首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
  总被引:14,自引:0,他引:14  
The distance-dependent structure-derived potentials developed so far all employed a reference state that can be characterized as a residue (atom)-averaged state. Here, we establish a new reference state called the distance-scaled, finite ideal-gas reference (DFIRE) state. The reference state is used to construct a residue-specific all-atom potential of mean force from a database of 1011 nonhomologous (less than 30% homology) protein structures with resolution less than 2 A. The new all-atom potential recognizes more native proteins from 32 multiple decoy sets, and raises an average Z-score by 1.4 units more than two previously developed, residue-specific, all-atom knowledge-based potentials. When only backbone and C(beta) atoms are used in scoring, the performance of the DFIRE-based potential, although is worse than that of the all-atom version, is comparable to those of the previously developed potentials on the all-atom level. In addition, the DFIRE-based all-atom potential provides the most accurate prediction of the stabilities of 895 mutants among three knowledge-based all-atom potentials. Comparison with several physical-based potentials is made.  相似文献   

2.
    
Structure prediction on a genomic scale requires a simplified energy function that can efficiently sample the conformational space of polypeptide chains. A good energy function at minimum should discriminate native structures against decoys. Here, we show that a recently developed, residue-specific, all-atom knowledge-based potential (167 atomic types) based on distance-scaled, finite ideal-gas reference state (DFIRE-all-atom) can be substantially simplified to 20 residue types located at side-chain center of mass (DFIRE-SCM) without a significant change in its capability of structure discrimination. Using 96 standard multiple decoy sets, we show that there is only a small reduction (from 80% to 78%) in success rate of ranking native structures as the top 1. The success rate is higher than two previously developed, all-atom distance-dependent statistical pair potentials. Applied to structure selections of 21 docking decoys without modification, the DFIRE-SCM potential is 29% more successful in recognizing native complex structures than an all-atom statistical potential trained by a database of dimeric interfaces. The potential also achieves 92% accuracy in distinguishing true dimeric interfaces from artificial crystal interfaces. In addition, the DFIRE potential with the C(alpha) positions as the interaction centers recognizes 123 native structures out of a comprehensive 125-protein TOUCHSTONE decoy set in which each protein has 24,000 decoys with only C(alpha) positions. Furthermore, the performance by DFIRE-SCM on newly established 25 monomeric and 31 docking Rosetta-decoy sets is comparable to (or better than in the case of monomeric decoy sets) that of a recently developed, all-atom Rosetta energy function enhanced with an orientation-dependent hydrogen bonding potential.  相似文献   

3.
    
The conformations of loops are determined by the water-mediated interactions between amino acid residues. Energy functions that describe the interactions can be derived either from physical principles (physical-based energy function) or statistical analysis of known protein structures (knowledge-based statistical potentials). It is commonly believed that statistical potentials are appropriate for coarse-grained representation of proteins but are not as accurate as physical-based potentials when atomic resolution is required. Several recent applications of physical-based energy functions to loop selections appear to support this view. In this article, we apply a recently developed DFIRE-based statistical potential to three different loop decoy sets (RAPPER, Jacobson, and Forrest-Woolf sets). Together with a rotamer library for side-chain optimization, the performance of DFIRE-based potential in the RAPPER decoy set (385 loop targets) is comparable to that of AMBER/GBSA for short loops (two to eight residues). The DFIRE is more accurate for longer loops (9 to 12 residues). Similar trend is observed when comparing DFIRE with another physical-based OPLS/SGB-NP energy function in the large Jacobson decoy set (788 loop targets). In the Forrest-Woolf decoy set for the loops of membrane proteins, the DFIRE potential performs substantially better than the combination of the CHARMM force field with several solvation models. The results suggest that a single-term DFIRE-statistical energy function can provide an accurate loop prediction at a fraction of computing cost required for more complicate physical-based energy functions. A Web server for academic users is established for loop selection at the softwares/services section of the Web site http://theory.med.buffalo.edu/.  相似文献   

4.
    
