首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Covariation between positions in a multiple sequence alignment may reflect structural, functional, and/or phylogenetic constraints and can be analyzed by a wide variety of methods. We explored several of these methods for their ability to identify covarying positions related to the divergence of a protein family at different hierarchical levels. Specifically, we compared seven methods on a model system composed of three nested sets of G‐protein‐coupled receptors (GPCRs) in which a divergence event occurred. The covariation methods analyzed were based on: χ2 test, mutual information, substitution matrices, and perturbation methods. We first analyzed the dependence of the covariation scores on residue conservation (measured by sequence entropy), and then we analyzed the networking structure of the top pairs. Two methods out of seven—OMES (Observed minus Expected Squared) and ELSC (Explicit Likelihood of Subset Covariation)—favored pairs with intermediate entropy and a networking structure with a central residue involved in several high‐scoring pairs. This networking structure was observed for the three sequence sets. In each case, the central residue corresponded to a residue known to be crucial for the evolution of the GPCR family and the subfamily specificity. These central residues can be viewed as evolutionary hubs, in relation with an epistasis‐based mechanism of functional divergence within a protein family. Proteins 2014; 82:2141–2156. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
Short‐chain dehydrogenase/reductase (SDR) is distributed in many organisms, from bacteria to humans, and has significant roles in metabolism of carbohydrates, lipids, amino acids, and other biomolecules. An important intermediate in acidic polysaccharide metabolism is 2‐keto‐3‐deoxy‐d ‐gluconate (KDG). Recently, two short and long loops in Sphingomonas KDG‐producing SDR enzymes (NADPH‐dependent A1‐R and NADH‐dependent A1‐R′) involved in alginate metabolism were shown to be crucial for NADPH or NADH coenzyme specificity. Two SDR family enzymes—KduD from Pectobacterium carotovorum (PcaKduD) and DhuD from Streptococcus pyogenes (SpyDhuD)—prefer NADH as coenzyme, although only PcaKduD can utilize both NADPH and NADH. Both enzymes reduce 2,5‐diketo‐3‐deoxy‐d ‐gluconate to produce KDG. Tertiary and quaternary structures of SpyDhuD and PcaKduD and its complex with NADH were determined at high resolution (approximately 1.6 Å) by X‐ray crystallography. Both PcaKduD and SpyDhuD consist of a three‐layered structure, α/β/α, with a coenzyme‐binding site in the Rossmann fold; similar to enzymes A1‐R and A1‐R′, both arrange the two short and long loops close to the coenzyme‐binding site. The primary structures of the two loops in PcaKduD and SpyDhuD were similar to those in A1‐R′ but not A1‐R. Charge neutrality and moderate space at the binding site of the nucleoside ribose 2′ coenzyme region were determined to be structurally crucial for dual‐coenzyme specificity in PcaKduD by structural comparison of the NADH‐ and NADPH‐specific SDR enzymes. The corresponding site in SpyDhuD was negatively charged and spatially shallow. This is the first reported study on structural determinants in SDR family KduD related to dual‐coenzyme specificity. Proteins 2016; 84:934–947. © 2016 Wiley Periodicals, Inc.  相似文献   

3.
The rate-limiting step of ethanol oxidation by alcohol dehydrogenase (E) at substrate inhibitory conditions (greater than 500 mM ethanol) is shown to be the dissociation rate of NADH from the abortive E-ethanol-NADH complex. The dissociation rate constant of NADH decreased hyperbolically from 5.2 to 1.4 s-1 in the presence of ethanol causing a decrease in the Kd of NADH binding from 0.3 microM for the binary complex to 0.1 microM for the abortive complex. Correspondingly, ethanol binding to E-NADH (Kd = 37 mM) was tighter than to enzyme (Kd = 109 mM). The binding rate of NAD+ (7 X 10(5) M-1s-1) to enzyme was not affected by the presence of ethanol, further substantiating that substrate inhibition is totally due to a decrease in the dissociation rate constant of NADH from the abortive complex. Substrate inhibition was also observed with the coenzyme analog, APAD+, but a single transient was not found to be rate limiting. Nevertheless, the presence of substrate inhibition with APAD+ is ascribed to a decrease in the dissociation rate of APADH from 120 to 22 s-1 for the abortive complex. Studies to discern the additional limiting transient(s) in turnover with APAD+ and NAD+ were unsuccessful but showed that any isomerization of the enzyme-reduced coenzyme-aldehyde complex is not rate limiting. Chloride increases the rate of ethanol oxidation by hyperbolically increasing the dissociation rate constant of NADH from enzyme and the abortive complex to 12 and 2.8 s-1, respectively. The chloride effect is attributed to the binding of chloride to these complexes, destabilizing the binding of NADH while not affecting the binding of ethanol.  相似文献   

