首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bioimaging: the visualisation, localisation and tracking of movement of specific molecules in cells using microscopy has become an increasing field of interest within life science research. For this, the availability of fluorescent and electron-dense markers for light and electron microscopy, respectively, is an essential tool to attach to the molecules of interest. In recent years, there has been an increasing effort to combine light and electron microscopy in a single experiment. Such correlative light electron microscopy (CLEM) experiments thus rely on using markers that are both fluorescent and electron dense. Unfortunately, there are very few markers that possess both these properties. Markers for light microscopy such as green fluorescent protein are generally not directly visible in the electron microscopy and vice versa for gold particles. Hence, there has been an intensive search for markers that are directly visible both in the light microscope and in the electron microscope. Here we discuss some of the strategies and pitfalls that are associated with the use of CLEM markers, which might serve as a “warning” that new probes should be extensively tested before use. We focus on the use of CLEM markers for the study of intracellular transport and specifically endocytosis.  相似文献   

2.
Anuran tadpole tail muscle was stained en bloc by a modified light microscope silver stain for light microscopy and freeze-fractured in liquid nitrogen after partial dehydration with ethanol. The fractured specimens were observed in both secondary electron and backscattered electron modes in a scanning electron microscope. Since the cell nuclei specifically stained with silver provided high contrast against the unstained background due to atomic number contrast of backscattered electron image, various cells were easily identified by a comparison of secondary electron images and compositional images of backscattered electron signals.  相似文献   

3.
Anuran tadpole tail muscle was stained en bloc by a modified light microscope silver stain for light microscopy and freeze-fractured in liquid nitrogen after partial dehydration with ethanol. The fractured specimens were observed in both secondary electron and backscattered electron modes in a scanning electron microscope. Since the cell nuclei specifically stained with silver provided high contrast against the unstained background due to atomic number contrast of backscattered electron image, various cells were easily identified by a comparison of secondary electron images and compositional images of backscattered electron signals.  相似文献   

4.
The balance of energy flow from light absorption into biomass was investigated under simulated natural light conditions in the diatom Phaeodactylum tricornutum and the green alga Chlorella vulgaris. The energy balance was quantified by comparative analysis of carbon accumulation in the new biomass with photosynthetic electron transport rates per absorbed quantum, measured both by fluorescence quenching and oxygen production. The difference between fluorescence- and oxygen-based electron flow is defined as 'alternative electron cycling'. The photosynthetic efficiency of biomass production was found to be identical for both algae under nonfluctuating light conditions. In a fluctuating light regime, a much higher conversion efficiency of photosynthetic energy into biomass was observed in the diatom compared with the green alga. The data clearly show that the diatom utilizes a different strategy in the dissipation of excessively absorbed energy compared with the green alga. Consequently, in a fluctuating light climate, the differences between green algae and diatoms in the efficiency of biomass production per photon absorbed are caused by the different amount of alternative electron cycling.  相似文献   

5.
Summary Methods for light and electron microscopic comparison of individual argentaffin and argyrophil enterochromaffin cells (EC) in the sheep duodenal mucosa are described. These silver procedures were applied for light microscopy to Epon-embedded sections. The adjacent sections were examined with the electron microscope. The most specific characteristics of the argentaffin and argyrophil EC in electron microscopy are highly osmiophilic cytoplasmic granules. In one cell type these granules are smaller and more roundish than in the another type. These two cell types are stainable both by the argentaffin and argyrophil reactions. No essential difference can be observed in the localization of these elements. It is suggested that both cell types belong to the enterochromaffin system. Both silver methods are also suitable for the light microscopic identification of other intestinal structures in sections adjacent to that sectioned for electron microscopy.This work was supported by a grant from the Yrjö Jahnsson Foundation, Helsinki, Finland.The electron microscopic observations were carried out in the Electron Microscope Laboratory, University of Helsinki.  相似文献   