We present a new four‐body knowledge‐based potential for recognizing the native state of proteins from their misfolded states. This potential was extracted from a large set of protein structures determined by X‐ray crystallography using BetaMol, a software based on the recent theory of the beta‐complex (β‐complex) and quasi‐triangulation of the Voronoi diagram of spheres. This geometric construct reflects the size difference among atoms in their full Euclidean metric; property not accounted for in a typical 3D Delaunay triangulation. The ability of this potential to identify the native conformation over a large set of decoys was evaluated. Experiments show that this potential outperforms a potential constructed with a classical Delaunay triangulation in decoy discrimination tests. The addition of a statistical hydrogen bond potential to our four‐body potential allows a significant improvement in the decoy discrimination, in such a way that we are able to predict successfully the native structure in 90% of cases. Proteins 2013; 81:1420–1433. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
    
We developed a series of statistical potentials to recognize the native protein from decoys, particularly when using only a reduced representation in which each side chain is treated as a single C(beta) atom. Beginning with a highly successful all-atom statistical potential, the Discrete Optimized Protein Energy function (DOPE), we considered the implications of including additional information in the all-atom statistical potential and subsequently reducing to the C(beta) representation. One of the potentials includes interaction energies conditional on backbone geometries. A second potential separates sequence local from sequence nonlocal interactions and introduces a novel reference state for the sequence local interactions. The resultant potentials perform better than the original DOPE statistical potential in decoy identification. Moreover, even upon passing to a reduced C(beta) representation, these statistical potentials outscore the original (all-atom) DOPE potential in identifying native states for sets of decoys. Interestingly, the backbone-dependent statistical potential is shown to retain nearly all of the information content of the all-atom representation in the C(beta) representation. In addition, these new statistical potentials are combined with existing potentials to model hydrogen bonding, torsion energies, and solvation energies to produce even better performing potentials. The ability of the C(beta) statistical potentials to accurately represent protein interactions bodes well for computational efficiency in protein folding calculations using reduced backbone representations, while the extensions to DOPE illustrate general principles for improving knowledge-based potentials.  相似文献   

6.
    
The DOcking decoy‐based Optimized Potential (DOOP) energy function for protein structure prediction is based on empirical distance‐dependent atom‐pair interactions. To optimize the atom‐pair interactions, native protein structures are decomposed into polypeptide chain segments that correspond to structural motives involving complete secondary structure elements. They constitute near native ligand–receptor systems (or just pairs). Thus, a total of 8609 ligand–receptor systems were prepared from 954 selected proteins. For each of these hypothetical ligand–receptor systems, 1000 evenly sampled docking decoys with 0–10 Å interface root‐mean‐square‐deviation (iRMSD) were generated with a method used before for protein–protein docking. A neural network‐based optimization method was applied to derive the optimized energy parameters using these decoys so that the energy function mimics the funnel‐like energy landscape for the interaction between these hypothetical ligand–receptor systems. Thus, our method hierarchically models the overall funnel‐like energy landscape of native protein structures. The resulting energy function was tested on several commonly used decoy sets for native protein structure recognition and compared with other statistical potentials. In combination with a torsion potential term which describes the local conformational preference, the atom‐pair‐based potential outperforms other reported statistical energy functions in correct ranking of native protein structures for a variety of decoy sets. This is especially the case for the most challenging ROSETTA decoy set, although it does not take into account side chain orientation‐dependence explicitly. The DOOP energy function for protein structure prediction, the underlying database of protein structures with hypothetical ligand–receptor systems and their decoys are freely available at http://agknapp.chemie.fu‐berlin.de/doop/ . Proteins 2015; 83:881–890. © 2015 Wiley Periodicals, Inc.  相似文献   

7.
    
Liang S  Liu S  Zhang C  Zhou Y 《Proteins》2007,69(2):244-253
Near-native selections from docking decoys have proved challenging especially when unbound proteins are used in the molecular docking. One reason is that significant atomic clashes in docking decoys lead to poor predictions of binding affinities of near native decoys. Atomic clashes can be removed by structural refinement through energy minimization. Such an energy minimization, however, will lead to an unrealistic bias toward docked structures with large interfaces. Here, we extend an empirical energy function developed for protein design to protein-protein docking selection by introducing a simple reference state that removes the unrealistic dependence of binding affinity of docking decoys on the buried solvent accessible surface area of interface. The energy function called EMPIRE (EMpirical Protein-InteRaction Energy), when coupled with a refinement strategy, is found to provide a significantly improved success rate in near native selections when applied to RosettaDock and refined ZDOCK docking decoys. Our work underlines the importance of removing nonspecific interactions from specific ones in near native selections from docking decoys.  相似文献   

8.
    
