首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In marine fishes, heterotrimeric guanyl nucleotide binding proteins (G proteins), which couple cell surface membrane receptors to their effector elements, are sensitive to hydrostatic pressure. The intrinsic high affinity GTPase activity of the α subunits of G proteins in three signaling systems coupled to adenylyl cyclase, the A1 adenosine receptor, the muscarinic cholinergic receptor and the β-adrenergic receptor, was tested at pressures up to 340 atm. Brain membrane preparations from four members of the deep-sea teleost fish family Macrouridae were studied. Coryphaenoides armatus, C. filifer, C. rupestris and Macrourus berglax have depth distributions which together span 100–5810 m. Increased pressure inhibited basal GTPase activity only in M. berglax, which of the four species has the shallowest center of abundance. Increased hydrostatic pressure did not alter the response of GTPase activity to the β-adrenergic receptor agonist isoproterenol. Increased pressure decreased the stimulation of GTPase activity by the A1 adenosine receptor agonist cyclopentyladenosine (CPA) in C. armatus and M. berglax, and by the muscarinic cholinergic receptor agonist carbamyl choline in C. armatus, C. filifer and M. berglax. Decreased agonist-stimulation of the GTPase activity at elevated pressure may result from pressure-induced changes in conformational states or inhibition of agonist binding. The binding of the non-hydrolyzable GTP analog guanosine 5′-[γ-thio]triphosphate (GTP[S]) in response to CPA was determined at 5 °C and atmospheric pressure. Six macrourid species and a morid were studied. The halftime (t1/2) values for GTP[S] binding, ranging from 20.8 to 40.9 min, are similar to values previously reported for two other cold-adapted fishes.  相似文献   

2.
Photoaffinity-labeled N-formyl chemotactic peptide receptors from human neutrophils solubilized in octyl glucoside exhibit two forms upon sucrose density gradient sedimentation, with apparent sedimentation coefficients of approximately 4 and 7 S. The 7 S form can be converted to the 4 S form by guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) with an EC50 of approximately 20 nM, suggesting that the 7 S form may represent a physical complex of the receptor with endogenous G protein (Jesaitis, A. J., Tolley, J. O., Bokoch, G. M., and Allen, R. A. (1989) J. Cell Biol. 109, 2783-2790). To probe the nature of the 7 S form, we reconstituted the 7 S form from the 4 S form by adding purified G protein. The 4 S form, obtained by solubilizing GTP gamma S-treated neutrophil plasma membranes, was incubated with purified (greater than 95%) Gi protein from bovine brain (containing both Gi alpha 1 and Gi alpha 2) or with neutrophil G protein (Gn), and formation of the 7 S complex was analyzed on sucrose density gradients. The EC50 of 7 S complex formation induced by the two G proteins was 70 +/- 25 and 170 +/- 40 nM for Gn and Gi, respectively. No complexation was measurable when bovine transducin (Gt) was used up to 30 times the EC50 for Gn. The EC50 for Gi was the same for receptors, obtained from formyl peptide-stimulated or unstimulated cells. The addition of 10 microM GTP gamma S to the reconstituted 7 S complex caused a complete revision of the receptor to the 4 S form, and anti-Gi peptide antisera immunosedimented the 7 S form. ADP-ribosylation of Gi prevented formation of the 7 S form even at 20 times the concentration of unribosylated Gi normally used to attain 50% conversion to the 7 S form. These observations suggest that the 7 S species is a physical complex containing N-formyl chemotactic peptide receptor and G protein.  相似文献   

