首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of Triton X‐114 on the physicochemical properties of a single‐chain antibody fragment (scFv) has been studied. According to the far UV circular dichroism spectroscopy, the secondary structure of the recombinant antibody was not significantly affected by the presence of Triton. From the antibody tertiary structure analysis, it was found that the surfactant could be located around the tryptophan molecules accessible to the solvent, diminishing the polarity of its environment but maintaining most of the protein structure integrity. However, in certain conditions of high temperature and high concentration of denaturant molecules, the presence of TX could compromise the antibody fragment stability. These results represent a previous step in designing scFv purification protocols and should be considered prior to developing scFv liquid–liquid extraction procedures. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:554–561, 2014  相似文献   

2.
Increasing demand for petroleum has stimulated industry to develop sustainable production of chemicals and biofuels using microbial cell factories. Fatty acids of chain lengths from C6 to C16 are propitious intermediates for the catalytic synthesis of industrial chemicals and diesel‐like biofuels. The abundance of genetic information available for Escherichia coli and specifically, fatty acid metabolism in E. coli, supports this bacterium as a promising host for engineering a biocatalyst for the microbial production of fatty acids. Recent successes rooted in different features of systems metabolic engineering in the strain design of high‐yielding medium chain fatty acid producing E. coli strains provide an emerging case study of design methods for effective strain design. Classical metabolic engineering and synthetic biology approaches enabled different and distinct design paths towards a high‐yielding strain. Here we highlight a rational strain design process in systems biology, an integrated computational and experimental approach for carboxylic acid production, as an alternative method. Additional challenges inherent in achieving an optimal strain for commercialization of medium chain‐length fatty acids will likely require a collection of strategies from systems metabolic engineering. Not only will the continued advancement in systems metabolic engineering result in these highly productive strains more quickly, this knowledge will extend more rapidly the carboxylic acid platform to the microbial production of carboxylic acids with alternate chain‐lengths and functionalities. Biotechnol. Biotechnol. Bioeng. 2014;111: 849–857. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
Rational design of proteins with novel binding specificities and increased affinity is one of the major goals of computational protein design. Epitope‐scaffolds are a new class of antigens engineered by transplanting viral epitopes of predefined structure to protein scaffolds, or by building protein scaffolds around such epitopes. Epitope‐scaffolds are of interest as vaccine components to attempt to elicit neutralizing antibodies targeting the specified epitope. In this study we developed a new computational protocol, MultiGraft Interface, that transplants epitopes but also designs additional scaffold features outside the epitope to enhance antibody‐binding specificity and potentially influence the specificity of elicited antibodies. We employed MultiGraft Interface to engineer novel epitope‐scaffolds that display the known epitope of human immunodeficiency virus 1 (HIV‐1) neutralizing antibody 2F5 and that also interact with the functionally important CDR H3 antibody loop. MultiGraft Interface generated an epitope‐scaffold that bound 2F5 with subnanomolar affinity (KD = 400 pM) and that interacted with the antibody CDR H3 loop through computationally designed contacts. Substantial structural modifications were necessary to engineer this antigen, with the 2F5 epitope replacing a helix in the native scaffold and with 15% of the native scaffold sequence being modified in the design stage. This epitope‐scaffold represents a successful example of rational protein backbone engineering and protein–protein interface design and could prove useful in the field of HIV vaccine design. MultiGraft Interface can be generally applied to engineer novel binding partners with altered specificity and optimized affinity. Proteins 2014; 82:2770–2782. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
In the design of new enzymes and binding proteins, human intuition is often used to modify computationally designed amino acid sequences prior to experimental characterization. The manual sequence changes involve both reversions of amino acid mutations back to the identity present in the parent scaffold and the introduction of residues making additional interactions with the binding partner or backing up first shell interactions. Automation of this manual sequence refinement process would allow more systematic evaluation and considerably reduce the amount of human designer effort involved. Here we introduce a benchmark for evaluating the ability of automated methods to recapitulate the sequence changes made to computer‐generated models by human designers, and use it to assess alternative computational methods. We find the best performance for a greedy one‐position‐at‐a‐time optimization protocol that utilizes metrics (such as shape complementarity) and local refinement methods too computationally expensive for global Monte Carlo (MC) sequence optimization. This protocol should be broadly useful for improving the stability and function of designed binding proteins. Proteins 2014; 82:858–866. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
Glutathione peroxidase (GPX) is one of the important members of the antioxidant enzyme family. It can catalyze the reduction of hydroperoxides with glutathione to protect cells against oxidative damage. In previous studies, we have prepared the human catalytic antibody Se‐scFv‐B3 (selenium‐containing single‐chain Fv fragment of clone B3) with GPX activity by incorporating a catalytic group Sec (selenocysteine) into the binding site using chemical mutation; however, its activity was not very satisfying. In order to try to improve its GPX activity, structural analysis of the scFv‐B3 was carried out. A three‐dimensional (3D) structure of scFv‐B3 was constructed by means of homology modeling and binding site analysis was carried out. Computer‐aided docking and energy minimization (EM) calculations of the antibody‐GSH (glutathione) complex were also performed. From these simulations, Ala44 and Ala180 in the candidate binding sites were chosen to be mutated to serines respectively, which can be subsequently converted into the catalytic Sec group. The two mutated protein and wild type of the scFv were all expressed in soluble form in Escherichia coli Rosetta and purified by Ni2+‐immobilized metal affinity chromatography (IMAC), then transformed to selenium‐containing catalytic antibody with GPX activity by chemical modification of the reactive serine residues. The GPX activity of the mutated catalytic antibody Se‐scFv‐B3‐A180S was significantly increased compared to the original Se‐scFv‐B3. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Protein crystallization is dependent upon, and sensitive to, the intermolecular contacts that assist in ordering proteins into a three‐dimensional lattice. Here we used protein engineering and mutagenesis to affect the crystallization of single chain antibody fragments (scFvs) that recognize the EE epitope (EYMPME) with high affinity. These hypercrystallizable scFvs are under development to assist difficult proteins, such as membrane proteins, in forming crystals, by acting as crystallization chaperones. Guided by analyses of intermolecular crystal lattice contacts, two second‐generation anti‐EE scFvs were produced, which bind to proteins with installed EE tags. Surprisingly, although noncomplementarity determining region (CDR) lattice residues from the parent scFv framework remained unchanged through the processes of protein engineering and rational design, crystal lattices of the derivative scFvs differ. Comparison of energy calculations and the experimentally‐determined lattice interactions for this basis set provides insight into the complexity of the forces driving crystal lattice choice and demonstrates the availability of multiple well‐ordered surface features in our scFvs capable of forming versatile crystal contacts. Proteins 2014; 82:1884–1895. © 2014 Wiley Periodicals, Inc.  相似文献   

