首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Background: Phosphorylation critically regulates the catalytic function of most members of the protein kinase superfamily. One such member, protein kinase C (PKC), contains two phosphorylation switches: a site on the activation loop that is phosphorylated by another kinase, and two autophosphorylation sites in the carboxyl terminus. For conventional PKC isozymes, the mature enzyme, which is present in the detergent-soluble fraction of cells, is quantitatively phosphorylated at the carboxy-terminal sites but only partially phosphorylated on the activation loop.Results: This study identifies the recently discovered phosphoinositide-dependent kinase 1, PDK-1, as a regulator of the activation loop of conventional PKC isozymes. First, studies in vivo revealed that PDK-1 controls the amount of mature (carboxy-terminally phosphorylated) conventional PKC. More specifically, co-expression of the conventional PKC isoform PKC βII with a catalytically inactive form of PDK-1 in COS-7 cells resulted in both the accumulation of non-phosphorylated PKC and a corresponding decrease in PKC activity. Second, studies in vitro using purified proteins established that PDK-1 specifically phosphorylates the activation loop of PKC α and βII. The phosphorylation of the mature PKC enzyme did not modulate its basal activity or its maximal cofactor-dependent activity. Rather, the phosphorylation of non-phosphorylated enzyme by PDK-1 triggered carboxy-terminal phosphorylation of PKC, thus providing the first step in the generation of catalytically competent (mature) enzyme.Conclusions: We have shown that PDK-1 controls the phosphorylation of conventional PKC isozymes in vivo. Studies performed in vitro establish that PDK-1 directly phosphorylates PKC on the activation loop, thereby allowing carboxy-terminal phosphorylation of PKC. These data suggest that phosphorylation of the activation loop by PDK-1 provides the first step in the processing of conventional PKC isozymes by phosphorylation.  相似文献   

2.
Endothelial cells (ECs) respond to TNF-alpha by altering their F-actin cytoskeleton and junctional permeability through mechanisms that include protein kinase C (PKC) and p38 MAPK. Ezrin, radixin, and moesin (ERM) regulate many cell processes that often require a conformational change of these proteins as a result of phosphorylation on a conserved threonine residue near the C terminus. This study tested the hypothesis that ERM proteins are phosphorylated on this critical threonine residue through TNF-alpha-induced activation of PKC and p38 and modulate permeability increases in pulmonary microvascular ECs. TNF-alpha induced ERM phosphorylation on the threonine residue that required activation of p38, PKC isoforms, and phosphatidylinositol-4-phosphate 5-kinase Ialpha, a major enzyme generating phosphatidylinositol 4,5-bisphosphate, and phosphorylated ERM were prominently localized at the EC periphery. TNF-alpha-induced ERM phosphorylation was accompanied by cytoskeletal changes, paracellular gap formation, and increased permeability to fluxes of dextran and albumin. These changes required activation of p38 and PKC and were completely prevented by inhibition of ERM protein expression using small interfering RNA. Thus, ERM proteins are phosphorylated through p38 and PKC-dependent mechanisms and modulate TNF-alpha-induced increases in endothelial permeability. Phosphorylation of ERM likely plays important roles in EC responses to TNF-alpha by modulating the F-actin cytoskeleton, adhesion molecules, and signaling events.  相似文献   

3.
Coronin-1, a hematopoietic cell-specific actin-binding protein, is thought to be involved in the phagocytic process through its interaction with actin filaments. The dissociation of coronin-1 from phagosomes after its transient accumulation on the phagosome surface is associated with lysosomal fusion. We previously reported that 1) coronin-1 is phosphorylated by protein kinase C (PKC), 2) coronin-1 has two phosphorylation sites, Ser-2 and Thr-412, and 3) Thr-412 of coronin-1 is phosphorylated during phagocytosis. In this study, we examined which PKC isoform is responsible for the phosphorylation of coronin-1 at Thr-412 by using isotype-specific PKC inhibitors and small interfering RNAs (siRNAs). Thr-412 phosphorylation of coronin-1 was suppressed by Gö6976, an inhibitor of PKCα and PKCβI. This phosphorylation was attenuated by siRNA for PKCα, but not by siRNA for PKCβ. Furthermore, Thr-412 of coronin-1 was phosphorylated by recombinant PKCα in vitro, but not by recombinant PKCβ. We next examined the effects of Gö6976 on the intracellular distribution of coronin-1 in HL60 cells during phagocytosis. The confocal fluorescence microscopic observation showed that coronin-1 was not dissociated from phagosomes in Gö6976-treated cells. These results indicate that phosphorylation of coronin-1 at Thr-412 by PKCα regulates intracellular distribution during phagocytosis.  相似文献   

