首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cathepsin K is a cysteine protease that plays an essential role in osteoclast function and in the degradation of protein components of the bone matrix by cleaving proteins such as collagen type I, collagen type II and osteonectin. Cathepsin K therefore plays a role in bone remodelling and resorption in diseases such as osteoporosis, osteolytic bone metastasis and rheumatoid arthritis. We examined cathepsin K in the serum of 100 patients with active longstanding rheumatoid arthritis. We found increased levels of cathepsin K compared with a healthy control group and found a significant correlation with radiological destruction, measured by the Larsen score. Inhibition of cathepsin K may therefore be a new target for preventing bone erosion and joint destruction in rheumatoid arthritis. However, further studies have to be performed to prove that cathepsin K is a valuable parameter for bone metabolism in patients with early rheumatoid arthritis.  相似文献   

2.
Cathepsin K is a cysteine protease that plays an essential role in osteoclast function and in the degradation of protein components of the bone matrix by cleaving proteins such as collagen type I, collagen type II and osteonectin. Cathepsin K therefore plays a role in bone remodelling and resorption in diseases such as osteoporosis, osteolytic bone metastasis and rheumatoid arthritis. We examined cathepsin K in the serum of 100 patients with active longstanding rheumatoid arthritis. We found increased levels of cathepsin K compared with a healthy control group and found a significant correlation with radiological destruction, measured by the Larsen score. Inhibition of cathepsin K may therefore be a new target for preventing bone erosion and joint destruction in rheumatoid arthritis. However, further studies have to be performed to prove that cathepsin K is a valuable parameter for bone metabolism in patients with early rheumatoid arthritis.  相似文献   

3.

Introduction

Progression of joint destruction in rheumatoid arthritis (RA) is partly heritably; 45 to 58% of the variance in joint destruction is estimated to be explained by genetic factors. The binding of RANKL (Receptor Activator for Nuclear Factor κ B Ligand) to RANK results in the activation of TRAF6 (tumor necrosis factor (TNF) receptor associated factor-6), and osteoclast formation ultimately leading to enhanced bone resorption. This bone resorption is inhibited by osteoprotegerin (OPG) which prevents RANKL-RANK interactions. The OPG/RANK/RANKL/TRAF6 pathway plays an important role in bone remodeling. Therefore, we investigated whether genetic variants in OPG, RANK, RANKL and TRAF6 are associated with the rate of joint destruction in RA.

Methods

1,418 patients with 4,885 X-rays of hands and feet derived from four independent data-sets were studied. In each data-set the relative increase of the progression rate per year in the presence of a genotype was assessed. First, explorative analyses were performed on 600 RA-patients from Leiden. 109 SNPs, tagging OPG, RANK, RANKL and TRAF6, were tested. Single nucleotide polymorphisms (SNPs) significantly associated in phase-1 were genotyped in data-sets from Groningen (Netherlands), Sheffield (United Kingdom) and Lund (Switzerland). Data were summarized in an inverse weighted variance meta-analysis. Bonferonni correction for multiple testing was applied.

Results

We found that 33 SNPs were significantly associated with the rate of joint destruction in phase-1. In phase-2, six SNPs in OPG and four SNPs in RANK were associated with progression of joint destruction with P-value <0.05. In the meta-analyses of all four data-sets, RA-patients with the minor allele of OPG-rs1485305 expressed higher rates of joint destruction compared to patients without these risk variants (P = 2.35x10−4). This variant was also significant after Bonferroni correction.

Conclusions

These results indicate that a genetic variant in OPG is associated with a more severe rate of joint destruction in RA.  相似文献   

4.
Rheumatoid arthritis (RA), a chronic inflammatory disease, leads to early and accelerated atherosclerosis; however, its pathogenesis is not yet fully documented. Salusin-α and β are novel bioactive peptides. Salusin-α suppresses macrophage foam cell formation, while salusin-β stimulates. Moreover, decreased serum salusin-α level has been reported previously in patients with coronary artery disease. The aims of the study were to assess serum salusin-α level and its association with predictors of atherosclerosis in a cohort of patients with RA. The study included 56 RA patients, 37 Behcet's disease (BD) patients, and 29 healthy controls (HC). TNF-α, IL-6 and salusin-α levels, homeostasis model assessment (HOMA-IR) index and common carotid intima-media thickness (IMT) were determined. In the RA and BD groups, salusin-α levels (p<0.001 and p<0.01, respectively) and IMTs (p<0.001 for both) were higher compared to the HC group. However, the level of salusin-α was not directly associated with the IMT in all the groups. Serum salusin-α levels are increased in RA and BD, although they have increased IMT. Salusin-α has been reported to have anti-atherogenic effects in previous studies. However, it seems that salusin-α does not directly affect the atherogenesis in RA and BD. Further studies are needed to understand the regulation of salusin-α and determination of its relations with the predictors of atherosclerosis in RA and BD.  相似文献   