7.
Undesired solution behaviors such as reversible self-association (RSA), high viscosity, and liquid-liquid phase separation can introduce substantial challenges during development of monoclonal antibody formulations. Although a global mechanistic understanding of RSA (i.e., native and reversible protein-protein interactions) is sufficient to develop robust formulation controls, its mitigation via protein engineering requires knowledge of the sites of protein-protein interactions. In the study reported here, we coupled our previous hydrogen-deuterium exchange mass spectrometry findings with structural modeling and in vitro screening to identify the residues responsible for RSA of a model IgG1 monoclonal antibody (mAb-C), and rationally engineered variants with improved solution properties (i.e., reduced RSA and viscosity). Our data show that mutation of either solvent-exposed aromatic residues within the heavy and light chain variable regions or buried residues within the heavy chain/light chain interface can significantly mitigate RSA and viscosity by reducing the IgG's surface hydrophobicity. The engineering strategy described here highlights the utility of integrating complementary experimental and in silico methods to identify mutations that can improve developability, in particular, high concentration solution properties, of candidate therapeutic antibodies.  相似文献   

8.
Protein thermostability is a crucial issue in the practical application of enzymes, such as inorganic synthesis and enzymatic polymerization of phenol derivatives. Much attention has been focused on the enhancement and numerous successes have been achieved through protein engineering methods. Despite fruitful results based on random mutagenesis, it was still necessary to develop a novel strategy that can reduce the time and effort involved in this process. In this study, a rapid and effective strategy is described for increasing the thermal stability of a protein. Instead of random mutagenesis, a rational strategy was adopted to theoretically stabilize the thermo labile residues of a protein using computational methods. Protein residues with high flexibility can be thermo labile due to their large range of movement. Here, residue B factor values were used to identify putatively thermo labile residues and the RosettaDesign program was applied to search for stable sequences. Coprinus cinereus (CiP) heme peroxidase was selected as a model protein for its importance in commercial applications, such as the polymerization of phenolic compounds. Eleven CiP residues with the highest B factor values were chosen as target mutation sites for thermostabilization, and then redesigned using RosettaDesign to identify sequences. Eight mutants based on the redesigns, were produced as functional enzymes and two of these (S323Y and E328D) showed increased thermal stability over the wild‐type in addition to conserved catalytic activity. Thus, this strategy can be used as a rapid and effective in silico design tool for obtaining thermostable proteins. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

