolinate produced significantly higher 24h urinary Cr than either of two nicotinate supplements or Cr chloride given in a multivitamin-mineral supplement. This difference was seen for absolute values of the urinary Cr and for percent increases. In conclusion, based on an indirect measure of acute absorption, Cr picolinate was superior to three other Cr complexes commonly sold as supplements. 相似文献
10.
Interactions of chromium with microorganisms and plants 总被引:24,自引:0,他引:24
Cervantes C Campos-García J Devars S Gutiérrez-Corona F Loza-Tavera H Torres-Guzmán JC Moreno-Sánchez R 《FEMS microbiology reviews》2001,25(3):335-347
Chromium is a highly toxic non-essential metal for microorganisms and plants. Due to its widespread industrial use, chromium (Cr) has become a serious pollutant in diverse environmental settings. The hexavalent form of the metal, Cr(VI), is considered a more toxic species than the relatively innocuous and less mobile Cr(III) form. The presence of Cr in the environment has selected microbial and plant variants able to tolerate high levels of Cr compounds. The diverse Cr-resistance mechanisms displayed by microorganisms, and probably by plants, include biosorption, diminished accumulation, precipitation, reduction of Cr(VI) to Cr(III), and chromate efflux. Some of these systems have been proposed as potential biotechnological tools for the bioremediation of Cr pollution. In this review we summarize the interactions of bacteria, algae, fungi and plants with Cr and its compounds. 相似文献
11.
铬(Chromium,Cr)是过渡金属元素,在自然界中以六价[CrO_4~(2-),Cr_2O_7~(2-),Cr(Ⅵ)]和三价[Cr(OH)_3,Cr(Ⅲ)]为主。很多微生物在长期铬胁迫的条件下,进化出了一系列铬转化和抗性机制。微生物对铬的转化包括Cr(Ⅵ)的还原和Cr(Ⅲ)的氧化。微生物的Cr(Ⅵ)还原可以将毒性强的六价铬转化为毒性弱或无毒的三价铬,这类微生物有较强的土壤和水体铬污染治理潜力。Cr(Ⅲ)的氧化也在铬的生物地球化学循环过程中起着至关重要的作用。除了Cr(Ⅵ)的还原,微生物对铬的抗性机制还有:(1)减少摄入;(2)外排;(3)清除胞内氧化压力;(4)DNA修复。本文主要介绍微生物的铬转化和抗性机制,以及其在铬污染生物修复中应用的最新研究进展。 相似文献
12.
In the ongoing investigation into the biological importance and toxicity issues surrounding the bioinorganic chemistry of chromium, the accepted literature procedure for the isolation of the biological form of chromium, low molecular weight chromium binding protein (LMWCr) or chromodulin, was investigated for its specificity. When chromium(VI) is added to bovine liver homogenate, results presented here indicate at least four chromium(III) binding peptides and proteins are produced and that the process is non-specific for the isolation of LMWCr. A novel trivalent chromium containing protein (1) has been isolated to purity and initial characterization is reported here. Chromium(III) identification was determined by optical spectroscopy and diphenylcarbazide testing. This chromium binding protein has a molecular weight of 15.6kDa, which was determined from both gel-electrophoresis and mass spectrometry. The protein is comprised primarily of Asx, Glx, His, Gly/Thr, Ala, and Lys in a 1.00:2.51:0.37:2.09:0.39:1.17 ratio and is anionic at pH 7.4. In addition, the protein binds approximately 2.5 chromium(III) ions per molecule. 相似文献
13.
J. D. García-García J. S. Rodríguez-Zavala R. Jasso-Chávez D. Mendoza-Cozatl Rafael Moreno-Sánchez 《Archives of microbiology》2009,191(5):431-440
Photosynthetic Euglena gracilis grown with different K2CrO4 concentrations was analyzed for its ability to take up, retain and reduce Cr(VI). For comparison, cells were also exposed
to CrCl3. Cellular Cr(VI) uptake at pH 7.2 showed a hyperbolic saturation pattern with K
m of 1.1 mM, V
m of 16 nmol (h × 107 cells)−1, and K
i sulfate of 0.4 mM. Kinetic parameters for sulfate uptake were similar, K
m = 0.83 mM, V
m = 15.9 nmol (h × 107cells)−1 and K
i chromate = 0.3 mM. The capacity to accumulate chromium depended on the ionic species, external concentration and pH of the incubation
medium. Cr(VI) or Cr(III) accumulation was negligible in the acidic (pH 3.5) culture medium, in which Cr(VI) was abiotically
reduced to Cr(III). At pH 7.2 Cr(VI) was fully stable and high accumulation (>170 nmol/1 × 107 cells at 1 mM K2CrO4) was achieved; surprisingly, Cr(III) accumulation was also significant (>35 nmol/1 × 107 cells at 1 mM CrCl3). Cr(VI) was reduced by cells at pH 7.2, suggesting the presence of an external reductive activity. Cr(VI) induced an increased
cysteine and glutathione content, but not in phytochelatins suggesting that chromium accumulation was mediated by monothiol
compounds. 相似文献
14.