Yang Y  Zhou Y 《Proteins》2008,72(2):793-803
Proteins fold into unique three-dimensional structures by specific, orientation-dependent interactions between amino acid residues. Here, we extract orientation-dependent interactions from protein structures by treating each polar atom as a dipole with a direction. The resulting statistical energy function successfully refolds 13 out of 16 fully unfolded secondary-structure terminal regions of 10-23 amino acid residues in 15 small proteins. Dissecting the orientation-dependent energy function reveals that the orientation preference between hydrogen-bonded atoms is not enough to account for the structural specificity of proteins. The result has significant implications on the theoretical and experimental searches for specific interactions involved in protein folding and molecular recognition between proteins and other biologically active molecules.  相似文献   

9.
    
Liu S  Zhang C  Zhou H  Zhou Y 《Proteins》2004,56(1):93-101
Extracting knowledge-based statistical potential from known structures of proteins is proved to be a simple, effective method to obtain an approximate free-energy function. However, the different compositions of amino acid residues at the core, the surface, and the binding interface of proteins prohibited the establishment of a unified statistical potential for folding and binding despite the fact that the physical basis of the interaction (water-mediated interaction between amino acids) is the same. Recently, a physical state of ideal gas, rather than a statistically averaged state, has been used as the reference state for extracting the net interaction energy between amino acid residues of monomeric proteins. Here, we find that this monomer-based potential is more accurate than an existing all-atom knowledge-based potential trained with interfacial structures of dimers in distinguishing native complex structures from docking decoys (100% success rate vs. 52% in 21 dimer/trimer decoy sets). It is also more accurate than a recently developed semiphysical empirical free-energy functional enhanced by an orientation-dependent hydrogen-bonding potential in distinguishing native state from Rosetta docking decoys (94% success rate vs. 74% in 31 antibody-antigen and other complexes based on Z score). In addition, the monomer potential achieved a 93% success rate in distinguishing true dimeric interfaces from artificial crystal interfaces. More importantly, without additional parameters, the potential provides an accurate prediction of binding free energy of protein-peptide and protein-protein complexes (a correlation coefficient of 0.87 and a root-mean-square deviation of 1.76 kcal/mol with 69 experimental data points). This work marks a significant step toward a unified knowledge-based potential that quantitatively captures the common physical principle underlying folding and binding. A Web server for academic users, established for the prediction of binding free energy and the energy evaluation of the protein-protein complexes, may be found at http://theory.med.buffalo.edu.  相似文献   

10.
    
Statistical energy functions are general models about atomic or residue-level interactions in biomolecules, derived from existing experimental data. They provide quantitative foundations for structural modeling as well as for structure-based protein sequence design. Statistical energy functions can be derived computationally either based on statistical distributions or based on variational assumptions. We present overviews on the theoretical assumptions underlying the various types of approaches. Theoretical considerations underlying important pragmatic choices are discussed.  相似文献   

11.
    
We describe a novel method to generate ensembles of conformations of the main-chain atoms [N, C(alpha), C, O, Cbeta] for a sequence of amino acids within the context of a fixed protein framework. Each conformation satisfies fundamental stereo-chemical restraints such as idealized geometry, favorable phi/psi angles, and excluded volume. The ensembles include conformations both near and far from the native structure. Algorithms for effective conformational sampling and constant time overlap detection permit the generation of thousands of distinct conformations in minutes. Unlike previous approaches, our method samples dihedral angles from fine-grained phi/psi state sets, which we demonstrate is superior to exhaustive enumeration from coarse phi/psi sets. Applied to a large set of loop structures, our method samples consistently near-native conformations, averaging 0.4, 1.1, and 2.2 A main-chain root-mean-square deviations for four, eight, and twelve residue long loops, respectively. The ensembles make ideal decoy sets to assess the discriminatory power of a selection method. Using these decoy sets, we conclude that quality of anchor geometry cannot reliably identify near-native conformations, though the selection results are comparable to previous loop prediction methods. In a subsequent study (de Bakker et al.: Proteins 2003;51:21-40), we demonstrate that the AMBER forcefield with the Generalized Born solvation model identifies near-native conformations significantly better than previous methods.  相似文献   

12.
    