3.
To investigate, the effects of hydrostatic pressure on transmembrane signaling in cold-adapted marine fishes, we examined the high-affinity GTPase activity in two congeneric marine fishes, Sebastolobus alascanus and S. altivelis. In brain membranes there are two GTPase activities, one with a low K m and one with a high K m for GTP. The high-affinity GTPase activity, characteristic of the subunits of the guanine nucleotide binding protein pool, was stimulated by the A1 adenosine receptor agonists N 6(R-phenylisopropyl)adenosine and N 6-cyclopentyladenosine, and the muscarinic cholinergic agonist carbamyl choline. Pertussis toxin-catalyzed ADP-ribosylation of the membranes for 2 h at 5°C prior to the GTPase assay decreased the basal GTPase activity 30–40% and abolished N 6 (R-phenylisopropyl)adenosine stimulation of GTP hydrolysis. Basal high-affinity hydrolysis of GTP, measured at 0.3 mol·1-1GTP, was stimulated 22% in both species by 340 atm pressure. At 340 atm pressure, the apparent K m of GTP is decreased approximately 10% in each of the species, and the V max values are increased 11 and 15.9% in S. alascanus and S. altivelis, respectively. The apparent volume changes associated with the decreased K m of GTP and the increased V max ranged from-7.0 to-9.9 ml·mol-1. Increased pressure markedly decreased the efficacy of N 6 (R-phenylisopropyl) adenosine, N 6-cylcopentyladenosine and carbamyl choline in stimulating GTPase activity. The effects of increased hydrostatic pressure on transmembrane signal transduction by the A1 adenosine receptor-inhibitory guanine nucleotide binding protein-adenylyl cyclase system may stem, at least in part, from pressure-increased GTP hydrolysis and the concomitant termination of inhibitory signal transduction.Abbreviations [3H] DPCPX 3H cyclopentyl-1, 3-dipropylxanthine - AppNHp 5-adenylylimidodiphosphate - cpm counts per minute - CPA N 6-cyclopentyladenosine - EDTA ethylenediaminetetra acetic acid - EGTA ethyleneglycol-bis (-aminoethylether) N, N, N, N-totra-acctic acid - G protein guanine nucleotide binding protein - Gi inhibitory G protein - Go other G protein, common in brain membranes - Gs stimulatory G protein - GTPase guanosine triphosphatase - K i inhibition constant - K m Michaelis constant - pK a log of the dissociation constant - R-PIA N 6 (R-phenylisopropyl) adenosine - TRIS tris[hydroxymethyl]aminomethane - Vmax maximal velocity - [-32P]GTP [-32P] guanosine 5-triphosphate (tetra (triethylammonium) salt)  相似文献   

4.
In shallow marine teleost fishes, the osmolyte trimethylamine oxide (TMAO) is typically found at <70 mmol/kg wet weight. Recently we found deep-sea teleosts have up to 288 mmol/kg, increasing in the order shallow < bathyal < abyssal. We hypothesized that this protein stabilizer counteracts inhibition of proteins by hydrostatic pressure, and showed that, for lactate dehydrogenases (LDH), 250 mM TMAO fully offset an increase in NADH K(m) at physiological pressure, and partly reversed pressure-enhanced losses of activity at supranormal pressures. In this study, we examined other effects of pressure and TMAO on proteins of teleosts that live from 2000-5000 m (200-500 atmospheres [atm]). First, for LDH from a grenadier (Coryphaenoides leptolepis) at 500 atm for 8 hr, there was a significant 15% loss in activity (P < 0.05 relative to 1 atm control) that was reduced with 250 mM TMAO to an insignificant loss. Second, for pyruvate kinase from a morid cod (Antimora microlepis) at 200 atm, there was 73% increase in ADP K(m) without TMAO (P < 0.01 relative to K(m) at 1 atm) but only a 29% increase with 300 mM TMAO. Third, for G-actin from a grenadier (C. armatus) at 500 atm for 16 hr, there was a significant reduction of F-actin polymerization (P < 0.01 compared to polymerization at 1 atm) that was fully counteracted by 250 mM TMAO, but was unchanged in 250 mM glycine. These findings support the hypothesis. J. Exp. Zool. 289:172-176, 2001.  相似文献   

5.
Incubation of membranes of human erythrocytes and platelets but not of human neutrophils with [32P]NAD leads to covalent modification of various membrane proteins and of added albumin. In membranes of all three cell types, pertussis toxin (PT), in the presence of NAD, specifically labelled a 40 kDa peptide, i.e. the alpha-subunit of a guanine nucleotide-binding protein. This effect of PT was slightly reduced by NADP, whereas modification of other membrane proteins and of albumin was largely suppressed, independent of whether PT was present or not. Labelling of cytosolic proteins in the presence of NAD was marginal; only in neutrophil cytosol, PT modified a 40 kDa peptide. Membranes of erythrocytes and platelets exhibited NAD-degrading activity, which was inhibited by NADP. The data suggest a high substrate specificity of PT for NAD. Inhibition of endogenous enzymes by NADP may prove useful for the evaluation of PT substrates.  相似文献   