4.
Gox2253 from Gluconobacter oxydans belongs to the short‐chain dehydrogenases/reductases family, and catalyzes the reduction of heptanal, octanal, nonanal, and decanal with NADPH. To develop a robust working platform to engineer novel G. oxydans oxidoreductases with designed coenzyme preference, we adopted a structure based rational design strategy using computational predictions that considers the number of hydrogen bonds formed between enzyme and docked coenzyme. We report the crystal structure of Gox2253 at 2.6 Å resolution, ternary models of Gox2253 mutants in complex with NADH/short‐chain aldehydes, and propose a structural mechanism of substrate selection. Molecular dynamics simulation shows that hydrogen bonds could form between 2′‐hydroxyl group in the adenosine moiety of NADH and the side chain of Gox2253 mutant after arginine at position 42 is replaced with tyrosine or lysine. Consistent with the molecular dynamics prediction, Gox2253‐R42Y/K mutants can use both NADH and NADPH as a coenzyme. Hence, the strategies here could provide a practical platform to engineer coenzyme selectivity for any given oxidoreductase and could serve as an additional consideration to engineer substrate‐binding pockets. Proteins 2014; 82:2925–2935. © 2014 Wiley Periodicals, Inc.  相似文献   

5.
Maleylacetate reductase plays a crucial role in catabolism of resorcinol by catalyzing the NAD(P)H‐dependent reduction of maleylacetate, at a carbon–carbon double bond, to 3‐oxoadipate. The crystal structure of maleylacetate reductase from Rhizobium sp. strain MTP‐10005, GraC, has been elucidated by the X‐ray diffraction method at 1.5 Å resolution. GraC is a homodimer, and each subunit consists of two domains: an N‐terminal NADH‐binding domain adopting an α/β structure and a C‐terminal functional domain adopting an α‐helical structure. Such structural features show similarity to those of the two existing families of enzymes in dehydroquinate synthase‐like superfamily. However, GraC is distinct in dimer formation and activity expression mechanism from the families of enzymes. Two subunits in GraC have different structures from each other in the present crystal. One subunit has several ligands mimicking NADH and the substrate in the cleft and adopts a closed domain arrangement. In contrast, the other subunit does not contain any ligand causing structural changes and adopts an open domain arrangement. The structure of GraC reveals those of maleylacetate reductase both in the coenzyme, substrate‐binding state and in the ligand‐free state. The comparison of both subunit structures reveals a conformational change of the Tyr326 loop for interaction with His243 on ligand binding. Structures of related enzymes suggest that His243 is likely a catalytic residue of GraC. Mutational analyses of His243 and Tyr326 support the catalytic roles proposed from structural information. The crystal structure of GraC characterizes the maleylacetate reductase family as a third family in the dehydroquinate synthase‐like superfamily. Proteins 2016; 84:1029–1042. © 2016 Wiley Periodicals, Inc.  相似文献   