5.
6.
T cell IL-17 displays proinflammatory properties and is expressed in the synovium of patients with rheumatoid arthritis. Its contribution to the arthritic process has not been identified. Here, we show that blocking of endogenous IL-17 in the autoimmune collagen-induced arthritis model results in suppression of arthritis. Also, joint damage was significantly reduced. In contrast, overexpression of IL-17 enhanced collagen arthritis. Moreover, adenoviral IL-17 injected in the knee joint of type II collagen-immunized mice accelerated the onset and aggravated the synovial inflammation at the site. Radiographic and histologic analysis showed markedly increased joint destruction. Elevated levels of IL-1beta protein were found in synovial tissue. Intriguingly, blocking of IL-1alphabeta with neutralizing Abs had no effect on the IL-17-induced inflammation and joint damage in the knee joint, implying an IL-1 independent pathway. This direct potency of IL-17 was underscored in the unabated IL-17-induced exaggeration of bacterial cell wall-induced arthritis in IL-1beta(-/-) mice. In conclusion, this data shows that IL-17 contributes to joint destruction and identifies an IL-1-independent role of IL-17. These findings suggest IL-17 to be a novel target for the treatment of destructive arthritis and may have implications for tissue destruction in other autoimmune diseases.  相似文献   

7.
Rheumatoid arthritis (RA) is a chronic, persistent inflammatory joint disease with systemic involvement that affects about 1% of the world’s population, that ultimately leads to the progressive destruction of joint. Effective medical treatment for joint destruction in RA is lacking because the knowledge about molecular mechanisms leading to joint destruction are incompletely understood. It has been confirmed that cytokine-mediated immunity plays a crucial role in the pathogenesis of various autoimmune diseases including RA. Recently, IL-17 was identified, which production by Th17 cells. IL-17 has proinflammatory properties and may promote bone and joint damage through induction of matrix metalloproteinases and osteoclasts. In mice, intra-articular injection of IL-17 into the knee joint results in joint inflammation and damage. In addition, it has been shown that blocking IL-17/IL-17R signaling is effective in the control of rheumatoid arthritis symptoms and in the prevention of joint destruction. In this article, we will briefly discuss the biological features of IL-17/IL-17R and summarize recent advances on the role of IL-17/IL-17R in the pathogenesis and treatment of joint destruction in RA.  相似文献   

8.

Introduction

Adipokines such as adiponectin, leptin, and visfatin/nicotinamide phosphoribosyltransferase (NAMPT) have recently emerged as pro-inflammatory mediators involved in the pathophysiology of rheumatoid arthritis (RA). We aimed to determine whether serum adipokine levels independently predicted early radiographic disease progression in early RA.

Methods

In total, 791 patients were included from the prospective Etude et Suivi des POlyarthrites Indifférenciées Récentes (ESPOIR) cohort who met the American College of Rheumatology-European League Against Rheumatism criteria for RA (n = 632) or had undifferentiated arthritis (UA) (n = 159). Enzyme-linked immunosorbent assay (ELISA) was used to assess baseline serum levels of adiponectin, leptin, and visfatin/NAMPT. In the RA group, we tested the association of serum adipokine levels and (a) baseline radiographic damage and (b) radiographic disease progression, defined as a change >0 or ≥5 in total Sharp-van der Heijde Score (∆SHS) between inclusion and 1 year (∆SHS ≥1 or rapid radiographic progression: ∆SHS ≥5), adjusting for confounders (age, sex, body-mass index, insulin resistance, C-reactive protein level, Disease Activity Score in 28 joints, Health Assessment Questionnaire score, autoantibody status, steroid use, and radiographic evidence of RA damage at inclusion).