Fernandes MA Santos MS Moreno AJ Duburs G Oliveira CR Vicente JA 《Journal of biochemical and molecular toxicology》2004,18(3):162-169
The interference of glibenclamide, an antidiabetic sulfonylurea, with mitochondrial bioenergetics was assessed on mitochondrial ion fluxes (H+, K+, and Cl-) by passive osmotic swelling of rat liver mitochondria in K-acetate, KNO3, and KCl media, by O2 consumption, and by mitochondrial transmembrane potential (Deltapsi). Glibenclamide did not permeabilize the inner mitochondrial membrane to H+, but induced permeabilization to Cl- by opening the inner mitochondrial anion channel (IMAC). Cl- influx induced by glibenclamide facilitates K+ entry into mitochondria, thus promoting a net Cl-/K+ cotransport, Deltapsi dissipation, and stimulation of state 4 respiration rate. It was concluded that glibenclamide interferes with mitochondrial bioenergetics of rat liver by permeabilizing the inner mitochondrial membrane to Cl- and promoting a net Cl-/K+ cotransport inside mitochondria, without significant changes on membrane permeabilization to H+. 相似文献
15.
Steyn SJ Pieterse DJ Mienie LJ Van der Schyf CJ 《Journal of biochemical and biophysical methods》2005,62(1):25-40
Most mitochondria-based methods used to investigate toxins require the use of relatively large amounts of material and hence compromised sensitivity in assay. We adopted procedures from methods initially developed to diagnose mitochondrial encephalomyopathies and unified these into a single assay. Eukaryotic cell membranes are selectively permeabilized with digitonin to render a system in which mitochondrial respiration can be measured rapidly and with considerable sensitivity. Mitochondria remain intact, uninjured, and in their natural environment where mitochondrial respiration can be measured in situ under physiologically relevant conditions. This approach furthermore allows measurement of toxin effects on individual mitochondrial complexes. Numerous compounds at varying concentrations can be screened for mitochondrial toxicity, while the site of mitochondrial inhibition can be determined simultaneously. We used this assay to investigate, in murine neuroblastoma (N-2alpha) cells, the mitochondrial inhibitory properties of the parkinsonian-inducing proneurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and its neurotoxic monoamine oxidase-B (MAO-B)-generated metabolite, the 1-methyl-4-phenylpyridinium species (MPP(+)). Within the time frame of each measurement (15 min), MPTP (< or = 1 mM) did not interfere with in situ mitochondrial respiration. As expected, MPP(+) was found to be a potent Complex I inhibitor but surprisingly also found to inhibit Complex IV. Optimized conditions for performing this assay are provided. 相似文献
16.
Dontarie M. Stallings Dion D.D. Hepburn Meredith Hannah John B. Vincent Janis ODonnell 《Mutation Research - Genetic Toxicology and Environmental Mutagenesis》2006,610(1-2):101
Chromium picolinate, [Cr(pic)3], is a popular nutritional supplement found in a variety of consumer products. Despite its popularity, safety concerns over its use have arisen. The supplement has been shown to generate clastogenic damage, mitochondrial damage, oxidative damage, and mutagenic effects in cultured cells and oxidative DNA damage and lipid peroxidation in rats. Recently [Cr(pic)3] has been demonstrated to generate heritable genetic change and delays in progeny development in Drosophila melanogaster. Based on the damage to chromosomes of cultured cells and of animal models, similar chromosome damage appeared to be a likely source of the mutagenic effects of the supplement in Drosophila. The current three-part study examines the effects of several chromium-containing supplements and their components on hatching and eclosion rates and success of development of first generation progeny of adult Drosophila fed food containing these compounds. It further examines the effects of the compounds on longevity of virgin male and female adults. Finally, the chromosomes in the salivary glands of Drosophila late in the third instar larval stage, which were the progeny of Drosophila whose diets were supplemented with nutritional levels of [Cr(pic)3], are shown to contain on average over one chromosomal aberration per two identifiable chromosomal arms. No aberrations were observed in chromosomes of progeny of untreated flies. The results suggest that human consumption of the supplement should be a matter of concern and continued investigation to provide insight into the requirements of chromium-containing supplements to give rise to genotoxic effects. 相似文献
17.