6.
Pig heart lactate dehydrogenase was studied in the direction of pyruvate and NADH formation by recording rapid changes in extinction, proton concentration, nucleotide fluorescence and protein fluorescence. Experiments measuring extinction changes show that there is a very rapid formation of NADH within the first millisecond and that the amplitude of this phase (phase 1) increases threefold over the pH range 6-8. A second transient rate (phase 2) can also be distinguished (whose rate is pH-dependent), followed by a steady-state rate (phase 3) of NADH production. The sum of the amplitudes of the first two phases corresponds to 1mol of NADH produced/mol of active sites of lactate dehydrogenase. Experiments that measured the liberation of protons by using Phenol Red as an indicator show that no proton release occurs during the initial very rapid formation of NADH (phase 1), but protons are released during subsequent phases of NADH production. Fluorescence experiments help to characterize these phases, and show that the very rapid phase 1 corresponds to the establishment of an equilibrium between E(NAD) (Lactate) right harpoon over left harpoon H(+)E(NADH) (Pyruvate). This equilibrium can be altered by changing lactate concentration or pH, and the H(+)E(NADH) (Pyruvate) species formed has very low nucleotide fluorescence and quenched protein fluorescence. Phase 2 corresponds to the dissociation of pyruvate and a proton from the complex with a rate constant of 1150s(-1). The observed rate constant is slower than this and is proportional to the position of the preceding equilibrium. The E(NADH) formed has high nucleotide fluorescence and quenched protein fluorescence. The reaction, which is rate-limiting during steady-state turnover, must then follow this step and be involved with dissociation of NADH from the enzyme or some conformational change immediately preceding dissociation. Several inhibitory complexes have also been studied including E(NAD+) (Oxamate) and E(NADH) (Oxamate') and the abortive ternary complex E(NADH) (Lactate). The rate of NADH dissociation from the enzyme was measured and found to be the same whether measured by ligand displacement or by relaxation experiments. These results are discussed in relation to the overall mechanism of lactate dehydrogenase turnover and the independence of the four binding sites in the active tetramer.  相似文献   

7.
The short‐chain dehydrogenases (SDR) constitute one of the oldest and largest families of enzymes with over 46,000 members in sequence databases. About 25% of all known dehydrogenases belong to the SDR family. SDR enzymes have critical roles in lipid, amino acid, carbohydrate, hormone, and xenobiotic metabolism as well as in redox sensor mechanisms. This family is present in archaea, bacteria, and eukaryota, emphasizing their versatility and fundamental importance for metabolic processes. We identified a cluster of eight SDRs in the mosquito Aedes aegypti (AaSDRs). Members of the cluster differ in tissue specificity and developmental expression. Heterologous expression produced recombinant proteins that had diverse substrate specificities, but distinct from the conventional insect alcohol (ethanol) dehydrogenases. They are all NADP+‐dependent and they have S‐enantioselectivity and preference for secondary alcohols with 8–15 carbons. Homology modeling was used to build the structure of AaSDR1 and two additional cluster members. The computational study helped explain the selectivity toward the (10S)‐isomers as well as the reduced activity of AaSDR4 and AaSDR9 for longer isoprenoid substrates. Similar clusters of SDRs are present in other species of insects, suggesting similar selection mechanisms causing duplication and diversification of this family of enzymes.  相似文献   

