首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two 8‐µs all‐atom molecular dynamics simulations have been performed on the two highly homologous G protein‐coupled receptor (GPCR) subtypes, β1‐ and β2‐adrenergic receptors, which were embedded in a lipid bilayer with randomly dispersed cholesterol molecules. During the simulations, cholesterol molecules accumulate to different surface regions of the two receptors, suggesting the subtype specificity of cholesterol–β‐adrenergic receptor interaction and providing some clues to the physiological difference of the two subtypes. Meanwhile, comparison between the two receptors in interacting with cholesterols shed some new light on general determinants of cholesterol binding to GPCRs. Our results indicate that although the concave surface, charged residues and aromatic residues are important, neither of these stabilizing factors is indispensable for a cholesterol interaction site. Different combinations of these factors lead to the diversified binding modes of cholesterol binding to the receptors. Our long‐time simulations, for the first time, revealed the pathway of a cholesterol molecule entering the consensus cholesterol motif (CCM) site, and the binding process of cholesterol to CCM is accompanied by a side chain flipping of the conserved Trp4.50. Moreover, the simulation results suggest that the I‐/V‐/L‐rich region on the extracellular parts of helix 6 might be an alternatively conserved cholesterol‐binding site for the class‐A GPCRs. Proteins 2014; 82:760–770. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
BackgroundG protein-coupled receptors (GPCRs) comprise a family of membrane proteins that can be activated by a variety of external factors. The μ-opioid receptor (MOR), a class A GPCR, is the main target of morphine. Recently, enhanced sampling molecular dynamics simulations of a constitutively active mutant of MOR in its apo form allowed us to capture the novel intermediate states of activation, as well as the active state. This prompted us to apply the same techniques to wild type MOR in complex with ligands, in order to explore their contributions to the receptor conformational changes in the activation process.MethodsMOR was modeled in complex with agonists (morphine, BU72), a partial agonist (naloxone benzoylhydrazone) and an antagonist (naloxone). Replica exchange with solute tempering (REST2) molecular dynamics simulations were carried out for all systems. Trajectory frames were clustered, and the activation state of each cluster was assessed by two different methods.ResultsCluster sizes and activation indices show that while agonists stabilized structures in a higher activation state, the antagonist behaved oppositely. Morphine tends to drive the receptor towards increasing R165-T279 distances, while naloxone tends to increase the NPxxYA motif conformational change.ConclusionsDespite not observing a full transition between inactive and active states, an important conformational change of transmembrane helix 5 was observed and associated with a ligand-driven step of the process.General significanceThe activation process of GPCRs is widely studied but still not fully understood. Here we carried out a step forward in the direction of gaining more details of this process.  相似文献   

3.
The serotonin receptors, also known as 5-hydroxytryptamine (5-HT) receptors, are a group of G protein-coupled receptors (GPCRs) and ligand-gated ion channels found in the central and peripheral nervous systems. GPCRs have a characteristic feature of activating different signalling pathways upon ligand binding and these ligands display several efficacy levels to differentially activate the receptor. GPCRs are primary drug targets due to their central role in several signal transduction pathways. Drug design for GPCRs is also most challenging due to their inherent promiscuity in ligand recognition, which gives rise to several side effects of existing drugs. Here, we have performed the ligand interaction study using the two prominent states of GPCR, namely the active and inactive state of the 5-HT2A receptor. Active state of 5-HT2A receptor model enhances the understanding of conformational difference which influences the ligand-binding site. A 5-HT2A receptor active state model was constructed by homology modelling using active state β2-adrenergic receptor (β2-AR). In addition, virtual screening and docking studies with both active and inactive state models reveal potential small molecule hits which could be considered as agonist-like and antagonist-like molecules. The results from the all-atom molecular dynamics simulations further confirmed that agonists and antagonists interact in different modes with the receptor.  相似文献   