6.
At least 16 macrourid fishes (Gadiformes, Macrouridae) inhabit the mid-Atlantic Ridge of the North Atlantic. To investigate the roles of macrourids in the food-web and compare feeding patterns of the most frequent co-occurring species, diet information on five of the species were described and compared. Pelagic and benthopelagic copepods were the most numerous prey but did not contribute much on a weight basis. Cephalopods were by far the most important prey of the small grenadiers, while shrimps and fish became increasingly significant with increasing size. Previous studies from other areas have also found pelagic prey to be important, but in contrast to this study, cephalopods were more important on the mid-Atlantic Ridge than in continental margin locations.  相似文献   

7.
8.
In an attempt to better understand the role of centrioles in vertebrate centrosomes, hydrostatic pressure was applied to isolated centrosomes as a means to disassemble centriole microtubules. Treatments of the centrosomes were monitored by analyzing their protein composition, ultrastructure, their ability to nucleate microtubules from pure tubulin, and their capability to induce parthenogenetic development of Xenopus eggs. Moderate hydrostatic pressure (95 MPa) already affected the organization of centriole microtubules in isolated centrosomes, and also impaired microtubule nucleation. At higher pressure, the protein composition of the peri-centriolar matrix (PCM) was also altered and the capacity to nucleate microtubules severely impaired. Incubation of the treated centrosomes in Xenopus egg extract could restore their capacity to nucleate microtubules after treatment at 95 MPa, but not after higher pressure treatment. However, the centriole structure was in no case restored. It is noteworthy that centrosomes treated with mild pressure did not allow parthenogenetic development after injection into Xenopus eggs, even if they had recovered their capacity to nucleate microtubules. This suggested that, in agreement with previous results, centrosomes in which centriole architecture is impaired, could not direct the biogenesis of new centrioles in Xenopus eggs. Centriole structure could also be affected by applying mild hydrostatic pressure directly to living cells. Comparison of the effect of hydrostatic pressure on cells at the G1/S border or on the corresponding cytoplasts suggests that pro-centrioles are very sensitive to pressure. However, cells can regrow a centriole after pressure-induced disassembly. In that case, centrosomes eventually recover an apparently normal duplication cycle although with some delay.  相似文献   

9.
Folding studies of two hydrostatic pressure sensitive proteins   总被引:1,自引:0,他引:1  
High hydrostatic pressure combined with various spectroscopies is a powerful technique to study protein folding. An ideal model system for protein folding studies should have the following characteristics. (1) The protein should be sensitive to pressure, so that the protein can be unfolded under mild pressure. (2) The folding process of the protein should be easily modulated by several chemical or physical factors. (3) The folding process should be easily monitored by some spectroscopic parameters. Here, we summarized the pressure induced folding studies of two proteins isolated from spinach photosystem II, namely the 23-kDa and the 33-kDa protein. They have all the characteristics mention above and might be an ideal model protein system for pressure studies.  相似文献   

10.
The overt effect of pressure on biological membranes is mediated predominantly through lipid condensation and disintegration of cytoskeletal polymers. These may lead to selective shedding of integral proteins, which could then be isolated by conventional means. In this study we have used the well characterised human erythrocyte membrane in order to establish the technical requirements for future use of pressure, as an alternative to detergents, in isolation of membrane proteins. Pressure of varying magnitude (300-1640 bar) and duration (5-60 min) was applied on human erythrocyte ghost membranes in suspension at different temperatures (4, 24 and 37 degrees C) and in the presence of various solutes. After ultracentrifugation protein and lipids remaining in the supernatant were quantified and analysed. It is indicated that selective integral membrane proteins can be shed off under defined conditions and presumably remain in solution by the support of strongly associated phospholipids and specific solutes. On the basis of our findings a series of technical recommendations for the isolation of specific membrane proteins is outlined.  相似文献   