4.
A member of the novel protein kinase C (PKC) subfamily, PKC, is an essential component of the T cell synapse and is required for optimal T cell activation and interleukin-2 production. Selective involvement of PKC in TCR signaling makes this enzyme an attractive therapeutic target in T cell-mediated disease processes. In this report we describe the crystal structure of the catalytic domain of PKC at 2.0-A resolution. Human recombinant PKC kinase domain was expressed in bacteria as catalytically active phosphorylated enzyme and co-crystallized with its subnanomolar, ATP site inhibitor staurosporine. The structure follows the classic bilobal kinase fold and shows the enzyme in its active conformation and phosphorylated state. Inhibitory interactions between conserved features of staurosporine and the ATP-binding cleft are accompanied by closing of the glycine-rich loop, which also maintains an inhibitory arrangement by blocking the phosphate recognition subsite. The two major phosphorylation sites, Thr-538 in the activation loop and Ser-695 in the hydrophobic motif, are both occupied in the structure, playing key roles in stabilizing active conformation of the enzyme and indicative of PKC autocatalytic phosphorylation and activation during bacterial expression. The PKC-staurosporine complex represents the first kinase domain crystal structure of any PKC isotypes to be determined and as such should provide valuable insight into PKC specificity and into rational drug design strategies for PKC selective leads.  相似文献   

5.
Bruton's tyrosine kinase (BTK) plays a key role in B cell receptor signaling and is considered a promising drug target for lymphoma and inflammatory diseases. We have determined the X-ray crystal structures of BTK kinase domain in complex with six inhibitors from distinct chemical classes. Five different BTK protein conformations are stabilized by the bound inhibitors, providing insights into the structural flexibility of the Gly-rich loop, helix C, the DFG sequence, and activation loop. The conformational changes occur independent of activation loop phosphorylation and do not correlate with the structurally unchanged WEI motif in the Src homology 2-kinase domain linker. Two novel activation loop conformations and an atypical DFG conformation are observed representing unique inactive states of BTK. Two regions within the activation loop are shown to structurally transform between 3(10)- and α-helices, one of which collapses into the adenosine-5'-triphosphate binding pocket. The first crystal structure of a Tec kinase family member in the pharmacologically important DFG-out conformation and bound to a type II kinase inhibitor is described. The different protein conformations observed provide insights into the structural flexibility of BTK, the molecular basis of its regulation, and the structure-based design of specific inhibitors.  相似文献   

6.
The priming of eosinophils by cytokines leading to augmented response to chemoattractants and degranulating stimuli is a characteristic feature of eosinophils in the course of allergic inflammation and asthma. Actin reorganization and integrin activation are implicated in eosinophil priming by GM-CSF, but their molecular mechanism of action is unknown. In this regard, we investigated the role of L-plastin, an eosinophil phosphoprotein that we identified from eosinophil proteome analysis. Phosphoproteomic analysis demonstrated the upregulation of phosphorylated L-plastin after eosinophil stimulation with GM-CSF. Additionally, coimmunoprecipitation studies demonstrated a complex formation of phosphorylated L-plastin with protein kinase CβII (PKCβII), GM-CSF receptor α-chain, and two actin-associated proteins, paxilin and cofilin. Inhibition of PKCβII with 4,5-bis(4-fluoroanilino)phtalimide or PKCβII-specific small interfering RNA blocked GM-CSF-induced phosphorylation of L-plastin. Furthermore, flow cytometric analysis also showed an upregulation of α(M)β(2) integrin, which was sensitive to PKCβII inhibition. In chemotaxis assay, GM-CSF treatment allowed eosinophils to respond to lower concentrations of eotaxin, which was abrogated by the above-mentioned PKCβII inhibitors. Similarly, inhibition of PKCβII blocked GM-CSF induced priming for degranulation as assessed by release of eosinophil cationic protein and eosinophil peroxidase in response to eotaxin. Importantly, eosinophil stimulation with a synthetic L-plastin peptide (residues 2-19) phosphorylated on Ser(5) upregulated α(M)β(2) integrin expression and increased eosinophil migration in response to eotaxin independent of GM-CSF stimulation. Our results establish a causative role for PKCβII and L-plastin in linking GM-CSF-induced eosinophil priming for chemotaxis and degranulation to signaling events associated with integrin activation via induction of PKCβII-mediated L-plastin phosphorylation.  相似文献   