4.
G‐protein coupled receptors (GPCRs) are transmembrane signaling molecules, with a majority of them performing important physiological roles. β2‐Adrenergic receptor (β2‐AR) is a well‐studied GPCRs that mediates natural responses to the hormones adrenaline and noradrenaline. Analysis of the ligand‐binding region of β2‐AR using the recently solved high‐resolution crystal structures revealed a number of highly conserved amino acids that might be involved in ligand binding. However, detailed structure‐function studies on some of these residues have not been performed, and their role in ligand binding remains to be elucidated. In this study, we have investigated the structural and functional role of a highly conserved residue valine 114, in hamster β2‐AR by site‐directed mutagenesis. We replaced V114 in hamster β2‐AR with a number of amino acid residues carrying different functional groups. In addition to the complementary substitutions V114I and V114L, the V114C and V114E mutants also showed significant ligand binding and agonist dependent G‐protein activation. However, the V114G, V114T, V114S, and V114W mutants failed to bind ligand in a specific manner. Molecular modeling studies were conducted to interpret these results in structural terms. We propose that the replacement of V114 influences not only the interaction of the ethanolamine side‐chains but also the aryl‐ring of the ligands tested. Results from this study show that the size and orientation of the hydrophobic residue at position V114 in β2‐AR affect binding of both agonists and antagonists, but it does not influence the receptor expression or folding.  相似文献   

5.
Octopamine receptors (OARs) perform key biological functions in invertebrates, making this class of G‐protein coupled receptors (GPCRs) worth considering for insecticide development. However, no crystal structures and very little research exists for OARs. Furthermore, GPCRs are large proteins, are suspended in a lipid bilayer, and are activated on the millisecond timescale, all of which make conventional molecular dynamics (MD) simulations infeasible, even if run on large supercomputers. However, accelerated Molecular Dynamics (aMD) simulations can reduce this timescale to even hundreds of nanoseconds, while running the simulations on graphics processing units (GPUs) would enable even small clusters of GPUs to have processing power equivalent to hundreds of CPUs. Our results show that aMD simulations run on GPUs can successfully obtain the active and inactive state conformations of a GPCR on this reduced timescale. Furthermore, we discovered a potential alternate active‐state agonist‐binding position in the octopamine receptor which has yet to be observed and may be a novel GPCR agonist‐binding position. These results demonstrate that a complex biological system with an activation process on the millisecond timescale can be successfully simulated on the nanosecond timescale using a simple computing system consisting of a small number of GPUs. Proteins 2016; 84:1480–1489. © 2016 Wiley Periodicals, Inc.  相似文献   

6.
G protein-coupled receptors (GPCRs) represent a major focus in functional genomics programs and drug development research, but their important potential as drug targets contrasts with the still limited data available concerning their activation mechanism. Here, we investigated the activation mechanism of the cholecystokinin-2 receptor (CCK2R). The three-dimensional structure of inactive CCK2R was homology-modeled on the basis of crystal coordinates of inactive rhodopsin. Starting from the inactive CCK2R modeled structure, active CCK2R (namely cholecystokinin-occupied CCK2R) was modeled by means of steered molecular dynamics in a lipid bilayer and by using available data from other GPCRs, including rhodopsin. By comparing the modeled structures of the inactive and active CCK2R, we identified changes in the relative position of helices and networks of interacting residues, which were expected to stabilize either the active or inactive states of CCK2R. Using targeted molecular dynamics simulations capable of converting CCK2R from the inactive to the active state, we delineated structural changes at the atomic level. The activation mechanism involved significant movements of helices VI and V, a slight movement of helices IV and VII, and changes in the position of critical residues within or near the binding site. The mutation of key amino acids yielded inactive or constitutively active CCK2R mutants, supporting this proposed mechanism. Such progress in the refinement of the CCK2R binding site structure and in knowledge of CCK2R activation mechanisms will enable target-based optimization of nonpeptide ligands.  相似文献   

7.
Crystallography and cryo-electron microscopy have advanced atomic resolution perspectives of inactive and active states of G protein-coupled receptors (GPCRs), alone and in complex with G proteins or arrestin. 19F NMR can play a role in ascertaining activation mechanisms and understanding the complete energy landscape associated with signal transduction. Fluorinated reporters are introduced biosynthetically via fluorinated amino acid analogs or chemically, via thiol-specific fluorinated reporters. The chemical shift sensitivity of these reporters makes it possible to discern details of conformational ensembles. In addition to spectroscopic details, paramagnetic species can be incorporated through orthogonal techniques to obtain distance information on fluorinated reporters, while T2-and T1-based relaxation experiments provide details on exchange kinetics in addition to fluctuations within a given state.  相似文献   

