首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the evolution of specialization in a spatially continuous (one‐dimensional) environment divided into two habitats; we use a general trade‐off function relating fitnesses in the two habitats and illustrate our results with two classical trade‐off functions. We show that the population can either reach an intermediate value of the trait and be moderately adapted to both habitats (1 generalist), or split into two locally adapted subpopulations (2 specialists). We recover the qualitative results obtained with simpler metapopulation models with island migration: the evolutionary outcome depends on the concavity of the trade‐off, on the proportion of each habitat and on migration. Our quantitative prediction on migration, however, depends on isolation by distance. Our spatially explicit model may thus be particularly useful to describe the evolutionary dynamics of specialization in, perhaps, more realistic ecological scenarios.  相似文献   

2.
Quantitative genetic models are used to investigate the evolution of generalists and specialists in a coarse-grained environment with two habitat types when there are costs attached to being a generalist. The outcomes for soft and hard selection models are qualitatively different. Under soft selection (e.g., for juvenile or male-reproductive traits) the population evolves towards the single peak in the adaptive landscape. At equilibrium, the population mean phenotype is a compromise between the reaction that would be optimal in both habitats and the reaction with the lowest cost. Furthermore, the equilibrium is closer to the optimal phenotype in the most frequent habitat, or the habitat in which selection on the focal trait is stronger. A specialist genotype always has a lower fitness than a generalist, even when the costs are high. In contrast, under hard selection (e.g., for adult or female-reproductive traits) the adaptive landscape can have one, two, or three peaks; a peak represents a population specialized to one habitat, equally adapted to both habitats, or an intermediate. One peak is always found when the reaction with the lowest cost is not much different from the optimal reaction, and this situation is similar to the soft selection case. However, multiple peaks are present when the costs become higher, and the course of evolution is then determined by initial conditions, and the region of attraction of each peak. This implies that the evolution of specialization and phenotypic plasticity may not only depend on selection regimes within habitats, but also on contingent, historical events (migration, mutation). Furthermore, the evolutionary dynamics in changing environments can be widely different for populations under hard and soft selection. Approaches to measure costs in natural and experimental populations are discussed.  相似文献   

3.
Summary Richard Levins introduced fitness sets as a tool for investigating evolution within heterogeneous environments. Evolutionary game theory permits a synthesis and generalization of this approach by considering the evolutionary response of organisms to any scale of habitat heterogeneity. As scales of heterogeneity increase from fine to coarse, the evolutionary stable strategy (ESS) switches from a single generalist species to several species that become increasingly specialized on distinct habitats. Depending upon the organisms' ecology, the switch from one to two species may occur at high migration rates (relatively fine-grained environment), or may only occur at very low migration rates (coarse-grained environment). At the ESS, the evolutionary context of a species is the entire landscape, while its ecological context may be a single habitat.Evolution towards the ESS can be represented with adaptive landscapes. In the absence of frequency-dependence, shifting from a single strategy ESS to a two strategy ESS poses the problem of evolving across valleys in the adaptive surface to occupy new peaks (hence, Sewell Wright's shifting balance theory). Frequency-dependent processes facilitate evolution across valleys. If a system with a two strategy ESS is constrained to possess a single strategy, the population may actually evolve a strategy that minimizes fitness. Because the population now rests at the bottom of a valley, evolution by natural selection can drive populations to occupy both peaks.  相似文献   