7.
The addition of phorbol esters to U937 leukemic cells stimulates the phosphorylation of c-Jun on serines 63 and 73. To isolate the protein kinase which stimulates this phosphorylation, we have used heparin-Sepharose chromatography followed by affinity chromatography over glutathione-Sepharose beads bound with a fusion protein of glutathione S-transferase and amino acids 5-89 of c-Jun (GST-c-Jun). Using this procedure we purify a 67-kDa protein which is capable of phosphorylating GST-c-Jun as well as the complete c-Jun protein. By making mutations in serines 63 and 73 and then creating a fusion protein with GST (GST-c-Jun mut), we demonstrate that this protein kinase specifically phosphorylates these sites in the c-Jun amino terminus. Treatment of purified c-Jun amino-terminal protein kinase (cJAT-PK) with phosphatase 2A inhibits its ability to phosphorylate GST-c-Jun. This inactivated enzyme can be reactivated by phosphorylation with protein kinase C (PKC), although PKC is not capable of phosphorylating the GST-c-Jun substrate. Because v-Jun cannot be phosphorylated in vivo, we compared the ability of cJAT-PK to bind to GST-v-Jun or GST-c-Jun mut. The cJAT-PK bound 50-fold better to GST-c-Jun mut than GST-v-Jun suggesting that the delta domain which is missing in v-Jun plays a role in binding the cJAT-PK. These results suggest that there is a protein kinase cascade mediated by protein phosphatases and PKC which regulates c-Jun phosphorylation.  相似文献   

8.
The phosphorylation of Kvβ2 was investigated by different protein kinases. Protein kinase A catalytic subunit (PKA-CS) yielded the greatest phosphorylation of recombinant Kvβ2 (rKvβ2), with limited phosphorylation by protein kinase C catalytic subunit (PKC-CS) and no detectable phosphorylation by casein kinase II (CKII). Protein kinase(s) from adult rat brain lysate phosphorylated both rKvβ2 and endogenous Kvβ. The PKA inhibitor, PKI 6-22, fully inhibited PKA-mediated phophorylation of rKvβ2 yet showed minimal inhibition of kinase activity present in rat brain. The inhibitor Gö 6983, that blocks PKCα, PKCβ, PKCγ, PKCδ and PKCζ activities, inhibited rKvβ2 phosphorylation by rat brain kinases, with no inhibition by Gö 6976 which blocks PKCα and PKCβΙ activities. Dose-response analysis of Gö 6983 inhibitory activity indicates that at least two PKC isozymes account for the kinase activity present in rat brain. Τhus, while PKA was the most active protein kinase to phosphorylate rKvβ2 in vitro, Kvβ2 phosphorylation in the rat brain is mainly mediated by PKC isozymes.  相似文献   

9.
Ca(2+)-independent or novel protein kinase Cs (nPKCs) contain an N-terminal C2 domain of unknown function. Removal of the C2 domain of the Aplysia nPKC Apl II allows activation of the enzyme at lower concentrations of phosphatidylserine, suggesting an inhibitory role for the C2 domain in enzyme activation. However, the mechanism for C2 domain-mediated inhibition is not known. Mapping of the autophosphorylation sites for protein kinase C (PKC) Apl II reveals four phosphopeptides in the regulatory domain of PKC Apl II, two of which are in the C2 domain at serine 2 and serine 36. Unlike most PKC autophosphorylation sites, these serines could be phosphorylated in trans. Interestingly, phosphorylation of serine 36 increased binding of the C2 domain to phosphatidylserine membranes in vitro. In cells, PKC Apl II phosphorylation at serine 36 was increased by PKC activators, and PKC phosphorylated at this position translocated more efficiently to membranes. Moreover, mutation of serine 36 to alanine significantly reduced membrane translocation of PKC Apl II. We suggest that translocation of nPKCs is regulated by phosphorylation of the C2 domain.  相似文献   