8.
G-protein-coupled receptors (GPCRs) are membrane proteins that have a wide variety of physiological roles. Adenosine receptors belong to the GPCR family. Adenosine receptors are implicated in many physiological disorders, such as Parkinson's disease, Huntington's disease, inflammatory and immune's disease and many others. Interestingly, crystal structures of the active and inactive conformations of the A2-subtype adenosine receptor (A2AR) have been solved. These two structures could be used to get insights about the conformational changes that occur during the process of activation/inactivation processes of this receptor. Therefore, two ligand-free simulations of the native active (PDB code: 3QAK) and inactive (PDB code: 3EML) conformations of the A2AR and two halo-simulations were carried out to observe the initial conformational changes induced by coupling adenosine to the inactive conformation and caffeine to the active conformation. Furthermore, we constructed an A2AR model that contained four thermostabilising mutations, L48A, T65A, Q89A and A54L, which had previously been determined to stabilise the bound conformation of the agonist, and we ran molecular dynamics simulations of this mutant to investigate how these point mutations might affect the inactive conformation of this receptor. This study provides insights about the initial structural and dynamic features that occur as a result of the binding of caffeine and adenosine in the active and inactive A2AR structures, respectively, as well as the introduction of some mutations on the inactive structure of the A2AR. Moreover, we provide useful and detailed information regarding structural features such as toggle switch and ionic lock during the activation/inactivation processes of this receptor.  相似文献   

9.
10.
The beta2-adrenergic receptor (β2AR) family, which is the largest family of cell surface receptors in humans. Extra attention has been focused on the human GPCRs because they have been studied as important protein targets for pharmaceutical drug development. In fact, approximately 40% of marketed drugs directly work on GPCRs. GPCRs respond to various extracellular stimuli, such as sensory signals, neurotransmitters, chemokines, and hormones, to induce structural changes at the cytoplasmic surface, activating downstream signaling pathways, primarily through interactions with heterotrimeric G proteins or through G-protein independent pathways, such as arrestin. Most GPCRs, except for rhodhopsin, which contains covalently linked 11 cis-retinal, bind to diffusible ligands, having various conformational states between inactive and active structures. The first human GPCR structure was determined using an inverse agonist bound β2AR in 2007 and since then, more than 20 distinct GPCR structures have been solved. However, most GPCR structures were solved as inactive forms, and an agonist bound fully active structure is still hard to obtain. In a structural point of view, β2AR is relatively well studied since its fully active structure as a complex with G protein as well as several inactive structures are available. The structural comparison of inactive and active states gives an important clue in understanding the activation mechanism of β2AR. In this review, structural features of inactive and active states of β2AR, the interaction of β2AR with heterotrimeric G protein, and the comparison with β1AR will be discussed.  相似文献   

11.
12.
Cholesterol has been shown to modulate the activity of multiple G Protein-coupled receptors (GPCRs), yet whether cholesterol acts through specific interactions, indirectly via modifications to the membrane, or via both mechanisms is not well understood. High-resolution crystal structures of GPCRs have identified bound cholesterols; based on a β2-adrenergic receptor (β2AR) structure bound to cholesterol and the presence of conserved amino acids in class A receptors, the cholesterol consensus motif (CCM) was identified. Here in mammalian cells expressing the adenosine A2A receptor (A2AR), ligand dependent production of cAMP is reduced following membrane cholesterol depletion with methyl-beta-cyclodextrin (MβCD), indicating that A2AR signaling is dependent on cholesterol. In contrast, ligand binding is not dependent on cholesterol depletion. All-atom molecular simulations suggest that cholesterol interacts specifically with the CCM when the receptor is in an active state, but not when in an inactive state. Taken together, the data support a model of receptor state-dependent binding between cholesterol and the CCM, which could facilitate both G-protein coupling and downstream signaling of A2AR.  相似文献   

13.
Heterotrimeric G‐proteins are cellular signal transducers. They mainly relay signals from G‐protein‐coupled receptors (GPCRs). GPCRs function as guanine nucleotide‐exchange factors to active these G‐proteins. Based on the sequence and functional similarities, these G‐proteins are grouped into four subfamilies: Gs, Gi, Gq, and G12/13. The G12/13 subfamily consists of two members: G12 and G13. G12/13‐mediated signaling pathways play pivotal roles in a variety of physiological processes, while aberrant regulation of this pathway has been identified in various human diseases. Here we summarize the signaling mechanisms and physiological functions of Gα13 in blood vessel formation and bone homeostasis. We further discuss the expanding roles of Gα13 in cancers, serving as oncogenes as well as tumor suppressors.  相似文献   

