首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Paraquat herbicide is toxic to animals, including humans, via putative toxicity mechanisms associated to microsomal and mitochondrial redox systems. It is also believed to act in plants by generating highly reactive oxygen free radicals from electrons of photosystem I on exposure to light. Paraquat also acts on non-chlorophyllous plant tissues, where mitochondria are candidate targets, as in animal tissues. Therefore, we compared the interaction of paraquat with the mitochondrial bioenergetics of potato tuber, using rat liver mitochondria as a reference. Paraquat depressed succinate-dependent mitochondrial Delta(psi), with simultaneous stimulation of state 4 O2 consumption. It also induced a slow time-dependent effect for respiration of succinate, exogenous NADH, and N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD)/ascorbate, which was more pronounced in rat than in potato mitochondria. However, with potato tuber mitochondria, the Delta(psi) promoted by complex-I-dependent respiration is insensitive to this effect, indicating a protection against paraquat radical afforded by complex I redox activity, which was just the reverse of to the findings for rat liver mitochondria. The experimental set up with the tetraphenyl phosphonium (TPP+)-electrode also indicated production of the paraquat radical in mitochondria, also suggesting its accessibility to the outside space. The different activities of protective antioxidant agents can contribute to explain the different sensitivities of both kinds of mitochondria. Values of SOD activity and alpha-tocopherol detected in potato mitochondria were significantly higher than in rat mitochondria, which, in turn, revealed higher values of lipid peroxidation induced by paraquat.  相似文献   

2.
A computational study of chromium(VI) and (V) peroxides, which exhibit important genotoxic and mutagenic activity, is reported. Energies and equilibrium geometries for [CrVI(O)(O2)2(OH)], [CrVI(O)(O2)2(OH2)], [CrVI(O)(O2)2(py)], [CrVI(OH)(O2)2(OH2)]+, [CrV(O)(O2)2(OH2)] and species were calculated using molecular mechanics calculations (MMFF94 and MM+), quantum calculations with semi-empirical methods (RHF and UHF/PM3) and density functional theory (pBP86/DN* or pBP/DN* and B3LYP/6-31G(d). Equilibrium geometries for the compounds [CrV(O2)3(OH)]2− and [CrV(O2)4]3− were determined by molecular mechanics. Vibrational frequencies, standard thermodynamic quantities and electronic spectra were calculated using B3LYP/6-31G(d). The structural relationship between all these species and an explanation of the formation of peroxo species in the acid-basic pH range are given. An experimental study of peroxo species in basic medium was also performed (synthesis, X-ray powder diffraction patterns and infrared spectra of the peroxo complexes isolated) but did not confirm the existence of a tri-peroxo complex in the solid phase.  相似文献   

3.
Two chromium-resistant bacteria (IFR-2 and IFR-3) capable of reducing/transforming Cr(VI) to Cr(III) were isolated from tannery effluents. Isolates IFR-2 and IFR-3 were identified as Staphylococcus aureus and Pediococcus pentosaceus respectively by 16S rRNA gene sequence analyses. Both isolates can grow well on 2,000 mg/l Cr(VI) (as K2Cr2O7) in Luria-Bertani (LB) medium. Reduction of Cr(VI) was found to be growth-associated in both isolates and IFR-2 and IFR-3 reduced 20 mg/l Cr(VI) completely in 6 and 24 h respectively. The Cr(VI) reduction due to chromate reductase activity was detected in the culture supernatant and cell lysate but not at all in the cell extract supernatant of both isolates. Whole cells of IFR-2 and IFR-3 converted 24 and 30% of the initial Cr(VI) concentration (1 mg/l) in 45 min respectively at 37°C. NiCl2 stimulated the growth of IFR-2 whereas HgCl2 and CdCl2 significantly inhibited the growth of both isolates. Optimum temperature and pH for growth of and Cr(VI) reduction by both isolates were found to be between 35 and 40°C and pH 7.0 to 8.0. The two bacterial isolates can be good candidates for detoxification of Cr(VI) in industrial effluents.  相似文献   