4.
Tatyana A. Rand  Teja Tscharntke 《Oikos》2007,116(8):1353-1362
The greater susceptibility of higher trophic levels to habitat loss has been demonstrated to disrupt important trophic interactions such as consumer control of prey populations. This pattern is predicted to break down for generalist species that can use matrix habitats, yet empirical studies comparing generalist and specialist enemy pressure in response to natural habitat loss are lacking. Here we examined the effects of landscape simplification resulting from habitat conversion to agriculture on nettles, Urtica dioica , their specialized aphid herbivore, Microlophium carnosum , and associated natural enemies that varied broadly in their degree of specialization. Both nettles and their specialized aphid herbivore were significantly more abundant in complex than simple landscapes. Different enemy groups showed contrasting responses. Aphid specialists (parasitic wasps and cecidomyiid midges) reached higher densities in complex than simple landscapes, and this effect was primarily related to shifts in local resource abundance (i.e. nettle aphid densities). In contrast, densities of generalists (coccinellid beetles and spiders) were significantly higher in simple landscapes, presumably due to spillover of generalists from surrounding cropland habitats. Natural enemy-prey ratios did not differ significantly across landscape types for specialist groups but were significantly higher in simple than complex landscapes for generalist groups, suggesting that enemy pressure on nettle aphids likely increases with landscape simplification. This was supported by our finding that aphid population growth rates were lower in simple than complex landscapes, and declined significantly with increasing coccinellid densities. Thus, in marked contrast to previous work, our results suggest that natural habitat loss may augment rather than disrupt consumer–prey interactions, and this will depend greatly on the degree of specialization of functionally dominant natural enemies.  相似文献   

5.
Habitat fragmentation is one of the most severe threats to biodiversity as it may lead to changes in population genetic structure, with ultimate modifications of species evolutionary potential and local extinctions. Nonetheless, fragmentation does not equally affect all species and identifying which ecological traits are related to species sensitivity to habitat fragmentation could help prioritization of conservation efforts. Despite the theoretical link between species ecology and extinction proneness, comparative studies explicitly testing the hypothesis that particular ecological traits underlies species‐specific population structure are rare. Here, we used a comparative approach on eight bird species, co‐occurring across the same fragmented landscape. For each species, we quantified relative levels of forest specialization and genetic differentiation among populations. To test the link between forest specialization and susceptibility to forest fragmentation, we assessed species responses to fragmentation by comparing levels of genetic differentiation between continuous and fragmented forest landscapes. Our results revealed a significant and substantial population structure at a very small spatial scale for mobile organisms such as birds. More importantly, we found that specialist species are more affected by forest fragmentation than generalist ones. Finally, our results suggest that even a simple habitat specialization index can be a satisfying predictor of genetic and demographic consequences of habitat fragmentation, providing a reliable practical and quantitative tool for conservation biology.  相似文献   

6.
Conversion of formerly continuous native habitats into highly fragmented landscapes can lead to numerous negative demographic and genetic impacts on native taxa that ultimately reduce population viability. In response to concerns over biodiversity loss, numerous investigators have proposed that traits such as body size and ecological specialization influence the sensitivity of species to habitat fragmentation. In this study, we examined how differences in body size and ecological specialization of two rodents (eastern chipmunk; Tamias striatus and white‐footed mouse; Peromyscus leucopus) impact their genetic connectivity within the highly fragmented landscape of the Upper Wabash River Basin (UWB), Indiana, and evaluated whether landscape configuration and complexity influenced patterns of genetic structure similarly between these two species. The more specialized chipmunk exhibited dramatically more genetic structure across the UWB than white‐footed mice, with genetic differentiation being correlated with geographic distance, configuration of intervening habitats, and complexity of forested habitats within sampling sites. In contrast, the generalist white‐footed mouse resembled a panmictic population across the UWB, and no landscape factors were found to influence gene flow. Despite the extensive previous work in abundance and occupancy within the UWB, no landscape factor that influenced occupancy or abundance was correlated with genetic differentiation in either species. The difference in predictors of occupancy, abundance, and gene flow suggests that species‐specific responses to fragmentation are scale dependent.  相似文献   

7.
Capsule Expert‐based classification of bird species as habitat specialists and as generalists agrees with objective measures of species’ habitat requirements based on large‐scale monitoring data.

Aims To compare habitat specialization of 137 common bird species breeding in the Czech Republic using three different measures and to test their relationships to species’ abundance and habitat associations.

Methods Data on bird abundance and surveyed habitats were collected through a standardized monitoring scheme of common breeding species in the Czech Republic. From these data we calculated a quantitative species specialization index (SSI). Canonical correspondence analysis (CCA) was applied to calculate species’ habitat niche breadth and the level of association of each species to the main habitats. A panel of 11 local bird experts classified each species as habitat generalist or habitat specialist.