10.
We determined whether the beta or gamma protein kinase C (PKC) subtypes implicated in long-term potentiation (LTP) selectively regulates protein F1 phosphorylation. Purified bovine PKC subtypes and recombinant PKC subtypes activated by phosphatidylserine (PS) and calcium were tested for their relative ability to phosphorylate purified rat protein F1 (a.k.a. GAP-43). After equalizing enzyme activity against histone, the recombinant beta II PKC phosphorylated protein F1 to a 6 fold greater extent than the recombinant gamma PKC. Bovine beta I PKC phosphorylated protein F1 to a 3 fold greater extent than bovine gamma PKC. Even when PS was replaced by lipoxin B4, which can selectively increase gamma PKC activity, beta I PKC was still superior to gamma PKC in phosphorylating protein F1. Taken together with previous cellular studies of brain showing parallel levels of expression of beta PKC mRNA and protein F1 mRNA, the present results make it attractive to propose that beta PKC regulates protein F1 phosphorylation during the development of synaptic plasticity.  相似文献   

11.
Glycoprotein IIb-IIIa (GPIIb-IIIa) is the fibrinogen receptor on activated platelets. GPIIIa is phosphorylated in resting platelets and the incorporation of 32Pi increases with platelet activation. To address the functional significance of this modification, the stoichiometry of GPIIIa phosphorylation was determined in resting and activated platelets by estimating the specific activity of metabolic [gamma-32P]ATP from the specific activity of phosphatidic acid. Approximately 0.01 mol of P/mol of GPIIIa was phosphorylated in resting platelets and 0.03 mol of P/mol of GPIIIa was phosphorylated in thrombin-, phorbol ester-, or U46619-treated platelets. Myosin light chain (MLC) phosphorylation served as a positive control for this method (1.2 mol of P/mol of MLC). Phosphorylation of purified GPIIb-IIIa by human platelet protein kinase C (PKC) resulted in levels of GPIIIa phosphorylation similar to that in platelets (0.05 mol of P/mol of GPIIIa). However, while GPIIIa in platelets was phosphorylated primarily on threonine, purified GPIIIa treated with PKC was phosphorylated primarily on serine. These results suggest that PKC may not directly phosphorylate GPIIIa in intact platelets. Ca2+/calmodulin-dependent kinase II phosphorylated purified GPIIIa to higher levels (0.5 mol of P/mol of GPIIIa) with phosphorylation on both threonine and serine. The limited phosphorylation of GPIIIa in intact platelets suggests that this event is unlikely to affect functions involving large populations of GPIIb-IIIa, such as its conversion to a fibrinogen receptor. However, these results may suggest the existence of a more readily phosphorylated subpopulation of GPIIb-IIIa with potentially distinct structural or functional properties.  相似文献   

12.
Steady-state ATPase activity, calcium binding, formation of phosphorylated enzyme intermediate with ATP in the presence of Ca2+, or with Pi in the absence of Ca2+, and association of ATPase molecules into bidimensional crystals, were studied using vesicular fragments of sarcoplasmic reticulum. The vesicles were exposed to increasing concentrations of urea in order to produce stepwise perturbations of protein structure and to test the effect of such perturbations on the partial reactions and crystallization pattern of sarcoplasmic reticulum ATPase. It was found that low concentrations of urea produce specific inhibition of Pi binding and enzyme phosphorylation with Pi (but not with ATP). Intermediate concentrations of urea reduce calcium binding affinity and cooperativity, while the ability of the enzyme to be phosphorylated with ATP and to form dimeric arrays is retained. These observations demonstrate that the sarcoplasmic reticulum ATPase is sensitive to physical perturbations producing specific and reversible changes in the Pi and calcium binding domains. These changes interfere with enzyme turnover, indicating that conformational effects related to binding and dissociation of Pi and calcium are tightly coupled to catalysis and energy transduction. Higher concentrations of urea produce irreversible denaturation, accompanied by total inhibition of calcium binding, enzyme phosphorylation with ATP, and association of ATPase chains in bidimensional crystals. Under these conditions, protein unfolding is manifested by a sharp reduction in the fluorescence of intrinsic tryptophan residues and of a covalently bound probe. These observations suggest that dimeric association and a tendency to form bidimensional crystals correspond to a basic property of the enzyme, which is linked to its native structure and whose character may change in the presence of ligands and/or during the catalytic cycle. On the other hand, the decavanadate-induced crystallization pattern cannot be interpreted in terms of a mechanistic relationship of ATPase dimerization with one of the intermediate states of the catalytic cycle.  相似文献   