4.
The herbicide dicamba (3,6-dichloro-2-methoxybenzoic acid) was evaluated for its effects on bioenergetic activities of potato tuber mitochondria to elucidate putative mechanisms of action and to compare its toxicity with 2-chlorobenzoic acid. Dicamba (4 micro mol/mg mitochondrial protein) induces a limited stimulation of state 4 respiration of ca. 10%, and the above concentrations significantly inhibit respiration, whereas 2-chlorobenzoic acid maximally stimulates state 4 respiration (ca. 50%) at about 25 micro mol/mg mitochondrial protein. As opposed to these limited effects on state 4 respiration, transmembrane electrical potential is strongly decreased by dicamba and 2-chlorobenzoic acid. Dicamba (25 micro mol/mg mitochondrial protein) collapses, almost completely, Deltapsi; similar concentrations of 2-chlorobenzoic acid promote Deltapsi drops of about 50%. Proton permeabilization partially contributes to Deltapsi collapse since swelling in K-acetate medium is stimulated, with dicamba promoting a stronger stimulation. The Deltapsi decrease induced by dicamba is not exclusively the result of a stimulation on the proton leak through the mitochondrial inner membrane, since there was no correspondence between the Deltapsi decrease and the change on the O(2) consumption on state 4 respiration; on the contrary, for concentrations above 8 micro mol/mg mitochondrial protein a strong inhibition was observed. Both compounds inhibit the activity of respiratory complexes II and III but complex IV is not significantly affected. Complex I seems to be sensitive to these xenobiotics. In conclusion, dicamba is a stronger mitochondrial respiratory chain inhibitor and uncoupler as compared to 2-chlorobenzoic acid. Apparently, the differences in the lipophilicity are related to the different activities on mitochondrial bioenergetics.  相似文献   

5.
The interference of glibenclamide, an antidiabetic sulfonylurea, with mitochondrial bioenergetics was assessed on mitochondrial ion fluxes (H+, K+, and Cl-) by passive osmotic swelling of rat liver mitochondria in K-acetate, KNO3, and KCl media, by O2 consumption, and by mitochondrial transmembrane potential (Deltapsi). Glibenclamide did not permeabilize the inner mitochondrial membrane to H+, but induced permeabilization to Cl- by opening the inner mitochondrial anion channel (IMAC). Cl- influx induced by glibenclamide facilitates K+ entry into mitochondria, thus promoting a net Cl-/K+ cotransport, Deltapsi dissipation, and stimulation of state 4 respiration rate. It was concluded that glibenclamide interferes with mitochondrial bioenergetics of rat liver by permeabilizing the inner mitochondrial membrane to Cl- and promoting a net Cl-/K+ cotransport inside mitochondria, without significant changes on membrane permeabilization to H+.  相似文献   

6.
In the present work, the interactions of bovine serum albumin (BSA) with chromium (III) chloride, potassium dichromate, and chromate were studied by fluorescence, circular dichroism, and UV–vis absorbance spectroscopy. Fluorescence quenching of BSA by chromium (III) was found to be a dynamic process in the beginning, turning static at later stages. Spectroscopic data show that both dichromate and chromate bind in similar electrostatic fashion to BSA and does not follow the fluorescence quenching observation for chromium (III).  相似文献   

7.
There is growing evidence of mitochondrial membrane raft-like microdomains that are involved in the apoptotic pathway. The aim of this study was to investigate the effect of methyl-beta-cyclodextrin (MβCD), being a well-known lipid microdomain disrupting agent and cholesterol chelator, on the structure and bioenergetics of rat liver mitochondria (RLM). We observed that MβCD decreases the function of RLM, induces changes in the mitochondrial configuration state and decreases the calcium chloride-induced swelling. These data suggest that disruption of mitochondrial raft-like microdomains by cholesterol efflux on one hand impairs mitochondrial bioenergetics, but on the other hand it protects the mitochondria from swelling.  相似文献   