Results Species classified as habitat specialists by expert opinion showed higher habitat specialization according to the SSI, as well as according to CCA‐based habitat niche breadth. These species were also more closely associated with one of the main habitat types. These relationships were significant even after controlling for abundance.

Conclusions As expert opinion accords with the level of species’ habitat specialization expressed using two quantitative objective measures, we suggest that these characteristics reflect real interspecific variation in the breadth of habitat requirements in birds. Interspecific differences in habitat specialization are not caused solely by the variability in abundance among species.  相似文献   

8.
Species utilizing a wide range of resources are intuitively expected to be less efficient in exploiting each resource type compared to species which have developed an optimal phenotype for utilizing only one or a few resources. We report here the results of an empirical study whose aim was to test for a negative association between habitat niche breadth and foraging performance. As a model system to address this question, we used two highly abundant species of pit-building antlions varying in their habitat niche breadth: the habitat generalist Myrmeleon hyalinus, which inhabits a variety of soil types but occurs mainly in sandy soils, and the habitat specialist Cueta lineosa, which is restricted to light soils such as loess. Both species were able to discriminate between the two soils, with each showing a distinct and higher preference to the soil type providing higher prey capture success and characterizing its primary habitat-of-origin. As expected, only small differences in the foraging performances of the habitat generalist were evident between the two soils, while the performance of the habitat specialist was markedly reduced in the alternative sandy soil. Remarkably, in both soil types, the habitat generalist constructed pits and responded to prey faster than the habitat specialist, at least under the temperature range of this study. Furthermore, prey capture success of the habitat generalist was higher than that of the habitat specialist irrespective of the soil type or prey ant species encountered, implying a positive association between habitat niche-breadth and foraging performance. Alternatively, C. lineosa specialization to light soils does not necessarily confer upon its superiority in utilizing such habitats. We thus suggest that habitat specialization in C. lineosa is either an evolutionary dead-end, or, more likely, that this species' superiority in light soils can only be evident when considering additional niche axes.  相似文献   

9.
We use an individual-based, spatially realistic metapopulation model to study the evolution of migration rate. We first explore the consequences of habitat change in hypothetical patch networks on a regular lattice. If the primary consequence of habitat change is an increase in local extinction risk as a result of decreased local population sizes, migration rate increases. A nonmonotonic response, with migration rate decreasing at high extinction rate, was obtained only by assuming very frequent catastrophes. If the quality of the matrix habitat deteriorates, leading to increased mortality during migration, the evolutionary response is more complex. As long as habitat patch occupancy does not decrease markedly with increased migration mortality, reduced migration rate evolves. However, once mortality becomes so high that empty patches remain uncolonized for a long time, evolution tends to increase migration rate, which may lead to an "evolutionary rescue" in a fragmented landscape. Kin competition has a quantitative effect on the evolution of migration rate in our model, but these patterns in the evolution of migration rate appear to be primarily caused by spatiotemporal variation in fitness and mortality during migration. We apply the model to real habitat patch networks occupied by two checkerspot butterfly (Melitaea) species, for which sufficient data are available to estimate rigorously most of the model parameters. The model-predicted migration rate is not significantly different from the empirically observed one. Regional variation in patch areas and connectivities leads to regional variation in the optimal migration rate, predictions that can be tested empirically.  相似文献   

10.
Coccinellids (ladybird beetles) exhibit considerable diversity in habitat and dietary preference and specificity. This is evident even when comparing species within some coccinellid genera. Resource limitation and competition are suggested as of greatest importance in the evolution of coccinellid habitat preferences. Dietary and habitat specialization has probably occurred in some lineages within broader preferences possessed by generalist ancestors, to avoid the costs associated with migration between habitats and prey switching. Feeding in atypical habitats, on alternative food, when optimal prey are scarce, is likely to have been of great importance in facilitating evolutionary shifts to novel diets and habitats. The broad host ranges of many coccinellid parasitoids and observed interspecific differences in parasitoid prevalence resulting from physiological differences between coccinellid species argue that enemy free space has been of limited importance in habitat and prey shifts in this group. Rapid change may occur in coccinellid foraging patterns, perhaps due to conditioning, and coccinellids may swiftly adapt to new habitats through selection acting on the expression pre-existing traits. Diet, as a determinant of coccinellid migration and gene flow, is likely to affect probable modes of speciation in different coccinellid groups. Parapatric speciation and possibly sympatric speciation are suggested as of possible importance in the genesis of new coccinellid species through prey and habitat shifts.  相似文献   