Knowledge‐based methods for analyzing protein structures, such as statistical potentials, primarily consider the distances between pairs of bodies (atoms or groups of atoms). Considerations of several bodies simultaneously are generally used to characterize bonded structural elements or those in close contact with each other, but historically do not consider atoms that are not in direct contact with each other. In this report, we introduce an information‐theoretic method for detecting and quantifying distance‐dependent through‐space multibody relationships between the sidechains of three residues. The technique introduced is capable of producing convergent and consistent results when applied to a sufficiently large database of randomly chosen, experimentally solved protein structures. The results of our study can be shown to reproduce established physico‐chemical properties of residues as well as more recently discovered properties and interactions. These results offer insight into the numerous roles that residues play in protein structure, as well as relationships between residue function, protein structure, and evolution. The techniques and insights presented in this work should be useful in the future development of novel knowledge‐based tools for the evaluation of protein structure. Proteins 2014; 82:3450–3465. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
    
Mirzaie M  Sadeghi M 《Proteins》2012,80(3):683-690
We have recently introduced a novel model for discriminating the correctly folded proteins from well-designed decoy structures using mechanical interatomic forces. In the model, we considered a protein as a collection of springs and the force imposed to each atom was calculated by using the relation between the potential energy and the force. A mean force potential function is obtained from statistical contact preferences within the known protein structures. In this article, the interatomic forces are calculated by numerical derivation of the potential function. For assessing the knowledge-based force function we consider an optimal structure and define a score function on the 3D structure of a protein. We compare the force imposed to each atom of a protein with the corresponding atom in the optimum structure. Afterwards we assign larger scores to those atoms with the lower forces. The total score is the sum of partial scores of atoms. The optimal structure is assumed to be the one with the highest score in the dataset. Finally, several decoy sets are applied in order to evaluate the performance of our model.  相似文献   

14.
    
In this paper, we report a knowledge-based potential function, named the OPUS-Ca potential, that requires only Calpha positions as input. The contributions from other atomic positions were established from pseudo-positions artificially built from a Calpha trace for auxiliary purposes. The potential function is formed based on seven major representative molecular interactions in proteins: distance-dependent pairwise energy with orientational preference, hydrogen bonding energy, short-range energy, packing energy, tri-peptide packing energy, three-body energy, and solvation energy. From the testing of decoy recognition on a number of commonly used decoy sets, it is shown that the new potential function outperforms all known Calpha-based potentials and most other coarse-grained ones that require more information than Calpha positions. We hope that this potential function adds a new tool for protein structural modeling.  相似文献   

15.
    
Theoretical work suggests that both negative frequency-dependent payoffs and state-dependent payoffs can lead to individual variation in behavioural plasticity. We investigated the roles of both frequency- and state-dependence on the occurrence of individual variation in behavioural plasticity in a series of experiments where we manipulated perceived predation danger for red knots (Calidris canutus islandica). We found individual variation in plasticity in a trait with negative frequency-dependent payoffs (vigilance), but not in a trait with positive frequency-dependent payoffs (escape flights). Furthermore, there was no correlation between the average level of vigilance under low predation danger and the magnitude of response to increased predation danger, as would be expected under state-dependence. Thus, our results provide support for the hypothesis that negative-frequency dependence favours individual variation in plasticity. However, negative-frequency dependence alone cannot explain why plasticity would be consistent within individuals, and future studies should address the factors that might favour individual consistency.  相似文献   

16.
    
Using information‐theoretic concepts, we examine the role of the reference state, a crucial component of empirical potential functions, in protein fold recognition. We derive an information‐based connection between the probability distribution functions of the reference state and those that characterize the decoy set used in threading. In examining commonly used contact reference states, we find that the quasi‐chemical approximation is informatically superior to other variant models designed to include characteristics of real protein chains, such as finite length and variable amino acid composition from protein to protein. We observe that in these variant models, the total divergence, the operative function that quantifies discrimination, decreases along with threading performance. We find that any amount of nativeness encoded in the reference state model does not significantly improve threading performance. A promising avenue for the development of better potentials is suggested by our information‐theoretic analysis of the action of contact potentials on individual protein sequences. Our results show that contact potentials perform better when the compositional properties of the data set used to derive the score function probabilities are similar to the properties of the sequence of interest. Results also suggest to use only sequences of similar composition in deriving contact potentials, to tailor the contact potential specifically for a test sequence. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
    
Zhang J  Chen R  Liang J 《Proteins》2006,63(4):949-960
  相似文献   

18.
    