13.
Enhancement of methylesterase activity of the response regulator CheB is dependent upon phosphorylation of the N-terminal regulatory domain of the enzyme. This domain plays a dual role in the regulation of methylesterase activity with an inhibitory effect in the unphosphorylated state and a stimulatory effect in the phosphorylated state. Structural studies of the unphosphorylated state have indicated that the basis for the regulatory domain's inhibitory effect is partial blockage of access of substrate to the active site suggesting that the activation upon phosphorylation involves a repositioning of the two domains with respect to each other. We report in this study evidence for phosphorylation-dependent conformational changes in CheB. Differences in rates of proteolytic cleavage by trypsin between the phosphorylated and unphosphorylated states have been observed at three sites in the protein with one site, 113, within the regulatory domain and two sites, 134 and 148, lying within the interdomain linker. These results support the hypothesis for the mechanism for the activation of CheB wherein phosphorylation of a specific aspartate residue within the N-terminal domain results in a propagated conformational change within the regulatory domain leading to a repositioning of its two domains. Presumably, structural changes in the regulatory domain of CheB facilitate a repositioning of the N- and C-terminal domains, leading to stimulation of methylesterase activity.  相似文献   

14.
D Garland  H G Nimmo 《FEBS letters》1984,165(2):259-264
NADP+ can protect active isocitrate dehydrogenase against attack by several proteases. Inactive phosphorylated isocitrate dehydrogenase is much less susceptible to proteolysis than the active enzyme, and it is not protected by NADP+. The results suggest that binding of NADP+ to, or phosphorylation of, active isocitrate dehydrogenase induces similar conformational states. Fluorescence titration experiments show that NADPH can bind to active but not to inactive isocitrate dehydrogenase. It is suggested that the phosphorylation of isocitrate dehydrogenase may occur close to its coenzyme binding site.  相似文献   

15.
Mitogen-activated protein kinases (MAPKs) are serine-threonine kinases that participate in signal transduction pathways. p38 MAPKs have four isoforms (p38α, p38β, p38γ, and p38δ) which are involved in multiple cellular functions such as proliferation, differentiation, survival, and migration. MAPK kinases phosphorylate p38s in the dual-phosphorylation motif, Thr-Gly-Tyr, located in their activation loop, which induces a conformational change that increases ATP binding affinity and catalytic activity. Several works have proposed that MAPK dynamics is a key factor in determining their function. However, we still do not understand the dynamical changes that lead to MAPK activation. In this work we have used molecular dynamics techniques to study the dynamical changes associated with p38γ activation, the only fully active MAPK crystallized so far. We performed MD simulations of p38γ in three different states, fully active with ATP, active without ATP, and inactive. We found that the dynamical fluctuations of the docking sites, important for protein-protein interactions, are regulated allosterically by changes in the active site. Interestingly, in the phosphorylated and ATP-bound states the whole protein dynamics lead to concerted motions of whole protein domains in contrast to the inactive state. The binding/unbinding of ATP participates in the reorientation of the two domains and in the regulation of protein plasticity. Our study shows that beyond the conformational changes associated with MAPK activation their correlated dynamics are highly regulated by phosphorylation and ATP binding. This means that MAPK plasticity may have a role in their catalytic activity, specificity, and protein-protein interactions and, therefore, in the outcome of the signaling network.  相似文献   