11.
Part of the abandoned cropland in Mediterranean landscapes is being subjected to afforestation dominated by pines. Here we simultaneously evaluate the effect of three categories of factors as predictors of the interspecific variation in bird habitat occupancy of fragmented afforestations, namely regional distribution, habitat preferences, and life-history traits of species. We use the “natural experiment” that highly fragmented pine plantations of central Spain represent due to the prevailing pattern of land ownership of small properties. Many species with marked habitat preferences for woodland habitats were very scarce or were never recorded in this novel habitat within a matrix of deforested agricultural landscape. Interspecific variability in occurrence was mainly explained by regional distribution patterns: occurrence was significantly and positively associated with the proportion of occupied 10 × 10 UTM km squares around the study area, habitat breadth, and population trend of species in the period 1998–2011. It was also positively associated with regional occupancy of mature and large pine plantations. Other predictor variables related to habitat preferences (for woodland, agricultural and urban habitats) or life-history traits (migratory strategy, body mass, and clutch size) were unrelated to the occurrence of species. Thus, small man-made pinewood islands funded by the Common Agrarian Policy within a landscape dominated by Mediterranean agricultural habitats only capture widespread and habitat generalist avian species with increasing population trends, not contributing to enhance truly woodland species.  相似文献   

12.
The evolution of phenotypic plasticity is studied in a model with two reproductively isolated “species” in a coarse-grained environment, consisting of two types of habitats. A quantitative genetic model for selection was constructed, in which habitats differ in the optimal value for a focal trait, and with random dispersal among habitats. The main interest was to study the effects of different selection regimes. Three cases were investigated: (1) without any limits to plasticity; (2) without genetic variation for plasticity; and (3) with a fitness cost for phenotypically plastic reactions. In almost all cases a generalist strategy to exploit both habitats emerged. Without any limits to plasticity, optimal adaptive reactions evolved. Without any genetic variation for plasticity, a compromise strategy with an intermediate, fixed phenotype evolved, whereas in the presence of costs a plastic compromise between the demands of the habitats and the costs associated with plasticity was found. Specialization and phenotypic differentiation was only found when selection within habitats was severe and optimal phenotypes for different habitats were widely different. Under soft selection (local regulation of population numbers in each habitat) the specialists coexisted; under hard selection (global regulation of population numbers) one specialist outcompeted the other. The prevalent evolutionary outcome of compromises rather than specialization implies that costs or constraints are not necessarily detectable as local adaptation in transplantation or translocation experiments.  相似文献   

13.
Habitat loss is a major threat to biodiversity and ecosystem function. As habitats are lost, one factor affecting their community structures is the niche-width demand of species, which ranges from specialist to generalist. This study focused on specialist and generalist species in plant–pollinator interactions and tested the hypothesis that plant and pollinator communities become more generalized as habitat loss increases. The study was made in seven selected sites in southern Ontario, Canada, at the level of landscape that is characterized by distributed forests within intensively managed agricultural fields. We quantified both the degree of habitat loss and the degree of specialization/generalization for each of the plant and insect communities using a sampling method of hexagonal transects. Regression analysis indicated a significant relationship between the increase of habitat loss and the shift to generalization in insect, but not in plant, communities. Our results suggest that, in plant–pollinator interactions, insect communities are more sensitive and/or quicker than plant communities to respond to the effects of habitat loss.  相似文献   