6.
Very few double-antigen staining methods are available that are applicable to both light and electron microscopy. The objective of this study was to develop for localization of two neural antigens simultaneously a procedure which would be sensitive, simple to perform, offer permanent reaction products, and permit correlated light and ultrastructural analysis. The method employs sequential immunoperoxidase staining without antibody elution, in which the first sequence of antibodies is visualized with 3,3'-diaminobenzidine (DAB) and the second with benzidine dihydrochloride (BDHC). The DAB reaction product (brown and diffuse) was easily distinguishable from the BDHC deposit (blue, granular, and more electron-dense) by both light and electron microscopy. The procedure was used to simultaneously localize choline acetyltransferase-and either substance P or tyrosine hydroxylase in rat brain at both light and ultrastructural levels. Control experiments demonstrated the absence of both color mixing and antibody crossreactions, even when both primary antibodies were from the same species. This study demonstrates the usefulness of BDHC as a chromogen for immunoperoxidase staining either alone or in combination with DAB, and describes a double method which should have wide applicability for detailed studies of most pairs of antigens at both light and ultrastructural levels.  相似文献   

7.
Correlative imaging of a specific cell with both the light microscope and the electron microscope has proved to be a difficult task, requiring enormous amounts of patience and technical skill. We describe a technique with a high rate of success, which can be used to identify a particular cell in the light microscope and then to embed and thin-section it for electron microscopy. The technique also includes a method to obtain many uninterrupted, thin serial sections for imaging by conventional or energy-filtered transmission electron microscopy, to obtain images for 3D analysis of detail at the suborganelle level.  相似文献   

8.
Summary A post-embedding method for the light and electron microscopic demonstration of lectin binding sites in rat kidney tubules is described. The use of biotinylated lectins, followed by treatment with avidin peroxidase and the DAB—H2O2 sequence, produced intense staining of acrylic sections at the electron microscope level: brush borders and associated structures, cytoplasmic granules, basal infoldings and basement membrane—plasmalemmal interfaces of proximal tubules bound erythrophytohaemagglutinin, while distal tubules were mainly unstained. At the light microscope level, epoxy resin sections showed a similar staining pattern after etching, as did acrylic resin sections after intensification of the final reaction product. The binding of wheatgerm agglutinin to cytoplasmic granules and brush border structures in the proximal tubules was abolished, at both the light and electron microscope levels, by the competing sugar tri-N—acetylchitotriose. Epoxy resin ultrathin sections required etching before staining was achieved in the electron microscope, and results were far inferior to those obtained with acrylic resin. This method allows rapid and inexpensive screening of large numbers of lectins, if required, at both the light and electron microscope levels, using reagents that are stable for long periods of time.  相似文献   

9.
A material containing only photosystem I (PSI) and the chlorophyll-a/b-binding light-harvesting complex of PSII (LHC-II) has been isolated from the chloroplast thylakoid membrane by solubilization with Triton X-100. Fluorescence spectroscopy shows that, within the material, LHC-II is coupled to PSI for excitation-energy transfer and that this coupling is decreased by the presence of Mg2+, which also decreased PSI electron transport specifically at limiting light intensity. Inclusion of phosphorylated LHC-II within the material did not alter its structure, but gave decreased energy transfer to PSI and inhibition of electron transport which was independent of light intensity, implying effects of phosphorylation on both light harvesting and directly on electron transport. Inclusion of Mg2+ within the phosphorylated material gave decreased energy transfer, but slightly increased PSI electron transport. A cation-induced direct promotion of PSI electron transport was also observed in isolated PSI particles. The PSI/LHC-II material represents a model system for examining protein interactions during light-state adaptations and the possibility that LHC-II can contribute to the antenna of PSI in light state 2 in vivo is discussed.  相似文献   

10.
A technique employing electron beams generated by an open gas discharge is proposed for measuring the light efficiency of phosphor coatings of cathodoluminescent screens. The total light efficiencies of various phosphor coatings in the medium excitation energy range (? < 7 keV) are estimated with allowance for both the direct radiation flux outgoing from the phosphor screen and the backward radiation flux propagating along the exciting electron beam. The possibility is demonstrated of creating a high-luminance (~20000 cd/m2) cathodoluminescent source with a light efficiency of ~60 lm/W.  相似文献   

11.
Technovit 7200 VLC is an excellent embedding medium for both inorganic histochemistry by light microscopy and X-ray microanalysis by scanning and transmission electron microscopy. Liver samples from rats after intraperitoneal treatment with aluminum chloride were fixed in glutaraldehyde and embedded in the resin. Thick sections were easily cut on an ultramicrotome and stained with aluminon for aluminum (Al). An intense positive reaction with aluminon was observed in the Kupffer cells by light microscopy. The surface structures of the same resin block cut for light microscopy were observed under a scanning electron microscope fitted with an energy dispersive X-ray spectrometer. The Kupffer cells appeared white in the backscattered mode. Localization of Al in the Kupffer cells was confirmed by an X-ray distribution map in the scanning electron microscope. Subcellular localization of Al in the Kupffer cells was performed on the same semithin sections using a transmission electron microscope equipped with an energy dispersive X-ray spectrometer. Most Al was found in lysosomes of the Kupffer cells. The resin was stable in the electron beam and chlorine-free.  相似文献   