Hypoglycemic potency of novel trivalent chromium in hyperglycemic insulin-deficient rats 总被引:1,自引:0,他引:1
Bogusaw Machaliski Mieczysaw Walczak Anhelli Syrenicz Anna Machaliska Katarzyna Grymua Iwona Stecewicz Barbara Wiszniewska Elbieta Dbkowska 《Journal of trace elements in medicine and biology》2006,20(1):33-39
Two sources of chromium III, "chromium 454" and "chromium picolinate," were tested in insulin-deficient Streptozocin-treated diabetic rats. This model was selected in order to evaluate the possibility of any hypoglycemic potency of chromium in a relative absence of blood insulin concentration. Three weeks of the treatment with CRC454 and CrP resulted in a 38% and 11% reduction of blood glucose levels, respectively. Body weight gains were equally improved by both treatments. Blood levels of CK, ALT and AST were significantly reduced by CRC454 and CrP. These results might suggest that any hypoglycemic effect of trivalent chromium under insulin-deficient conditions could be largely dependent upon the type of chromium agent and associated characteristics such as solubility and bioavalibility. In contrast, improvement of body weight gains and blood levels of CK, AST and ALT seems to be less dependent on the type of chromium compound under these experimental conditions. In conclusion, CRC454 showed significant reduction of hyperglycemia under insulin-deficient conditions. 相似文献
18.
K. W. Smilde 《Plant and Soil》1981,62(1):3-14
Poplar (Populus euramericana Robusta), oats (Avena sativa L. Leander), maize (Zea mays L. Ona 36), English ryegrass (Lolium perenne L.), butter head lettuce (Lactuca sativa L. Reskia), spinach (Spinacia oleracea L. Subito) and French beans (Phaseolus vulgaris Prelude), were grown in pots with pure sewage sludge (pH 6.7), amended with Cd, Cr, Cu, Ni, Pb and Zn acetates, either added singly or in combination, to study metal effects on plant growth and metal uptake. Phytotoxic metal doses varied with metal and plant species, increasing in the order Cd<Ni<Cu<Zn<Cr and Pb. The threshold dose of toxic metals applied in combination was generally lower than that of metals given singly. Addition of Cd, Ni and Zn was clearly reflected in the respective plant concentrations. This was much less so for Cu, whereas Cr and Pb concentrations were not affected in most plant species. Critical plant (leaf) metal concentrations were lower for metals applied in combination than for single metals. Because of such phenomena the use of critical levels as a diagnostic tool for determining potential multiple metal toxicity is limited. 相似文献
19.
Effects of Pre- and Postnatal Exposure to Chromium Picolinate or Picolinic Acid on Neurological Development in CD-1 Mice 总被引:1,自引:0,他引:1
Bailey MM Boohaker JG Jernigan PL Townsend MB Sturdivant J Rasco JF Vincent JB Hood RD 《Biological trace element research》2008,124(1):70-82
Chromium picolinate, Cr(pic)3, a popular dietary supplement marketed as an aid in fat loss and lean muscle gain, has also been suggested as a therapy for women with gestational diabetes. The current study investigated the effects of maternal exposure to Cr(pic)3 and picolinic acid during gestation and lactation on neurological development of the offspring. Mated female CD-1 mice were fed diets from implantation through weaning that were either untreated or that contained Cr(pic)3 (200 mg kg(-1) day(-1)) or picolinic acid (174 mg kg(-1) day(-1)). A comprehensive battery of postnatal tests was administered, including a modified Fox battery, straight-channel swim, open-field activity, and odor-discrimination tests. Pups exposed to picolinic acid tended to weigh less than either control or Cr(pic)3-exposed pups, although the differences were not significant. Offspring of picolinic acid-treated dams also appeared to display impaired learning ability, diminished olfactory orientation ability, and decreased forelimb grip strength, although the differences among the treatment groups were not significant. The results indicate that there were no significant effects on the offspring with regard to neurological development from supplementation of the dams with either Cr(pic)3 or picolinic acid. 相似文献
20.
Efficient conversion of glucose to 5-hydroxymethyl furfural (5-HMF), a platform chemical for fuels and materials, was achieved using CrCl2 or CrCl3 as the catalysts with inexpensive co-catalysts and solvents including halide salts in dimethyl sulfoxide (DMSO) and several ionic liquids. 5-HMF (54.8%) yield was achieved with the CrCl2/tetraethyl ammonium chloride system at mild reaction conditions (120 °C and 1 h). The 5-HMF formation reaction was found to be faster in ionic liquids than in the DMSO system. Effects of water in the reaction system, chromium valence and reaction temperature on the conversion of glucose into 5-HMF were discussed in this work. 相似文献