14.
G protein-coupled receptors (GPCRs) play a major role in intercellular communication by binding small diffusible ligands (agonists) at the extracellular surface. Agonist-binding induces a conformational change in the receptor, which results in the binding and activation of heterotrimeric G proteins within the cell. Ten agonist-bound structures of non-rhodopsin GPCRs published last year defined for the first time the molecular details of receptor activated states and how inverse agonists, partial agonists and full agonists bind to produce different effects on the receptor. In addition, the structure of the β(2)-adrenoceptor coupled to a heterotrimeric G protein showed how the opening of a cleft in the cytoplasmic face of the receptor as a consequence of agonist binding results in G protein coupling and activation of the G protein.  相似文献   

15.
G‐protein‐coupled receptors (GPCR) are a family of membrane‐embedded metabotropic receptors which translate extracellular ligand binding into an intracellular response. Here, we calculate the motion of several GPCR family members such as the M2 and M3 muscarinic acetylcholine receptors, the A2A adenosine receptor, the β2‐adrenergic receptor, and the CXCR4 chemokine receptor using elastic network normal modes. The normal modes reveal a dilation and a contraction of the GPCR vestibule associated with ligand passage, and activation, respectively. Contraction of the vestibule on the extracellular side is correlated with cavity formation of the G‐protein binding pocket on the intracellular side, which initiates intracellular signaling. Interestingly, the normal modes of rhodopsin do not correlate well with the motion of other GPCR family members. Electrostatic potential calculation of the GPCRs reveal a negatively charged field around the ligand binding site acting as a siphon to draw‐in positively charged ligands on the membrane surface. Altogether, these results expose the GPCR activation mechanism and show how conformational changes on the cell surface side of the receptor are allosterically translated into structural changes on the inside. Proteins 2014; 82:579–586. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
The first crystal structure of a G protein‐coupled receptor (GPCR) was that of the bovine rhodopsin, solved in 2000, and is a light receptor within retina rode cells that enables vision by transducing a conformational signal from the light‐induced isomerization of retinal covalently bound to the receptor. More than 7 years after this initial discovery and following more than 20 years of technological developments in GPCR expression, stabilization, and crystallography, the high‐resolution structure of the adrenaline binding β2‐adrenergic receptor, a ligand diffusible receptor, was discovered. Since then, high‐resolution structures of more than 53 unique GPCRs have been determined leading to a significant improvement in our understanding of the basic mechanisms of ligand‐binding and ligand‐mediated receptor activation that revolutionized the field of structural molecular pharmacology of GPCRs. Recently, several structures of eight unique lipid‐binding receptors, one of the most difficult GPCR families to study, have been reported. This review presents the outstanding structural and pharmacological features that have emerged from these new lipid receptor structures. The impact of these findings goes beyond mechanistic insights, providing evidence of the fundamental role of GPCRs in the physiological integration of the lipid signaling system, and highlighting the importance of sustained research into the structural biology of GPCRs for the development of new therapeutics targeting lipid receptors.  相似文献   

17.
G protein-coupled receptors (GPCRs) are known to be modulated by membrane cholesterol levels, but whether or not the effects are caused by specific receptor-cholesterol interactions or cholesterol's general effects on the membrane is not well-understood. We performed coarse-grained molecular dynamics (CGMD) simulations coupled with structural bioinformatics approaches on the β2-adrenergic receptor (β2AR) and the cholecystokinin (CCK) receptor subfamily. The β2AR has been shown to be sensitive to membrane cholesterol and cholesterol molecules have been clearly resolved in numerous β2AR crystal structures. The two CCK receptors are highly homologous and preserve similar cholesterol recognition motifs but despite their homology, CCK1R shows functional sensitivity to membrane cholesterol while CCK2R does not. Our results offer new insights into how cholesterol modulates GPCR function by showing cholesterol interactions with β2AR that agree with previously published data; additionally, we observe differential and specific cholesterol binding in the CCK receptor subfamily while revealing a previously unreported Cholesterol Recognition Amino-acid Consensus (CRAC) sequence that is also conserved across 38% of class A GPCRs. A thermal denaturation assay (LCP-Tm) shows that mutation of a conserved CRAC sequence on TM7 of the β2AR affects cholesterol stabilization of the receptor in a lipid bilayer. The results of this study provide a better understanding of receptor-cholesterol interactions that can contribute to novel and improved therapeutics for a variety of diseases.  相似文献   