14.
River basins are among the most threatened ecosystems. The species diversity of several European river basins decreased seriously during the last decade due to loss of habitats and increasing land use pressure on the remaining habitats. We studied true bug assemblages in various land use types of grassland fragments and dikes as linear grassland habitats in the agricultural landscape of the lower reach of the Tisza River Basin. We tested the effects of the recorded variables of habitat quality, surrounding landscape and land use type on the abundance, species richness and composition of true bugs. Altogether, 5,389 adult Heteroptera individuals representing 149 species in 13 families were collected. The factors which influenced significantly the species richness of different trophic levels (i.e. herbivors, predators) and degrees of food specialization (i.e. generalist and specialist herbivors) were concordant. Contrary to this, the factors which influenced the abundance of the different feeding groups varied strongly. We emphasise the vegetation and land use types as primarily influential factors for insects. Excluding the grass-feeding species, the number of both generalist, specialist herbivorous and predaceous species were lower in agricultural swards, i.e. hay-meadows and pastures than in old field and dike habitats and their number increased with increasing vegetation diversity. Due to the high species richness and abundance observed in dike and old field habitats compared to agricultural swards, we emphasise their importance for conservation of insect diversity and we stress the negative effects of agricultural intensification on the remaining grasslands of the lower reach of the Tisza River Basin.  相似文献   

15.
Conservation plans can be greatly improved when information on the evolutionary and demographic consequences of habitat fragmentation is available for several codistributed species. Here, we study spatial patterns of phenotypic and genetic variation among five grasshopper species that are codistributed across a network of microreserves but show remarkable differences in dispersal‐related morphology (body size and wing length), degree of habitat specialization and extent of fragmentation of their respective habitats in the study region. In particular, we tested the hypothesis that species with preferences for highly fragmented microhabitats show stronger genetic and phenotypic structure than codistributed generalist taxa inhabiting a continuous matrix of suitable habitat. We also hypothesized a higher resemblance of spatial patterns of genetic and phenotypic variability among species that have experienced a higher degree of habitat fragmentation due to their more similar responses to the parallel large‐scale destruction of their natural habitats. In partial agreement with our first hypothesis, we found that genetic structure, but not phenotypic differentiation, was higher in species linked to highly fragmented habitats. We did not find support for congruent patterns of phenotypic and genetic variability among any studied species, indicating that they show idiosyncratic evolutionary trajectories and distinctive demographic responses to habitat fragmentation across a common landscape. This suggests that conservation practices in networks of protected areas require detailed ecological and evolutionary information on target species to focus management efforts on those taxa that are more sensitive to the effects of habitat fragmentation.  相似文献   

16.
Reproductive strategies can be associated with ecological specialization and generalization. Clonal plants produce lineages adapted to the maternal habitat that can lead to specialization. However, clonal plants frequently display high phenotypic plasticity (e.g. clonal foraging for resources), factors linked to ecological generalization. Alternately, sexual reproduction can be associated with generalization via increasing genetic variation or specialization through rapid adaptive evolution. Moreover, specializing to high or low quality habitats can determine how phenotypic plasticity is expressed in plants. The specialization hypothesis predicts that specialization to good environments results in high performance trait plasticity and specialization to bad environments results in low performance trait plasticity. The interplay between reproductive strategies, phenotypic plasticity, and ecological specialization is important for understanding how plants adapt to variable environments. However, we currently have a poor understanding of these relationships. In this study, we addressed following questions: 1) Is there a relationship between phenotypic plasticity, specialization, and reproductive strategies in plants? 2) Do good habitat specialists express greater performance trait plasticity than bad habitat specialists? We searched the literature for studies examining plasticity for performance traits and functional traits in clonal and non-clonal plant species from different habitat types. We found that non-clonal (obligate sexual) plants expressed greater performance trait plasticity and functional trait plasticity than clonal plants. That is, non-clonal plants exhibited a specialist strategy where they perform well only in a limited range of habitats. Clonal plants expressed less performance loss across habitats and a more generalist strategy. In addition, specialization to good habitats did not result in greater performance trait plasticity. This result was contrary to the predictions of the specialization hypothesis. Overall, reproductive strategies are associated with ecological specialization or generalization through phenotypic plasticity. While specialization is common in plant populations, the evolution of specialization does not control the nature of phenotypic plasticity as predicted under the specialization hypothesis.  相似文献   