8.
Chromium (VI) is a priority pollutant in soil and water and poses serious threats to the environment. Microbial fuel cells (MFCs), as a sustainable technology, have been applied to treat heavy-metal-contaminated wastewater. To study MFC application in soil remediation, red clay soil and fluvo-aquic soil were spiked with Cr(VI) and packed into a cathode chamber of MFCs, which were then operated at external resistances of 100 and 1000 Ω for 16 days, with open circuit condition as a control treatment. After the operation, the concentration of dissolved Cr(VI) in supernatant and total Cr(VI) in soil was decreased. Soil type and external resistance significantly affected the current, removal efficiency of Cr(VI), and cathode efficiency. Reducing external resistance improved the removal efficiency. The red soil generated a higher current of MFCs, but showed a lower removal efficiency and cathode efficiency than fluvo-aquic soil, implying that the red soil may contain more electron acceptors that competed with Cr(VI) reduction reaction. Our study demonstrated that MFC-based technology has the potential to remediate Cr(VI)-contaminated soil; the efficiency varied between soil types and can be improved with high current.  相似文献   

9.
The facultative anaerobe Pantoea agglomerans SP1 was previously shown to couple anaerobic growth to the dissimilatory reduction of a variety of electron acceptors, including Fe(III), Mn(IV), and Cr(VI), but not sulfate. In this study, we describe the additional capacity of this organism to grow via the disproportionation of elemental sulfur to sulfate and sulfide, a process that has previously only been reported in strictly anaerobic members of the i - Proteobacteria . The sulfide scavengers, Fe(III) Mn(IV), and for the first time, Cr(VI), were found to enhance growth coupled to S 0 -disproportionation. To our knowledge, this is the first facultative anaerobe reported to couple growth to sulfur disproportionation. This organism may play a role in the attenuation of Cr(VI) pollution.  相似文献   

10.
The present work highlighted the studies on Cr(VI) reduction by cells of Acinetobacter haemolyticus (A. haemolyticus). The strain tolerated 90 mg Cr(VI) l−1 in LB broth compared to only 30 mg Cr(VI) l−1 in LB agar. From the FTIR analysis, the Cr(III) species formed was also most likely to form complexes with carboxyl, hydroxyl, and amide groups from the bacteria. A TEM study showed the absence of precipitates on the cell wall region of the bacteria. Instead, microprecipitates were observed in the cytoplasmic region of the cells, suggesting the transportation of Cr(VI) into the cells. Intracellular reduction of Cr(VI) was supported by a reductase test using soluble crude cell-free extracts. The specific reductase activity obtained was 0.52 μg Cr(VI) reduced per mg of protein an hour at pH 7.2 and 37°C. Our results indicated that A. haemolyticus can be used as a promising microorganism for Cr(VI) reduction from industrial wastewaters.  相似文献   

11.
In the ongoing investigation into the biological importance and toxicity issues surrounding the bioinorganic chemistry of chromium, the accepted literature procedure for the isolation of the biological form of chromium, low molecular weight chromium binding protein (LMWCr) or chromodulin, was investigated for its specificity. When chromium(VI) is added to bovine liver homogenate, results presented here indicate at least four chromium(III) binding peptides and proteins are produced and that the process is non-specific for the isolation of LMWCr. A novel trivalent chromium containing protein (1) has been isolated to purity and initial characterization is reported here. Chromium(III) identification was determined by optical spectroscopy and diphenylcarbazide testing. This chromium binding protein has a molecular weight of 15.6kDa, which was determined from both gel-electrophoresis and mass spectrometry. The protein is comprised primarily of Asx, Glx, His, Gly/Thr, Ala, and Lys in a 1.00:2.51:0.37:2.09:0.39:1.17 ratio and is anionic at pH 7.4. In addition, the protein binds approximately 2.5 chromium(III) ions per molecule.  相似文献   