9.
Monoclonal antibodies have significantly advanced our ability to treat cancer, yet clinical studies have shown that many patients do not adequately respond to monospecific therapy. This is in part due to the multifactorial nature of the disease, where tumors rely on multiple and often redundant pathways for proliferation. Bi- or multi-specific antibodies capable of blocking multiple growth and survival pathways at once have a potential to better meet the challenge of blocking cancer growth, and indeed many of them are advancing in clinical development.1 However, bispecific antibodies present significant design challenges mostly due to the increased number of variables to consider. In this perspective we describe an innovative integrated approach to the discovery of bispecific antibodies with optimal molecular properties, such as affinity, avidity, molecular format and stability. This approach combines simulations of potential inhibitors using mechanistic models of the disease-relevant biological system to reveal optimal inhibitor characteristics with antibody engineering techniques that yield manufacturable therapeutics with robust pharmaceutical properties. We illustrate how challenges of meeting the optimal design criteria and chemistry, manufacturing and control concerns can be addressed simultaneously in the context of an accelerated therapeutic design cycle. Finally, to demonstrate how this rational approach can be applied, we present a case study where the insights from mechanistic modeling were used to guide the engineering of an IgG-like bispecific antibody.Key words: design, antibody, bispecific, stability, simulation, cancer therapeutics  相似文献   

10.
In recent years, new protein engineering methods have produced more than a dozen symmetric, self‐assembling protein cages whose structures have been validated to match their design models with near‐atomic accuracy. However, many protein cage designs that are tested in the lab do not form the desired assembly, and improving the success rate of design has been a point of recent emphasis. Here we present two protein structures solved by X‐ray crystallography of designed protein oligomers that form two‐component cages with tetrahedral symmetry. To improve on the past tendency toward poorly soluble protein, we used a computational protocol that favors the formation of hydrogen‐bonding networks over exclusively hydrophobic interactions to stabilize the designed protein–protein interfaces. Preliminary characterization showed highly soluble expression, and solution studies indicated successful cage formation by both designed proteins. For one of the designs, a crystal structure confirmed at high resolution that the intended tetrahedral cage was formed, though several flipped amino acid side chain rotamers resulted in an interface that deviates from the precise hydrogen‐bonding pattern that was intended. A structure of the other designed cage showed that, under the conditions where crystals were obtained, a noncage structure was formed wherein a porous 3D protein network in space group I213 is generated by an off‐target twofold homomeric interface. These results illustrate some of the ongoing challenges of developing computational methods for polar interface design, and add two potentially valuable new entries to the growing list of engineered protein materials for downstream applications.  相似文献   

11.
High‐resolution homology models are useful in structure‐based protein engineering applications, especially when a crystallographic structure is unavailable. Here, we report the development and implementation of RosettaAntibody, a protocol for homology modeling of antibody variable regions. The protocol combines comparative modeling of canonical complementarity determining region (CDR) loop conformations and de novo loop modeling of CDR H3 conformation with simultaneous optimization of VL‐VH rigid‐body orientation and CDR backbone and side‐chain conformations. The protocol was tested on a benchmark of 54 antibody crystal structures. The median root mean square deviation (rmsd) of the antigen binding pocket comprised of all the CDR residues was 1.5 Å with 80% of the targets having an rmsd lower than 2.0 Å. The median backbone heavy atom global rmsd of the CDR H3 loop prediction was 1.6, 1.9, 2.4, 3.1, and 6.0 Å for very short (4–6 residues), short (7–9), medium (10–11), long (12–14) and very long (17–22) loops, respectively. When the set of ten top‐scoring antibody homology models are used in local ensemble docking to antigen, a moderate‐to‐high accuracy docking prediction was achieved in seven of fifteen targets. This success in computational docking with high‐resolution homology models is encouraging, but challenges still remain in modeling antibody structures for sequences with long H3 loops. This first large‐scale antibody–antigen docking study using homology models reveals the level of “functional accuracy” of these structural models toward protein engineering applications. Proteins 2009; 74:497–514. © 2008 Wiley‐Liss, Inc.  相似文献   