Results

Adiponectin level was independently associated with baseline total SHS (adjusted β = 0.12; P = 0.006). It was also associated with ∆SHS ≥1 (adjusted odds ratio (aOR) = 1.84 (1.25 to 2.72)) involving erosive as well as narrowing disease progression (aOR = 1.73 (1.17 to 2.55) and 1.93 (1.04 to 3.57), respectively). Serum adiponectin level predicted ∆SHS ≥5 (aOR = 2.0 (1.14 to 3.52)). Serum leptin level was independently associated only with ∆SHS >0 (aOR = 1.59 (1.05 to 2.42)). Conversely, serum visfatin/NAMPT level and radiographic disease progression were unrelated. Considering the receiver-operated characteristic curves, the best adiponectin cut-offs were 4.14 μg/ml for ∆SHS ≥1 and 6.04 μg/ml for ∆SHS ≥5, with a good specificity (58% and 75% for ∆SHS ≥1 and ∆SHS ≥5, respectively) and high negative predictive values (75% and 92% for ∆SHS ≥1 or ∆SHS ≥5, respectively).

Conclusion

Serum adiponectin level is a simple useful biomarker associated with early radiographic disease progression in early RA, independent of RA-confounding factors and metabolic status.  相似文献   

9.
10.
Rheumatoid arthritis is a chronic inflammatory joint disease, leading to cartilage and bone destruction. In this study, we investigated the effects of local IL-4 application, introduced by a recombinant human type 5 adenovirus vector, in the knee joint of mice with collagen-induced arthritis. One intraarticular injection with an IL-4-expressing virus caused overexpression of IL-4 in the mouse knee joint. Enhanced onset and aggravation of the synovial inflammation were found in the IL-4 group. However, despite ongoing inflammation, histologic analysis showed impressive prevention of chondrocyte death and cartilage erosion. In line with this, chondrocyte proteoglycan synthesis was enhanced in the articular cartilage. This was quantified with ex vivo 35S-sulfate incorporation in patellar cartilage and confirmed by autoradiography on whole knee joint sections. Reduction of cartilage erosion was further substantiated by lack of expression of the stromelysin-dependent cartilage proteoglycan breakdown neoepitope VDIPEN in the Ad5E1 mIL-4-treated knee joint. Reduced metalloproteinase activity was also supported by markedly diminished mRNA expression of stromelysin-3 in the synovial tissue. Histologic analysis revealed marked reduction of polymorphonuclear cells in the synovial joint space in the IL-4-treated joints. This was confirmed by immunolocalization studies on knee joint sections using NIMP-R14 staining and diminished mRNA expression of macrophage-inflammatory protein-2 in the synovium tissue. mRNA levels of TNF-alpha and IL-1beta were suppressed as well, and IL-1beta and nitric oxide production by arthritic synovial tissue were strongly reduced. Our data show an impressive cartilage-protective effect of local IL-4 and underline the feasibility of local gene therapy with this cytokine in arthritis.  相似文献   

11.
12.
13.
14.
The origin and role of IL-17, a T-cell derived cytokine, in cartilage and bone destruction during rheumatoid arthritis (RA) remain to be clarified. In human ex vivo models, addition of IL-17 enhanced IL-6 production and collagen destruction, and inhibited collagen synthesis by RA synovium explants. On mouse cartilage, IL-17 enhanced cartilage proteoglycan loss and inhibited its synthesis. On human RA bone explants, IL-17 also increased bone resorption and decreased formation. Addition of IL-1 in these conditions increased the effect of IL-17. Blocking of bone-derived endogenous IL-17 with specific inhibitors resulted in a protective inhibition of bone destruction. Conversely, intra-articular administration of IL-17 into a normal mouse joint induced cartilage degradation. In conclusion, the contribution of IL-17 derived from synovium and bone marrow T cells to joint destruction suggests the control of IL-17 for the treatment of RA.  相似文献   

15.