11.
12.
13.
High hydrostatic pressure (HHP)-mediated solubilization and refolding of five inclusion bodies (IBs) produced from bacteria, three gram-negative binding proteins (GNBP1, GNBP2, and GNBP3) from Drosophila, and two phosphatases from human were investigated in combination of a redox-shuffling agent (2 mM DTT and 6 mM GSSG) and various additives. HHP (200 MPa) combined with the redox-shuffling agent resulted in solubilization yields of approximately 42%-58% from 1 mg/mL of IBs. Addition of urea (1 and 2 M), 2.5 M glycerol, L-arginine (0.5 M), Tween 20 (0.1 mM), or Triton X-100 (0.5 mM) significantly enhanced the solubilization yield for all proteins. However, urea, glycerol, and nonionic surfactants populated more soluble oligomeric species than monomeric species, whereas arginine dominantly induced functional monomeric species (approximately 70%-100%) to achieve refolding yields of approximately 55%-78% from IBs (1 mg/mL). Our results suggest that the combination of HHP with arginine is most effective in enhancing the refolding yield by preventing aggregation of partially folded intermediates populated during the refolding. Using the refolded proteins, the binding specificity of GNBP2 and GNBP3 was newly identified the same as with that of GNBP1, and the enzymatic activities of the two phosphatases facilitates their further characterization.  相似文献   

14.
15.
The dissociation of free ribosomes at elevated concentrations of KCl is dependent on hydrostatic pressure. The pressure necessary for the dissociation is determined for KCl concentrations ranging from 0.1–0.4 m. It varies between 425 kg cm-2 at 0.1 m and 10 kg cm-2 at 0.4 m. The partial dissociation of complex ribosomes in KCl is dependent on hydrostatic pressure in the same way as the complete dissociation of free ribosomes. Therefore, it is concluded that mRNA and peptidyl-tRNA do not contribute to the stability of the ribosome under these conditions.  相似文献   

16.
17.
18.
The properties of the giant axon of the squid Loligo pealii were studied at different hydrostatic pressures from 14.7 to 16,000 psi. At 4000 psi the resting potential, the membrane resistance, membrane capacity, the conduction velocity, the amplitude of the action potential, and the maximal change in the membrane impedance during activity were only slightly affected. At the same pressure the duration of the falling phase of the action potential was increased by about 40 to 60 per cent and the duration of the rising phase by about 20 to 35 per cent. The duration of the membrane impedance change during activity was increased by 50 to 100 per cent at 4000 psi. At pressures even slightly above atmospheric the threshold membrane current was appreciably reduced. At about 3000 to 7000 psi the fiber fired spontaneously. At pressures considerably above 5000 psi the membrane resistance decreased to about one-half to one-third the original value. The narcotizing effect upon the nerve fiber of 3 to 7 per cent ethanol was partly or almost completely opposed by low temperatures or high pressures.  相似文献   

19.
Giuseppe Graziano 《Biopolymers》2015,103(12):711-718
The model developed for cold denaturation (Graziano, PCCP 2010, 12, 14245‐14252) is extended to rationalize the dependence of protein conformational stability upon hydrostatic pressure, at room temperature. A pressure− volume work is associated with the process of cavity creation for the need to enlarge the liquid volume against hydrostatic pressure. This contribution destabilizes the native state that has a molecular volume slightly larger than the denatured state due to voids existing in the protein core. Therefore, there is a hydrostatic pressure value at which the pressure−volume contribution plus the conformational entropy loss of the polypeptide chain are able to overwhelm the stabilizing gain in translational entropy of water molecules, due to the decrease in water accessible surface area upon folding, causing denaturation. © 2015 Wiley Periodicals, Inc. Biopolymers 103: 711–718, 2015.  相似文献   

20.
High hydrostatic pressure (HHP) was applied to grated ginger in order to inactivate quality-degrading enzymes in a non-thermal manner. The effects of HHP treatment on the flavor and the color of the grated ginger were investigated just after treatment and during storage. After HHP treatment (400 MPa, 5 min), geraniol dehydrogenase (GeDH) was inactivated to less than 5%, but the activity of polyphenol oxidase (PPO) was reduced only to 37%. Heat treatment (100 °C, 10 min) inactivated GeDH to 43% and PPO to about 10%. In storage, the reduction of geranial, neral, and citronellal to the corresponding alcohols was observed in the untreated and the heat-treated ginger, while it was not in the HHP-treated grated ginger. In the HHP-treated sample, terpene aldehydes almost disappeared without the formation of the corresponding alcohols. Browning was not observed immediately after HHP treatment, while it was complete in the heat-treated sample. The color change during storage appeared to reflect the residual activity of PPO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号