12.
The activation state of ribulose bisphosphate carboxylase/oxygenase (rubisco) in a lysed chloroplast system is increased by light in the presence of a saturating concentration of ATP and a physiological concentration of CO2 (10 micromolar). Electron transport inhibitors and artificial electron donors and acceptors were used to determine in which region of the photosynthetic electron transport chain this light-dependent reaction occurred. In the presence of DCMU and methyl viologen, the artificial donors durohydroquinone and 2,6-dichlorophenolindophenol (DCPIP) plus ascorbate both supported light activation of rubisco at saturating ATP concentrations. No light activation occurred when DCPIP was used as an acceptor with water as electron donor in the presence of ATP and dibromothymoquinone, even though photosynthetic electron transport was observed. Nigericin completely inhibited the light-dependent activation of rubisco. Based on these results, we conclude that stimulation of light activation of rubisco by rubisco activase requires electron transport through PSI but not PSII, and that this light requirement is not to supply the ATP needed by the rubisco activase reaction. Furthermore, a pH gradient across the thylakoid membrane appears necessary for maximum light activation of rubisco even when ATP is provided exogenously.  相似文献   

13.
S Stack 《Stain technology》1982,57(5):265-272
Using beta-glucuronidase the cell walls of tomato and potato primary microsporocytes can be digested. When the resulting protoplasts are exposed to distilled water, they burst, and complete sets of synaptonemal complexes are released to settle on plastic coated slides. After drying and formalin fixation, the synaptonemal complexes can be stained with silver or phosphotungstic acid and observed in the light and/or electron microscope. Silver staining gives better contrast for both light and electron microscopy but stains only lateral elements and kinetochores. Phosphotungstic acid staining gives little or no contrast for light microscopy, but stains both the lateral and central elements of the synaptonemal complex, kinetochores, and structures that are probably recombination nodules for electron microscopy. This technique offers a powerful tool for genome analysis by allowing (1) the determination of relative and absolute lengths of synaptonemal complexes and chromosome arm ratios at pachytene, (2) the analysis of complex patterns of synapsis, and (3) the location of what are probably recombination nodules along the length of synaptonemal complexes.  相似文献   

14.
Using β-glucuronidsase the cell walls of tomato and potato primary microsporocytes can be digested. When the resulting protoplasts are exposed to distilled water, they burst, and complete sets of synaptonemal complexes are released to settle on plastic coated slides. After drying and formalin fixation, the synaptonemal complexes can be stained with silver or phosphotungstic acid and observed in the light and/or electron microscope. Silver staining gives better contrast for both light and electron microscopy but stains only lateral elements and kinetochores. Phosphotungstic acid staining gives little or no contrast for light microscopy, but stains both the lateral and central elements of the synaptonemal complex, kinetochores, and structures that are probably recombination nodules for electron microscopy. This technique offers a powerful tool for genome analysis by allowing (1) the determination of relative and absolute lengths of synaptonemal complexes and chromosome arm ratios at pachytene, (2) the analysis of complex patterns of synapsis, and (3) the location of what are probably recombination nodules along the length of synaptonemal complexes.  相似文献   

15.
Technovit 7200 VLC is an acrylic resin formulated for embedding undecalcified hard tissues which are prepared for light microscopy according to a cutting-grinding technique. To employ this resin for embedding and cutting soft tissues by ultramicrotomy, we carried out a qualitative study on biopsies of canine gingival mucosa using light and transmission electron microscopy. For a critical evaluation of this resin, some biopsies were embedded in Agar 100, an epoxy resin widely used in morphological studies. At the light microscopic level the samples embedded in Technovit 7200 VLC showed good morphology and excellent toluidine blue staining of different cell types and extracellular matrix. At the ultrastrueturallevel, nuclei, cytoplasmic organelles, collagen fibrils and ground substance appeared well preserved and showed high electron density. The acrylic resin was stable under the electron beam and its degree of shrinkage appeared to be very low. We conclude that Technovit 7200 VLC can be employed for ultramicrotomy for both light and electron microscopic investigation of soft tissues.  相似文献   