12.
A Cr(VI)-resistant yeast, designated strain DBVPG 6502, was isolated from a sewage treatment plant receiving wastes from tannery industries in Italy. The strain was tentatively identified as a species of Candida based on morphological and physiological analyses. This strain was highly resistant to Cr(VI) when compared with eight other yeast species, growing at Cr(VI) concentrations of up to 500 micrograms/ml (10 mM). This resistance was constitutive. The Cr(VI)-resistant yeast did not reduce Cr(VI) to Cr(III) species under aerobic conditions. The yeast showed very little accumulation of Cr(VI). Consequently, the mechanism of resistance of the yeast to Cr(VI) appears to involve reduced accumulation of Cr, as has been shown in Cr(VI)-resistant bacteria.  相似文献   

13.
The potential protective action of 1,4-dihydropyridine derivatives (cerebrocrast, gammapyrone, glutapyrone, and diethone) against oxidative stress was assessed on mitochondrial bioenergetics, inner membrane anion channel (IMAC), Ca2+-induced opening of the permeability transition pore (PTP), and oxidative damage induced by the oxidant pair adenosine diphosphate (ADP)/Fe2+ (lipid peroxidation) of mitochondria isolated from rat liver. By using succinate as the respiratory substrate, respiratory control ratio (RCR), ADP to oxygen ratio (ADP/O), state 3, state 4, and uncoupled respiration rates were not significantly affected by gammapyrone, glutapyrone, and diethone concentrations up to 100 microM. Cerebrocrast at concentrations higher than 25 microM depressed RCR, ADP/O, state 3, and uncoupled respiration rates, but increased three times state 4 respiration rate. The transmembrane potential (deltapsi) and the phosphate carrier rate were also decreased. At concentrations lower than 25 microM, cerebrocrast inhibited the mitochondrial IMAC and partially prevented Ca2+-induced opening of the mitochondrial PTP, whereas gammapyrone, glutapyrone, and diethone were without effect. Cerebrocrast, gammapyrone, and glutapyrone concentrations up to 100 microM did not affect ADP/Fe2+-induced lipid peroxidation of rat liver mitochondria, while very low diethone concentrations (up to 5 microM) inhibited it in a dose-dependent manner, as measured by oxygen consumption and thiobarbituric acid reactive substances formation. Diethone also prevented deltapsi dissipation due to lipid peroxidation initiated by ADP/Fe2+. It can be concluded that: none of the compounds interfere with mitochondrial bioenergetics at concentrations lower than 25 microM; cerebrocrast was the only compound that affected mitochondrial bioenergetics, but only for concentrations higher than 25 microM; at concentrations that did not affect mitochondrial bioenergetics (< or = 25 microM), only cerebrocrast inhibited the IMAC and partially prevented Ca2+-induced opening of the PTP; diethone was the only compound that expressed antioxidant activity at very low concentrations (< or = 5 microM). Cerebrocrast acting as an inhibitor of the IMAC and diethone acting as an antioxidant could provide effective protective roles in preventing mitochondria from oxidative damage, favoring their therapeutic interest in the treatment of several pathological situations known to be associated with cellular oxidative stress.  相似文献   

14.
The first evidence has been obtained for Cr(VI) (chromate) binding to isolated calf thymus (CT) histones under physiological conditions (pH 7.4, Cl concentration 152 mM, 310 K). No significant Cr(VI) binding under the same conditions was observed for other extracellular and intracellular proteins, including albumin, apo-transferrin and G-actin, as well as for CT DNA. The mode of Cr(VI) binding to histones was studied by vibrational, electronic and X-ray absorption (X-ray absorption near-edge structure and X-ray absorption fine structure) spectroscopies and molecular mechanics calculations. A proposed binding mechanism includes electrostatic interactions of CrO4 2− with protonated Lys and Arg residues of histones, as well as the formation of hydrogen bonds with the protein backbone. Similarly, Cr(VI) can bind to nuclear localization signals (typically, Lys- and Arg-rich fragments) of other nuclear proteins. Selective binding of Cr(VI) to newly synthesized nuclear proteins (including histones) in the cytoplasm is likely to be responsible for the active transport of Cr(VI) into the nuclei of living cells. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