17.
The effects of habitat fragmentation on birds have often been studied in forest specialist species. Here we aimed at comparing the response of open habitat birds within a range of habitat specialization. The study area was a Mediterranean pseudo-steppe, designated as important for conservation yet fragmented by tree encroachment. We defined bird species dependency on steppe-like habitat by a correspondence analysis, allowing us to distinguish between specialists, generalists and scrubland species. We studied species abundance in relation to fragment area, testing whether species representation in fragments differed from those in continuous habitat. This analysis showed a contrasted response to fragment size between “open habitat” specialist species and generalist ones. Open habitat species were under-represented in the smallest fragments, while generalist were over-represented in small fragments in comparison to their distribution in continuous habitats. We discuss how these results can be linked to species habitat requirements. We find that scrubland species seem to be favoured by encroachment of woody vegetation, as they are able to explore and use the wooded matrix; however specialist species are restricted to open patches and are sensitive to a reduction in patch size. This allows us to predict how different species can exhibit a different sensitivity to habitat fragmentation.  相似文献   

18.
Traditional metapopulation theory classifies a metapopulation as a spatially homogeneous population that persists on neighboring habitat patches. The fate of each population on a habitat patch is a function of a balance between births and deaths via establishment of new populations through migration to neighboring patches. In this study, we expand upon traditional metapopulation models by incorporating spatial heterogeneity into a previously studied two-patch nonlinear ordinary differential equation metapopulation model, in which the growth of a general prey species is logistic and growth of a general predator species displays a Holling type II functional response. The model described in this work assumes that migration by generalist predator and prey populations between habitat patches occurs via a migratory corridor. Thus, persistence of species is a function of local population dynamics and migration between spatially heterogeneous habitat patches. Numerical results generated by our model demonstrate that population densities exhibit periodic plane-wave phenomena, which appear to be functions of differences in migration rates between generalist predator and prey populations. We compare results generated from our model to results generated by similar, but less ecologically realistic work, and to observed population dynamics in natural metapopulations.  相似文献   

19.
Because specialist species evolved in more temporally and spatially homogeneous environments than generalist species, they are supposed to experience less fluctuating selection. For this reason, we expect specialists to show lower overall genetic variation as compared to generalists. We also expect populations from specialist species to be smaller and more fragmented, with lower neutral genetic diversity. We tested these hypotheses by investigating patterns of genetic diversity along a habitat specialization gradient in wild birds, based on estimates of heritability, coefficients of variation of additive genetic variance, and heterozygosity available in the literature. We found no significant effect of habitat specialization on any of the quantitative genetic estimators but generalists had higher heterozygosity. This effect was mainly a consequence of the larger population size of generalists. Our results suggest that evolutionary potential does not differ at the population level between generalist and specialist species, but the trend observed in heterozygosity levels and population sizes may explain their difference in susceptibility to extinction.  相似文献   

20.
Questions: 1. Are trees in a Bornean tropical rain forest associated with a particular habitat? 2. Does the strength of habitat association with the species‐specific optimal habitat increase with tree size? Location : A 52‐ha plot in a mixed dipterocarp forest in a heterogeneous landscape at the Lambir Hills National Park, Sarawak, East Malaysia. Methods : Ten species from the Sterculiaceae were chosen as representative of all species in the plot, on the assumption that competition among closely related species is more stringent than that among more distantly related taxa. Their habitat associations were tested using data from a 52‐ha plot by a torus‐translation test. Results : The torus‐translation test showed that eight out of the ten species examined had significant association with at least one habitat. We could not find negative species‐habitat associations for rare species, probably due to their small sample sizes. Among four species small trees were less strongly associated with habitat than large trees, implying competitive exclusion of trees in suboptimal habitats. The other four species showed the opposite pattern, possibly owing to the smaller sample size of large trees. A habitat had a maximum of three species with which it was significantly positively associated. Conclusions : For a species to survive in population equilibrium in a landscape, habitats in which ‘source’ subpopulations can be sustained without subsidy from adjacent habitats are essential. Competition is most severe among related species whose source subpopulations share the same habitat. On the evidence of source subpopulations identified by positive species‐habitat association, species‐habitat association reduces the number of confamilial competitors. Our results therefore indicate that edaphic niche specialization contributes to coexistence of species of Sterculiaceae in the plot, consistent with the expectations of equilibrium hypotheses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号