12.
The exquisite specificity of monoclonal antibodies (MAb) has long provided the potential for creating new reagents for the in vivo delivery of therapeutic drugs or toxins to defined cellular target sites or improved methods of diagnosis. However, many difficulties associated with their production, affinity, specificity, and use in vivo have largely confined their application to research or in vitro diagnostics. This situation is beginning to change with the recent developments in the applied molecular techniques that allow the engineering of the genes that encode antibodies rather than the manipulation of the intact antibodies themselves. Techniques, such as the polymerase chain reaction, have provided essential methods with which to generate and modify the genetic constituents of antibodies, allow their conjugation to toxins or drugs, provide ways of humanizing murine antibodies, and allow discrete modular antigen binding components to be produced. More recent developments of in vitro expression systems and powerful phage surface display technologies will without doubt play a major role in future antibody engineering and in the successful development of new diagnostic and therapeutic antibody-based reagents.  相似文献   

13.
Homomeric coiled‐coils can self‐assemble into a wide range of structural states with different helix topologies and oligomeric states. In this study, we have combined de novo structure modeling with stability calculations to simultaneously predict structure and oligomeric states of homomeric coiled‐coils. For dimers an asymmetric modeling protocol was developed. Modeling without symmetry constraints showed that backbone asymmetry is important for the formation of parallel dimeric coiled‐coils. Collectively, our results demonstrate that high‐resolution structure of coiled‐coils, as well as parallel and antiparallel orientations of dimers and tetramers, can be accurately predicted from sequence. De novo modeling was also used to generate models of competing oligomeric states, which were used to compare stabilities and thus predict the native stoichiometry from sequence. In a benchmark set of 33 coiled‐coil sequences, forming dimers to pentamers, up to 70% of the oligomeric states could be correctly predicted. The calculations demonstrated that the free energy of helix folding could be an important factor for determining stability and oligomeric state of homomeric coiled‐coils. The computational methods developed here should be broadly applicable to studies of sequence‐structure relationships in coiled‐coils and the design of higher order assemblies with improved oligomerization specificity. Proteins 2015; 83:235–247. © 2014 Wiley Periodicals, Inc.  相似文献   

14.
In this article, we describe the engineering and X‐ray crystal structure of Thermal Green Protein (TGP), an extremely stable, highly soluble, non‐aggregating green fluorescent protein. TGP is a soluble variant of the fluorescent protein eCGP123, which despite being highly stable, has proven to be aggregation‐prone. The X‐ray crystal structure of eCGP123, also determined within the context of this paper, was used to carry out rational surface engineering to improve its solubility, leading to TGP. The approach involved simultaneously eliminating crystal lattice contacts while increasing the overall negative charge of the protein. Despite intentional disruption of lattice contacts and introduction of high entropy glutamate side chains, TGP crystallized readily in a number of different conditions and the X‐ray crystal structure of TGP was determined to 1.9 Å resolution. The structural reasons for the enhanced stability of TGP and eCGP123 are discussed. We demonstrate the utility of using TGP as a fusion partner in various assays and significantly, in amyloid assays in which the standard fluorescent protein, EGFP, is undesirable because of aberrant oligomerization. Proteins 2015; 83:1225–1237. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
The analysis and comparison of large numbers of immunoglobulin (Ig) sequences that arise during an antibody selection campaign can be time‐consuming and tedious. Typically, the identification and annotation of framework as well as complementarity‐determining regions (CDRs) is based on multiple sequence alignments using standardized numbering schemes, which allow identification of equivalent residues among different family members but often necessitate expert knowledge and manual intervention. Moreover, due to the enormous length variability of some CDRs the benefit of conventional Ig numbering schemes is limited and the calculation of correct sequence alignments can become challenging. Whereas, in principle, a well established set of rules permits the assignment of CDRs from the amino acid sequence alone, no currently available sequence alignment editor provides an algorithm to annotate new Ig sequences accordingly. Here we present a unique pattern matching method implemented into our recently developed ANTIC ALIgN editor that automatically identifies all hypervariable and framework regions in experimentally elucidated antibody sequences using so‐called “regular expressions.” By combination of this widely supported software syntax with the unique capabilities of real‐time aligning, editing and analyzing extended sets of amino acid and/or nucleotide sequences simultaneously on a local workstation, ANTIC ALIgN provides a powerful utility for antibody engineering. Proteins 2016; 85:65–71. © 2016 Wiley Periodicals, Inc.  相似文献   