8.
Eph receptors comprise the largest known family of receptor tyrosine kinases in mammals. They bind members of a second family, the ephrins. As both Eph receptors and ephrins are membrane bound, interactions permit unusual bidirectional cell–cell signaling. Eph receptors and ephrins each form two classes, A and B, based on sequences, structures, and patterns of affinity: Class A Eph receptors bind class A ephrins, and class B Eph receptors bind class B ephrins. The only known exceptions are the receptor EphA4, which can bind ephrinB2 and ephrinB3 in addition to the ephrin‐As (Bowden et al., Structure 2009;17:1386–1397); and EphB2, which can bind ephrin‐A5 in addition to the ephrin‐Bs (Himanen et al., Nat Neurosci 2004;7:501–509). A crystal structure is available of the interacting domains of the EphA4‐ephrin B2 complex (wwPDB entry 2WO2) (Bowden et al., Structure 2009;17:1386–1397). In this complex, the ligand‐binding domain of EphA4 adopts an EphB‐like conformation. To understand why other cross‐class EphA receptor–ephrinB complexes do not form, we modeled hypothetical complexes between (1) EphA4–ephrinB1, (2) EphA4–ephrinB3, and (3) EphA2–ephrinB2. We identify particular residues in the interface region, the size variations of which cause steric clashes that prevent formation of the unobserved complexes. The sizes of the sidechains of residues at these positions correlate with the pattern of binding affinity. Proteins 2014; 82:349–353. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
The coiled‐coil is one of the most common protein structural motifs. Amino acid sequences of regions that participate in coiled‐coils contain a heptad repeat in which every third then forth residue is occupied by a hydrophobic residue. Here we examine the consequences of a “stutter,” a deviation of the idealized heptad repeat that is found in the central coiled‐coil of influenza hemagluttinin HA2. Characterization of a peptide containing the native stutter‐containing HA2 sequence, as well as several variants in which the stutter was engineered out to restore an idealized heptad repeat pattern, revealed that the stutter is important for allowing coiled‐coil formation in the WT HA2 at both neutral and low pH (7.1 and 4.5). By contrast, all variants that contained idealized heptad repeats exhibited marked pH‐dependent coiled‐coil formation with structures forming much more stably at low pH. A crystal structure of one variant containing an idealized heptad repeat, and comparison to the WT HA2 structure, suggest that the stutter distorts the optimal interhelical core packing arrangement, resulting in unwinding of the coiled‐coil superhelix. Interactions between acidic side chains, in particular E69 and E74 (present in all peptides studied), are suggested to play a role in mediating these pH‐dependent conformational effects. This conclusion is partially supported by studies on HA2 variant peptides in which these positions were altered to aspartic acid. These results provide new insight into the structural role of the heptad repeat stutter in HA2. Proteins 2014; 82:2220–2228. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
11.
Gerratana B  Cleland WW  Frey PA 《Biochemistry》2001,40(31):9187-9195
Escherichia coli dTDP-glucose 4,6-dehydratase and UDP-galactose 4-epimerase are members of the short-chain dehydrogenase/reductase SDR family. A highly conserved triad consisting of Ser/Thr, Tyr, and Lys is present in the active sites of these enzymes as well in other SDR proteins. Ser124, Tyr149, and Lys153 in the active site of UDP-galactose 4-epimerase are located in similar positions as the corresponding Thr134, Tyr160, and Lys164, in the active site of dTDP-glucose 4,6-dehydratase. The role of these residues in the first hydride transfer step of the dTDP-glucose 4,6-dehydratase mechanism has been studied by mutagenesis and steady-state kinetic analysis. In all mutants except T134S, the k(cat) values are more than 2 orders of magnitude lower than of wild-type enzyme. The substrate analogue, dTDP-xylose, was used to investigate the effects of the mutations on rate of the first hydride transfer step. The first step becomes significantly rate limiting upon mutation of Tyr160 to Phe and only partly rate limiting in the reaction catalyzed by K164M and T134A dehydratases. The pH dependence of k(cat), the steady-state NADH level, and the fraction of NADH formed with saturating dTDP-xylose show shifts in the pK(a) assigned to Tyr160 to more basic values by mutation of Lys164 and Thr134. The pK(a) of Tyr160, as determined by the pH dependence of NADH formation by dTDP-xylose, is 6.41. Lys164 and Thr134 are believed to play important roles in the stabilization of the anion of Tyr160 in a fashion similar to the roles of the corresponding residues in UDP-galactose 4-epimerase, which facilitate the ionization of Tyr149 in that enzyme [Liu, Y., et al. (1997) Biochemistry 35, 10675--10684]. Tyr160 is presumably the base for the first hydride transfer step, while Thr134 may relay a proton from the sugar to Tyr160.  相似文献   