15.
A Cr(VI)-resistant yeast, designated strain DBVPG 6502, was isolated from a sewage treatment plant receiving wastes from tannery industries in Italy. The strain was tentatively identified as a species of Candida based on morphological and physiological analyses. This strain was highly resistant to Cr(VI) when compared with eight other yeast species, growing at Cr(VI) concentrations of up to 500 micrograms/ml (10 mM). This resistance was constitutive. The Cr(VI)-resistant yeast did not reduce Cr(VI) to Cr(III) species under aerobic conditions. The yeast showed very little accumulation of Cr(VI). Consequently, the mechanism of resistance of the yeast to Cr(VI) appears to involve reduced accumulation of Cr, as has been shown in Cr(VI)-resistant bacteria.  相似文献   

16.
Several studies have been carried out to evaluate the alterations in mitochondrial functions of diabetic rats. However, some of the results reported are controversial, since experimental conditions, such as aging, and/or strain of animals used were different. The purpose of this study was to evaluate the metabolic changes in liver mitochondria, both in the presence of severe hyperglycaemia (STZ-treated rats) and mild hyperglycaemia (Goto-Kakizaki (GK) rats). Moreover, metabolic alterations were evaluated both at initial and at advanced states of the disease. We observed that both models of type 1 and type 2 diabetes presented alterations on respiratory chain activity. Because of continual severe hyperglycaemia, 9 weeks after the induction of diabetes, the respiratory function declined in STZ-treated rats, as observed by membrane potential and respiratory ratios (RCR, P/O, and FCCP-stimulated respiration) assessment. In contrast, GK rats of 6 months age presented increased respiratory ratios. To localize which respiratory complexes are affected by diabetes, enzymatic respiratory chain activities were evaluated. We observed that succinate dehydrogenase and cytochrome c oxidase activities were significantly augmented both in STZ-treated rats and GK rats of 6 months age. Moreover, H(+)-ATPase activity was also significantly increased in STZ-treated rats with 3 weeks of diabetes and in GK rats of 6 months age as compared to controls. Therefore, these results clearly suggest that both animal models of diabetes present some metabolic adjustments in order to circumvent the deleterious effects promoted by the high glucose levels typical of the disease.  相似文献   

17.
The bacterial strains resistant to pentachlorophenol (PCP) and hexavalent chromium [Cr(VI)] were isolated from treated tannery effluent of a common effluent treatment plant. Most of the physico-chemical parameters analyzed were above permissible limits. Thirty-eight and four bacterial isolates, respectively were found resistant to >50 μg/ml concentration of [Cr(VI)] and the same level of PCP. Out of the above 42 isolates, only one was found simultaneously tolerant to higher levels of both PCP (500 μg/ml) and Cr(VI) (200 μg/ml), and hence was selected for further studies. To the best of our knowledge, this is the first report in which a native bacterial isolate simultaneously tolerant to such a high concentrations of Cr(VI) and PCP has been reported. The culture growth was best at 0.4% (w/v) glucose as an additional carbon source and 0.2% (w/v) ammonium chloride as a nitrogen source. The growth results with cow urine as a nitrogen source were comparable with the best nitrogen source ammonium chloride. The isolate exhibited resistance to multiple heavy metals (Pb, As, Hg, Zn, Co & Ni) and to antibiotics nalidixic acid and polymixin-B. The efficacy of bacterial isolate for growth, PCP degradation (56.5%) and Cr(VI) bioremediation (74.5%) was best at 48 h incubation. The isolate was identified as Bacillus sp. by morphological and biochemical tests. The 16S rDNA sequence analysis revealed 98% homology with Bacillus cereus. However, further molecular analysis is underway to ascertain its likelyhood of a novel species.  相似文献   