18.
The human genome encodes ~750 G‐protein‐coupled receptors (GPCRs), including prokineticin receptor 2 (PROKR2) involved in the regulation of sexual maturation. Previously reported pathogenic gain‐of‐function mutations of GPCR genes invariably encoded aberrant receptors with excessive signal transduction activity. Although in vitro assays demonstrated that an artificially created inactive mutant of PROKR2 exerted paradoxical gain‐of‐function effects when co‐transfected with wild‐type proteins, such a phenomenon has not been observed in vivo. Here, we report a heterozygous frameshift mutation of PROKR2 identified in a 3.5‐year‐old girl with central precocious puberty. The mutant mRNA escaped nonsense‐mediated decay and generated a GPCR lacking two transmembrane domains and the carboxyl‐terminal tail. The mutant protein had no in vitro signal transduction activity; however, cells co‐expressing the mutant and wild‐type PROKR2 exhibited markedly exaggerated ligand‐induced Ca2+ responses. The results indicate that certain inactive PROKR2 mutants can cause early puberty by enhancing the functional property of coexisting wild‐type proteins. Considering the structural similarity among GPCRs, this paradoxical gain‐of‐function mechanism may underlie various human disorders.  相似文献   

19.
G protein–coupled receptors (GPCRs) exist in multiple dynamic states (e.g., ligand-bound, inactive, G protein–coupled) that influence G protein activation and ultimately response generation. In quantitative models of GPCR signaling that incorporate these varied states, parameter values are often uncharacterized or varied over large ranges, making identification of important parameters and signaling outcomes difficult to intuit. Here we identify the ligand- and cell-specific parameters that are important determinants of cell-response behavior in a dynamic model of GPCR signaling using parameter variation and sensitivity analysis. The character of response (i.e., positive/neutral/inverse agonism) is, not surprisingly, significantly influenced by a ligand's ability to bias the receptor into an active conformation. We also find that several cell-specific parameters, including the ratio of active to inactive receptor species, the rate constant for G protein activation, and expression levels of receptors and G proteins also dramatically influence agonism. Expressing either receptor or G protein in numbers several fold above or below endogenous levels may result in system behavior inconsistent with that measured in endogenous systems. Finally, small variations in cell-specific parameters identified by sensitivity analysis as significant determinants of response behavior are found to change ligand-induced responses from positive to negative, a phenomenon termed protean agonism. Our findings offer an explanation for protean agonism reported in β2--adrenergic and α2A-adrenergic receptor systems.  相似文献   

20.
The GRK/β-arrestin and PKC/PKA mediate the homologous and heterologous regulation of G protein-coupled receptors (GPCRs), respectively. Interaction between the two pathways is one of the most important issues in understanding the regulation of GPCRs. The present study investigated the regulatory effect of GRK2 and β-arrestins on PKC activation. The roles of GRK2 and β-arrestins in the functional regulation of PKC were assessed by determining their influence on PKC autophosphorylation and intracellular translocation. Radioligand binding assay was utilized to characterize intracellular trafficking of dopamine D2R, D3R, and β2 adrenergic receptor (β2AR). The subdomains involved in the mutual interactions among GRK2, β-arrestin2, and PKCβII were determined by in vitro binding assay. Various point mutants of key regulatory players were combined with knockdown cells of GRK2, β-arrestins, and Mdm2 to functionally correlate the biochemical changes with functional outcomes. GRK2 and β-arrestin2 mutually inhibited the PKCβII autophosphorylation, a hallmark of PKCβII activation. β-Arrestin2 ubiquitination was required for the inhibitory activities of GRK2 as well as β-arrestin2. Furthermore, GRK2 facilitated β-arrestin2 ubiquitination, thus to enhance the inhibitory actions of β-arrestin2 on PKCβII activity. Aforementioned processes were also involved in the GRK2/β-arrestin2-mediated inhibition of the D2R, D3R, and β2AR endocytosis. The present study provides new insights into the intricate interactions between the homologous and heterologous GPCR regulation pathways. In addition, a novel regulatory role of GRK2 was proposed for the ubiquitination of β-arrestin in the context of the PKC-mediated heterologous regulation of GPCRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号