12.
Adaptation to cool environments is a common feature in the core group of the grass subfamily Pooideae (Triticeae and Poeae). This suggest an ancient evolutionary origin of low temperature stress tolerance dating back prior to the initiation of taxonomic divergence of core Pooideae species. Viewing the Pooideae evolution in a palaeo‐climatic perspective reveals that taxonomic divergence of the core Pooideae group initiated shortly after a global super‐cooling period at the Eocene–Oligocene boundary (~33.5–26 Ma). This global climate cooling altered distributions of plants and animals and must have imposed selection pressure for improved low temperature stress responses. Lineage‐specific gene family expansions are known to be involved in adaptation to new environmental stresses. In Pooideae, two gene families involved in low temperature stress response, the C‐repeat binding factor (CBF) and fructosyl transferase (FT) gene families, has undergone lineage‐specific expansions. We investigated the timing of these gene family expansions by molecular dating and found that Pooideae‐specific expansion events in CBF and FT gene families took place during Eocene–Oligocene super‐cooling period. We hypothesize that the E–O super‐cooling exerted selection pressure for improved low temperature stress response and frost tolerance in a core Pooideae ancestor, and that those individuals with multiple copies of CBF and FT genes were favoured.  相似文献   

13.
The dissociation of the aldehyde dehydrogenase X NADH complex was studied by displacement with NAD+. The association reaction of enzyme and NADH was also studied. These processes are biphasic, as shown by McGibbon, Buckley & Blackwell [(1977) Biochem. J. 165, 455-462], but the details of the dissociation reaction are significantly different from those given by those authors. Spectral and kinetic experiments provide evidence for the formation of abortive complexes of the type enzyme X NADH X aldehyde. Kinetic studies at different wavelengths with transcinnamaldehyde as substrate provide evidence for the formation of an enzyme X NADH X cinnamoyl complex. Hydrolysis of the thioester relieves a severe quenching effect on the fluorescence of enzyme-bound NADH.  相似文献   

14.
Human estrogenic 17beta-hydroxysteroid dehydrogenase (17beta-HSD1), a member of the short chain dehydrogenase/reductase (SDR) family, is responsible for the biosynthesis of all active estrogens. The crystal structures of two C19-steroid ternary complexes (17beta-HSD1-androstanedione-NADP and 17beta-HSD1-androstenedione-NADP) reveal the critical role of Leu149 in regulating the substrate specificity and provide novel insight into the different fates of a conserved glutamate residue in the estrogen-specific proteins upon the binding of the keto and hydroxyl groups of steroids. The whole NADP molecule can be unambiguously defined in the NADP binary complex, whereas both ternary complexes show that the nicotinamide moiety of NADP cannot be located in the density maps. In both ternary complexes, the expected position of carboxamide oxygen of NADP is occupied by a water molecule, which makes a bifurcated hydrogen bond with the O3 of C19-steroid and the main chain nitrogen of Val188. These results demonstrate that the hydrogen bonding interaction between the main chain amide group and the carboxamide group of NAD(P)(H) plays an important role in anchoring the nicotinamide ring to the enzyme. This finding is substantiated by structural analyses of all 33 NAD(P)(H) complexes of different SDR proteins, because 29 structures of 33 show this interaction. This common feature reveals a general mechanism among the SDR family, providing a rational basis for inhibitor design against biologically relevant SDR targets.  相似文献   

15.
The short-chain dehydrogenase/reductase (SDR) family is one of the largest and most ubiquitous protein families in bacterial genomes. Despite there being a few well-characterized examples, the substrate specificities or functions of most members of the family are unknown. In this study, we carried out a large-scale mutagenesis of the SDR gene family in the alfalfa root nodule symbiont Sinorhizobium meliloti. Subsequent phenotypic analysis revealed phenotypes for mutants of 21 of the SDR-encoding genes. This brings the total number of S. meliloti SDR-encoding genes with known function or associated phenotype to 25. Several of the mutants were deficient in the utilization of specific carbon sources, while others exhibited symbiotic deficiencies on alfalfa (Medicago sativa), ranging from partial ineffectiveness to complete inability to form root nodules. Five of the mutants had both symbiotic and carbon utilization phenotypes. These results clearly demonstrate the importance of the SDR family in both symbiosis and saprotrophy, and reinforce the complex nature of the interaction of S. meliloti with its plant hosts. Further analysis of the genes identified in this study will contribute to the overall understanding of the biology and metabolism of S. meliloti in relation to its interaction with alfalfa.  相似文献   