Time‐dependent covariates are frequently encountered in regression analysis for event history data and competing risks. They are often essential predictors, which cannot be substituted by time‐fixed covariates. This study briefly recalls the different types of time‐dependent covariates, as classified by Kalbfleisch and Prentice [The Statistical Analysis of Failure Time Data, Wiley, New York, 2002] with the intent of clarifying their role and emphasizing the limitations in standard survival models and in the competing risks setting. If random (internal) time‐dependent covariates are to be included in the modeling process, then it is still possible to estimate cause‐specific hazards but prediction of the cumulative incidences and survival probabilities based on these is no longer feasible. This article aims at providing some possible strategies for dealing with these prediction problems. In a multi‐state framework, a first approach uses internal covariates to define additional (intermediate) transient states in the competing risks model. Another approach is to apply the landmark analysis as described by van Houwelingen [Scandinavian Journal of Statistics 2007, 34 , 70–85] in order to study cumulative incidences at different subintervals of the entire study period. The final strategy is to extend the competing risks model by considering all the possible combinations between internal covariate levels and cause‐specific events as final states. In all of those proposals, it is possible to estimate the changes/differences of the cumulative risks associated with simple internal covariates. An illustrative example based on bone marrow transplant data is presented in order to compare the different methods.  相似文献   

19.
    
The accuracy of model selection from decoy ensembles of protein loop conformations was explored by comparing the performance of the Samudrala-Moult all-atom statistical potential (RAPDF) and the AMBER molecular mechanics force field, including the Generalized Born/surface area solvation model. Large ensembles of consistent loop conformations, represented at atomic detail with idealized geometry, were generated for a large test set of protein loops of 2 to 12 residues long by a novel ab initio method called RAPPER that relies on fine-grained residue-specific phi/psi propensity tables for conformational sampling. Ranking the conformers on the basis of RAPDF scores resulted in selected conformers that had an average global, non-superimposed RMSD for all heavy mainchain atoms ranging from 1.2 A for 4-mers to 2.9 A for 8-mers to 6.2 A for 12-mers. After filtering on the basis of anchor geometry and RAPDF scores, ranking by energy minimization of the AMBER/GBSA potential energy function selected conformers that had global RMSD values of 0.5 A for 4-mers, 2.3 A for 8-mers, and 5.0 A for 12-mers. Minimized fragments had, on average, consistently lower RMSD values (by 0.1 A) than their initial conformations. The importance of the Generalized Born solvation energy term is reflected by the observation that the average RMSD accuracy for all loop lengths was worse when this term is omitted. There are, however, still many cases where the AMBER gas-phase minimization selected conformers of lower RMSD than the AMBER/GBSA minimization. The AMBER/GBSA energy function had better correlation with RMSD to native than the RAPDF. When the ensembles were supplemented with conformations extracted from experimental structures, a dramatic improvement in selection accuracy was observed at longer lengths (average RMSD of 1.3 A for 8-mers) when scoring with the AMBER/GBSA force field. This work provides the basis for a promising hybrid approach of ab initio and knowledge-based methods for loop modeling.  相似文献   

20.
    
Mehdi Mirzaie 《Proteins》2018,86(4):467-474
Evaluation of protein structures needs a trustworthy potential function. Although several knowledge‐based potential functions exist, the impact of different types of amino acids in the scoring functions has not been studied yet. Previously, we have reported the importance of nonlocal interactions in scoring function (based on Delaunay tessellation) in discrimination of native structures. Then, we have questioned the structural impact of hydrophobic amino acids in protein fold recognition. Therefore, a Hydrophobic Reduced Model (HRM) was designed to reduce protein structure of FS (Full Structure) into RS (Reduced Structure). RS is considered as a reduced structure of only seven hydrophobic amino acids (L, V, F, I, A, W, Y) and all their interactions. The presented model was evaluated via four different performance metrics including the number of correctly identified natives, the Z‐score of the native energy, the RMSD of the minimum score, and the Pearson correlation coefficient between the energy and the model quality. Results indicated that only nonlocal interactions between hydrophobic amino acids could be sufficient and accurate enough for protein fold recognition. Interestingly, the results of HRM is significantly close to the model that considers all amino acids (20‐amino acid model) to discriminate the native structure of the proteins on eleven decoy sets. This indicates that the power of knowledge‐based potential functions in protein fold recognition is mostly due to hydrophobic interactions. Hence, we suggest combining a different well‐designed scoring function for non‐hydrophobic interactions with HRM to achieve better performance in fold recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号