16.
Adenosine-5'-phosphosulfate kinase (ATP:adenylylsulfate 3'-phosphotransferase), the second enzyme in the pathway of sulfate activation, has been purified (approximately 300-fold) to homogeneity from an Escherichia coli K12 strain, which overproduces the enzyme activity (approximately 100-fold). The purified enzyme has a specific activity of 153 mumol of 3'-phosphoadenosine 5'-phosphosulfate (PAPS) formed/min/mg of protein at 25 degrees C. The enzyme is remarkably efficient with a Vmax/Km(APS) of greater than 10(8) M-1 s-1, indicating that at physiologically low substrate concentrations the reaction is essentially diffusion limited. Upon incubation with MgATP a phosphorylated enzyme is formed; the isolated phosphorylated enzyme can transfer its phosphoryl group to adenosine 5'-phosphosulfate (APS) to form PAPS or to ADP to form ATP. The phosphorylated enzyme exists as a dimer of identical 21-kilodalton subunits, while the dephosphorylated form primarily exists as a tetramer. Divalent cations are required for activity with Mg(II), Mn(II), Co(II), and Cd(II) activating. Studies of the divalent metal-dependent stereoselectivity for the alpha- and beta-phosphorothioate derivatives of ATP indicate metal coordination to at least the alpha-phosphoryl group of the nucleotide. Steady state kinetic studies of the reverse reaction indicate a sequential mechanism, with a rapid equilibrium ordered binding of MgADP before PAPS. In the forward direction APS is a potent substrate inhibitor, competitive with ATP, complicating kinetic studies. The primary kinetic mechanism in the forward direction is sequential. Product inhibition studies at high concentrations of APS suggest an ordered kinetic mechanism with MgATP binding before APS. At submicromolar concentrations of APS, product inhibition by both MgADP and PAPS is more complex and is not consistent with a solely ordered sequential mechanism. The formation of a phosphorylated enzyme capable of transferring its phosphoryl group to APS or to MgADP suggests that a ping-pong pathway in which the rate of MgADP dissociation is comparable to the rate of APS binding might contribute at very low concentrations of APS. The substrate inhibition by APS is consistent with APS binding to the enzyme, to form a dead-end E.APS complex.  相似文献   

17.
Regulation of phospholipase D2 activity by protein kinase C alpha   总被引:1,自引:0,他引:1  
It has been well documented that protein kinase C (PKC) plays an important role in regulation of phospholipase D (PLD) activity. Although PKC regulation of PLD1 activity has been studied extensively, the role of PKC in PLD2 regulation remains to be established. In the present study it was demonstrated that phorbol 12-myristate 13-acetate (PMA) induced PLD2 activation in COS-7 cells. PLD2 was also phosphorylated on both serine and threonine residues after PMA treatment. PKC inhibitors Ro-31-8220 and bisindolylmaleimide I inhibited both PMA-induced PLD2 phosphorylation and activation. However, G? 6976, a PKC inhibitor relatively specific for conventional PKC isoforms, almost completely abolished PLD2 phosphorylation by PMA but only slightly inhibited PLD2 activation. Furthermore, time course studies showed that phosphorylation of PLD2 lagged behind its activation by PMA. Concentration curves for PMA action on PLD2 phosphorylation and activation also showed that PLD2 was activated by PMA at concentrations at which PMA didn't induce phosphorylation. A kinase-deficient mutant of PKCalpha stimulated PLD2 activity to an even higher level than wild type PKCalpha. Co-expression of wild type PKCalpha, but not PKCdelta, greatly enhanced both basal and PMA-induced PLD2 phosphorylation. A PKCdelta-specific inhibitor, rottlerin, failed to inhibit PMA-induced PLD2 phosphorylation and activation. Co-immunoprecipitation studies indicated an association between PLD2 and PKCalpha under basal conditions that was further enhanced by PMA. Time course studies of the effects of PKCalpha on PLD2 showed that as the phosphorylation of PLD2 increased, its activity declined. In summary, the data demonstrated that PLD2 is activated and phosphorylated by PMA and PKCalpha in COS-7 cells. However, the phosphorylation is not required for PKCalpha to activate PLD2. It is suggested that interaction rather than phosphorylation underscores the activation of PLD2 by PKC in vivo and that phosphorylation may contribute to the inactivation of the enzyme.  相似文献   