18.
Despite chromium nicotinate’s popular use as a chromium nutritional supplement, the structure and composition of chromium nicotinate have only been poorly described. As solid chromium nicotinate is intractable, being insoluble or unstable in common solvents, studies on the solid have been limited, and studies of the solution from which the “compound” precipitates have additionally provided little additional data. The results of mass spectrometric and spectroscopic investigations designed to further elucidate the structure and composition of chromium nicotinate are described. The results demonstrated that the three common methods for producing “chromium nicotinate” all yield different compounds, all of which are polymers of Cr(III), oxygen-bound nicotinate, hydroxide, and water. Implications for interpreting results of nutritional studies of “chromium nicotinate” are discussed.  相似文献   

19.
Most mitochondria-based methods used to investigate toxins require the use of relatively large amounts of material and hence compromised sensitivity in assay. We adopted procedures from methods initially developed to diagnose mitochondrial encephalomyopathies and unified these into a single assay. Eukaryotic cell membranes are selectively permeabilized with digitonin to render a system in which mitochondrial respiration can be measured rapidly and with considerable sensitivity. Mitochondria remain intact, uninjured, and in their natural environment where mitochondrial respiration can be measured in situ under physiologically relevant conditions. This approach furthermore allows measurement of toxin effects on individual mitochondrial complexes. Numerous compounds at varying concentrations can be screened for mitochondrial toxicity, while the site of mitochondrial inhibition can be determined simultaneously. We used this assay to investigate, in murine neuroblastoma (N-2alpha) cells, the mitochondrial inhibitory properties of the parkinsonian-inducing proneurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and its neurotoxic monoamine oxidase-B (MAO-B)-generated metabolite, the 1-methyl-4-phenylpyridinium species (MPP(+)). Within the time frame of each measurement (15 min), MPTP (< or = 1 mM) did not interfere with in situ mitochondrial respiration. As expected, MPP(+) was found to be a potent Complex I inhibitor but surprisingly also found to inhibit Complex IV. Optimized conditions for performing this assay are provided.  相似文献   

20.
High-fat diet has been implicated as a major cause of insulin resistance and dyslipidemia. The objective of this study was to evaluate the impact of dietary-supplementation of chromium (d-phenylalanine)3 [Cr(d-Phe)3] on glucose and insulin tolerance in high-fat diet fed mice. C57BL/6-mice were randomly assigned to orally receive vehicle or Cr(d-Phe)3 (45 μg of elemental chromium/kg/day) for 8-weeks. High-fat-fed mice exhibited impaired whole-body-glucose and -insulin tolerance and elevated serum triglyceride levels compared to normal chow-fed mice. Insulin-stimulated glucose up-take in the gastrocnemius muscles, assessed as 2-[3H-deoxyglucose] incorporation was markedly diminished in high-fat fed mice compared to control mice. Treatment with chromium reconciled the high-fat diet-induced alterations in carbohydrate and lipid metabolism. Treatment of cultured, differentiated myotubes with palmitic acid evoked insulin resistance as evidenced by lower levels of insulin-stimulated Akt-phosphorylation, elevated JNK-phosphorylation, (assessed by Western blotting), attenuation of phosphoinositol-3-kinase activity (determined in the insulin-receptor substrate-1-immunoprecipitates by measuring the extent of phosphorylation of phosphatidylinositol by γ-32P-ATP), and impairment in cellular glucose up-take, all of which were inhibited by Cr(d-Phe)3. These results suggest a beneficial effect of chromium-supplementation in insulin resistant conditions. It is likely that these effects of chromium may be mediated by augmenting downstream insulin signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号