Introduction  

Angiogenesis and vasculogenesis are critical in rheumatoid arthritis (RA) as they could be a key issue for chronic synovitis. Contradictory results have been published regarding circulating endothelial progenitor cells (EPCs) in RA. We herein investigated late outgrowth EPC sub-population using recent recommendations in patients with RA and healthy controls.  相似文献   

16.
The newly characterized cytokine IL-38 (IL-1F10) belongs to the IL-1 family of cytokines. Previous work has demonstrated that IL-38 inhibited Candida albicans-induced IL-17 production from peripheral blood mononuclear cells. However, it is still unclear whether IL-38 is an inflammatory or an anti-inflammatory cytokine. We generated anti-human IL-38 monoclonal antibodies in order to perform immunohistochemical staining and an enzyme-linked immunosorbent assay. While human recombinant IL-38 protein was not cleaved by recombinant caspase-1, chymase, or PR3 in vitro, overexpression of IL-38 cDNA produced a soluble form of IL-38 protein. Furthermore, immunohistochemical analysis showed that synovial tissues obtained from RA patients strongly expressed IL-38 protein. To investigate the biological role of IL-38, C57BL/6 IL-38 gene-deficient (?/?) mice were used in an autoantibody-induced rheumatoid arthritis (RA) mouse model. As compared with control mice, IL-38 (?/?) mice showed greater disease severity, accompanied by higher IL-1β and IL-6 gene expression in the joints. Therefore, IL-38 acts as an inhibitor of the pathogenesis of autoantibody-induced arthritis in mice and may have a role in the development or progression of RA in humans.  相似文献   

17.
18.
IntroductionThe severity of joint damage progression in rheumatoid arthritis (RA) is heritable. Several genetic variants have been identified, but together explain only part of the total genetic effect. Variants in Interleukin-6 (IL-6), Interleukin-10 (IL-10), C5-TRAF1, and Fc-receptor-like-3 (FCRL3) have been described to associate with radiographic progression, but results of different studies were incongruent. We aimed to clarify associations of these variants with radiographic progression by evaluating six independent cohorts.MethodsIn total 5,895 sets of radiographs of 2,493 RA-patients included in six different independent datasets from the Netherlands, Sweden, Spain and North-America were studied in relation to rs1800795 (IL-6), rs1800896 (IL-10), rs2900180 (C5-TRAF1) and rs7528684 (FCRL3). Associations were tested in the total RA-populations and in anti-citrullinated peptide antibodies (ACPA)-positive and ACPA-negative subgroups per cohort, followed by meta-analyses. Furthermore, the associated region C5-TRAF1 was fine-mapped in the ACPA-negative Dutch RA-patients.ResultsNo associations were found for rs1800795 (IL-6), rs1800896 (IL-10) and rs7528684 (FCRL3) in the total RA-population and after stratification for ACPA. Rs2900180 in C5-TRAF1 was associated with radiographic progression in the ACPA-negative population (P-value meta-analysis = 5.85 × 10−7); the minor allele was associated with more radiographic progression. Fine-mapping revealed a region of 66Kb that was associated; the lowest P-value was for rs7021880 in TRAF1. The P-value for rs7021880 in meta-analysis was 6.35 × 10−8. Previous studies indicate that the region of rs7021880 was associated with RNA expression of TRAF1 and C5.ConclusionVariants in IL-6, IL-10 and FCRL3 were not associated with radiographic progression. Rs2900180 in C5-TRAF1 and linked variants in a 66Kb region were associated with radiographic progression in ACPA-negative RA.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-014-0514-0) contains supplementary material, which is available to authorized users.  相似文献   

19.
20.
The balance between pro- and anti-inflammatory cytokines plays an important role in determining the severity of inflammation in rheumatoid arthritis (RA). Antagonism between opposing cytokines at the level of signal transduction plays an important role in many other systems. We have begun to explore the possible contribution of signal transduction cross-talk to cytokine balance in RA by examining the effects of IL-1, a proinflammatory cytokine, on the signaling and action of IL-6, a pleiotropic cytokine that has both pro- and anti-inflammatory actions, in RA synovial fibroblasts. Pretreatment with IL-1 suppressed Janus kinase-STAT signaling by IL-6, modified patterns of gene activation, and blocked IL-6 induction of tissue inhibitor of metalloproteases 1 expression. These results suggest that proinflammatory cytokines may contribute to pathogenesis by modulating or blocking signal transduction by pleiotropic or anti-inflammatory cytokines. The mechanism of inhibition did not require de novo gene activation and did not depend upon tyrosine phosphatase activity, but, instead, was dependent on the p38 stress kinase. These results identify a molecular basis for IL-1 and IL-6 cross-talk in RA synoviocytes and suggest that, in addition to levels of cytokine expression, modulation of signal transduction also plays a role in regulating cytokine balance in RA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号