16.
Technovit 7200 VLC is an acrylic resin formulated for embedding undecalcified hard tissues which are prepared for light microscopy according to a cutting-grinding technique. To employ this resin for embedding and cutting soft tissues by ultramicrotomy, we carried out a qualitative study on biopsies of canine gingival mucosa using light and transmission electron microscopy. For a critical evaluation of this resin, some biopsies were embedded in Agar 100, an epoxy resin widely used in morphological studies. At the light microscopic level the samples embedded in Technovit 7200 VLC showed good morphology and excellent toluidine blue staining of different cell types and extracellular matrix. At the ultrastrueturallevel, nuclei, cytoplasmic organelles, collagen fibrils and ground substance appeared well preserved and showed high electron density. The acrylic resin was stable under the electron beam and its degree of shrinkage appeared to be very low. We conclude that Technovit 7200 VLC can be employed for ultramicrotomy for both light and electron microscopic investigation of soft tissues.  相似文献   

17.
The importance of locating proteins in their context within cells has been heightened recently by the accomplishments in molecular structure and systems biology. Although light microscopy (LM) has been extensively used for mapping protein localization, many studies require the additional resolution of the electron microscope. Here we report the application of small nanocrystals (Quantum dots; QDs) to specifically and efficiently label multiple distinct endogenous proteins. QDs are both fluorescent and electron dense, facilitating their use for correlated microscopic analysis. Furthermore, QDs can be discriminated optically by their emission wavelength and physically by size, making them invaluable for multilabeling analysis. We developed pre-embedding labeling criteria using QDs that allows optimization at the light level, before continuing with electron microscopy (EM). We provide examples of double and triple immunolabeling using light, electron and correlated microscopy in rat cells and mouse tissue. We conclude that QDs aid precise high-throughput determination of protein distribution.  相似文献   

18.
A procedure is presented for exact, detailed comparison of light and electron microscopic analyses of tissues with complex architecture. Earlier techniques require one to make drawings of tissue pieces to be analyzed by electron microscopy to permit rough localization of the origin of the tissue pieces. Specifically, exact analysis of fetal cartilage and bone is hampered by the complicated arrangement of both tissue components, severely limiting the assessment of electron microscopic analyses. The advantage of the technique described here is that it allows precise localization of the tissue sample in the original tissue area. Punches 1 mm in diameter were obtained from femora and coxae with a syringe and embedded for light and electron microscopy. The remaining tissue with its exactly defined punctures is prepared for standard histology. Human fetal cartilage and bone tissue were used to demonstrate this technique, but this procedure may be used for other kinds of tissues.  相似文献   

19.
Correlative Light Electron Microscopy (CLEM) aims at combining the best of light and electron microscopy in one experiment. Light microscopy (LM) is especially suited for providing a general overview with data from lots of different cells and by using live cell imaging it can show the history or sequence of events between or inside cells. Electron microscopy (EM) on the other hand can provide a much higher resolution image of a particular event and provide additional spatial information, the so-called reference space. CLEM thus has certain strengths over the application of both LM and EM techniques separately. But combining both modalities however generally also means making compromises in one or both of the techniques. Most often the preservation of ultrastructure for the electron microscopy part is sacrificed. Ideally samples should be visualized in its most native state both in the light microscope as well as the electron microscope. For electron microscopy this currently means that the sample will have to be cryo-fixed instead of the standard chemical fixation. In this paper we will discuss the rationale for using cryofixation for CLEM experiments. In particular we will highlight a CLEM technique using high-pressure freezing in combination with live cell imaging. In addition we examine some of the EM analysis tools that may be useful in combination with CLEM techniques.  相似文献   

20.
The dexribed technique facilitates oriented embedding of individual cells in various media for both light and electron microscopy. A fixed Specimen is embedded in a small cube of 2% agar at 40 C and subsequently sealed in the desired orientation to a strip of black paper which then serves as a tab for transferring the specimen during dehydrating and embedding procedures. The beveled ends of the strip indicate the exact location of the specimen in the cube. This technique can be employed for the embedding media used in both light and electron microscopy. It ah permits photomicrographs of the whole specimen to be made which can be compared with photomicrographs of individual sections cut from the specimen in a selected plane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号