18.
The hematoxylin-stainable protein (HSP) in keratohyalin granules of the newborn rat epidermis was found to have the same amino acid composition and the same inhibitory and immunological properties as cystatin alpha. However, only its pI value (4.7) differed from that of cystatin alpha (5.3). Alkaline phosphatase treatment of HSP changed its pI value from 4.7 to 5.3. This pI change was inhibited by EDTA, an inhibitor of alkaline phosphatase. Furthermore, 32P from [gamma-32P]ATP was incorporated into recombinant cystatin alpha by a protein kinase C (PKC) preparation in the presence of phosphatidyl serine and Ca2+ ions as co-factors. The incorporation increased dose-dependently with the added cystatin alpha and was inhibited significantly by H-7, a specific inhibitor of PKC. SDS-PAGE autoradiography of the 32P-labeled proteins showed that 32P was incorporated into the cystatin alpha. This incorporation was not observed by the action of cAMP-dependent protein kinase. Therefore, it is highly possible that the HSP is a phosphorylated cystatin alpha and that the phosphorylation is catalyzed specifically by PKC.  相似文献   

19.
Ceramide levels are strongly increased by stimulation of renal mesangial cells with nitric oxide (NO). This effect was shown previously to be due to a dual action of NO, comprising an activation of sphingomyelinases and an inhibition of ceramidase activity. In this study we show that the NO-triggered inhibition of neutral ceramidase activity is paralleled by a down-regulation at the protein level. A complete loss of neutral ceramidase protein is obtained after 24 h of stimulation. Whereas the selective proteasome inhibitor lactacystin blocked NO-evoked ceramidase degradation, several caspase inhibitors were ineffective. Moreover, the NO-induced degradation is reversed by the protein kinase C (PKC) activator, 12-O-tetradecanoylphorbol-13-acetate (TPA), and also by the physiological PKC activators platelet-derived growth factor-BB (PDGF), angiotensin II and ATP, resulting in a normalization of neutral ceramidase protein as well as activity. In vivo phosphorylation studies using (32)P(i)-labeled mesangial cells revealed that TPA, PDGF, angiotensin II, and ATP trigger an increased phosphorylation of the neutral ceramidase, which is blocked by the broad spectrum PKC inhibitor Ro-31 8220 but not by CGP 41251, which has a preferential action on Ca(2+)-dependent isoforms, thus suggesting the involvement of a Ca(2+)-independent PKC isoform. In vitro phosphorylation assays using recombinant PKC isoenzymes and neutral ceramidase immunoprecipitated from unstimulated mesangial cells show that particularly the PKC-delta isoform and to a lesser extent the PKC-alpha isoform are efficient in directly phosphorylating neutral ceramidase. In summary, our data show that NO is able to induce degradation of neutral ceramidase, thereby promoting accumulation of ceramide in the cell. This effect is reversed by PKC activation, most probably by the PKC-delta isoenzyme, which can directly phosphorylate and thereby prevent neutral ceramidase degradation. These novel regulatory interactions will provide therapeutically valuable information to target neutral ceramidase stability and subsequent ceramide accumulation.  相似文献   

20.
Phosphorylation of calcium-activated protein kinase Cs (PKCs) at threonine 634 and/or threonine 641 increases during long term potentiation or associative learning in rodents. In the marine mollusk Aplysia, persistent activation of the calcium-activated PKC Apl I occurs during long term facilitation. We have raised an antibody to a peptide from PKC Apl I phosphorylated at threonines 613 and 620 (sites homologous to threonines 634 and 641). This antibody recognizes PKC Apl I only when it is phosphorylated at threonine 613. Both phorbol esters and serotonin increase the percentage of kinase phosphorylated at threonine 613 in Aplysia neurons. Furthermore, the pool of PKC that is phosphorylated at threonine 613 in neurons is resistant to both membrane translocation and down-regulation. Replacement of threonine 613 with alanine increased the affinity of PKC Apl I for calcium, suggesting that phosphorylation of this site may reduce the ability of PKC Apl I to translocate to membranes in the presence of calcium. We propose that phosphorylation of this site is important for removal of PKC from the membrane and may be a mechanism for negative feedback of PKC activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号