16.
17.
Bispecific immunoglobulin‐like antibodies capable of engaging multiple antigens represent a promising new class of therapeutic agents. Engineering of these molecules requires optimization of the molecular properties of one of the domain components. Here, we present a detailed crystallographic and computational characterization of the stabilization patterns in the lymphotoxin‐beta receptor (LTβR) binding Fv domain of an anti‐LTβR/anti‐TNF‐related apoptosis inducing ligand receptor‐2 (TRAIL‐R2) bispecific immunoglobulin‐like antibody. We further describe a new hierarchical structure‐guided approach toward engineering of antibody‐like molecules to enhance their thermal and chemical stability. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
The complete enzymatic removal of affinity tags from tagged recombinant proteins is often required but can be challenging when slow points for cleavage exist. This study documents a general approach to remove N‐terminal tags from recombinant proteins specifically designed to be efficiently captured by IMAC resins. In particular, site‐directed mutagenesis procedures have been used to modify the amino acid sequence of metal binding tags useful in IMAC purifications of recombinant proteins with the objective to increase cleavage efficiency with the exopeptidase, dipeptidyl aminopeptidase 1. These tags were specifically developed for application with borderline metal ions, such as Ni2+ or Cu2+ ions, chelated to the immobilized ligands, 1,4,7‐triazacyclononane (tacn) and its analogs. Due to the ability to control cleavage site structure and accessibility via site directed mutagenesis methods, these procedures offer considerable scope to obtain recombinant proteins with authentic native N‐termini, thus avoiding any impact on structural stability, humoral and cellular immune responses, or other biological functions. Collectively, these IMAC‐based methods provide a practical alternative to other procedures for the purification of recombinant proteins with tag removal. Overall, this approach is essentially operating as an integrated down‐stream purification capability.  相似文献   

19.
Traditional methods to generate CHO cell lines rely on random integration(s) of the gene of interest and result in unpredictable and unstable protein expression. In comparison, site‐specific recombination methods increase the recombinant protein expression by inserting transgene at a locus with specific expression features. PhiC31 serine integrase, catalyze unidirectional integration that occurs at higher frequency in comparison with the reversible integration carried out by recombinases such as Cre. In this study, using different ratios of phiC31 serine integrase, we evaluated the phiC31 mediated gene integration for expression of a humanized IgG1 antibody (mAb0014) in CHO‐S cells. Light chain (LC) and heavy chain (HC) genes were expressed in one operon under EF1α promoter and linked by internal ribosome entry site (IRES) element. The clonal selection was carried out by limiting dilution. Targeted integration approach increased recombinant protein yield and stability in cell pools. The productivity of targeted cell pools was about 4 mg/L and about 40 µg/L in the control cell pool. The number of integrated transgenes was about 19 fold higher than the control cells pools. Our results confirmed that the phiC31 integrase leads to mAb expression in more than 90% of colonies. The productivity of the PhiC31 integrated cell pools was stable for three months in the absence of selection as compared with conventional transfection methods. Hence, utilizing PhiC31 integrase can increase protein titer and decrease the required time for protein expression. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1570–1576, 2016  相似文献   

20.
Current methods for antibody structure prediction rely on sequence homology to known structures. Although this strategy often yields accurate predictions, models can be stereo‐chemically strained. Here, we present a fully automated algorithm, called AbPredict, that disregards sequence homology, and instead uses a Monte Carlo search for low‐energy conformations built from backbone segments and rigid‐body orientations that appear in antibody molecular structures. We find cases where AbPredict selects accurate loop templates with sequence identity as low as 10%, whereas the template of highest sequence identity diverges substantially from the query's conformation. Accordingly, in several cases reported in the recent Antibody Modeling Assessment benchmark, AbPredict models were more accurate than those from any participant, and the models' stereo‐chemical quality was consistently high. Furthermore, in two blind cases provided to us by crystallographers prior to structure determination, the method achieved <1.5 Ångstrom overall backbone accuracy. Accurate modeling of unstrained antibody structures will enable design and engineering of improved binders for biomedical research directly from sequence. Proteins 2016; 85:30–38. © 2016 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号