16.
ALDH5 (aka succinic semialdehyde dehydrogenase) is a NAD(+)-dependent aldehyde dehydrogenase crucial for the proper removal of the GABA metabolite succinic semialdehyde (SSA). All known ALDH5 family members contain the conserved amino acid sequence "MITRK". Our studies of rat ALDH5A indicate that residue R166 in this sequence may play a role in the substrate specificity of ALDH5A for the gamma-carboxylated succinic semialdehyde versus other aliphatic and aromatic aldehydes including acetaldehyde and benzaldehyde. We tested the hypothesis that the R166 residue regulates aldehyde specificity by utilizing rat ALDH5A wild-type (R166wt) and R166K, R166H, R166A, and R166E mutants. The V(MAX) using SSA fell whereas the K(M) for SSA increased for all mutants analyzed yielding k(cat)/K(M) (s(-1)/microM) ratios of 52.3 (R166wt), 5.5 (R166K), 0.01 (R166H), 0.008 (R166E), and 0.004 (R166A). Utilization of acetaldehyde by the R166H mutant was similar to R166wt with k(cat)/K(M)'s of 0.003 and 0.002, respectively. Almost no activity towards acetaldehyde was noted for the R166E and R166A mutants. Unexpectedly, the K(M) for NAD(+) changed: 21 microM (R166wt), 81 microM (R166K), 63 microM (R166H), 35 microM (R166E) and 44 microM (R166A). As release of NADH can be a rate-limiting step for ALDH activity, NADH binding was evaluated for R166wt and R166H enzymes. The K(D) of NADH for R166H (0.9 microM) was 11-fold less than that of ALDH5A wt (10.3 microM) and possibly explains the increase in the K(M) for NAD(+). Furthermore, data using R166K and R166H mutants demonstrate that inhibition of enzyme activity by low pH is regulated in part by the R166 residue. Our data indicate that the R166 residue of ALDH5A regulates multiple enzymatic functions.  相似文献   

17.
A large number of β‐lactamases have emerged that are capable of conferring bacterial resistance to β‐lactam antibiotics. Comparison of the structural and functional features of this family has refined understanding of the catalytic properties of these enzymes. An arginine residue present at position 244 in TEM‐1 β‐lactamase interacts with the carboxyl group common to penicillin and cephalosporin antibiotics and thereby stabilizes both the substrate and transition state complexes. A comparison of class A β‐lactamase sequences reveals that arginine at position 244 is not conserved, although a positive charge at this structural location is conserved and is provided by an arginine at positions 220 or 276 for those enzymes lacking arginine at position 244. The plasticity of the location of positive charge in the β‐lactamase active site was experimentally investigated by relocating the arginine at position 244 in TEM‐1 β‐lactamase to positions 220, 272, and 276 by site‐directed mutagenesis. Kinetic analysis of the engineered β‐lactamases revealed that removal of arginine 244 by alanine mutation reduced catalytic efficiency against all substrates tested and restoration of an arginine at positions 272 or 276 partially suppresses the catalytic defect of the Arg244Ala substitution. These results suggest an evolutionary mechanism for the observed divergence of the position of positive charge in the active site of class A β‐lactamases.  相似文献   

18.
For the first time, each specificity determining residue (SDR) in the binding site of an antibody has been replaced with every other possible single amino acid substitution, and the resulting mutants analyzed for binding affinity and specificity. The studies were conducted on a variant of the 26-10 antidigoxin single chain Fv (scFv) using in vitro scanning saturation mutagenesis, a new process that allows the high throughput production and characterization of antibody mutants [Burks,E.A., Chen,G., Georgiou,G. and Iverson,B.L. (1997) Proc. Natl Acad. Sci. USA, 94, 412-417]. Single amino acid mutants of 26-10 scFv were identified that modulated specificity in dramatic fashion. The overall plasticity of the antibody binding site with respect to amino acid replacement was also evaluated, revealing that 86% of all mutants retained measurable binding activity. Finally, by analyzing the physical properties of amino acid substitutions with respect to their effect on hapten binding, conclusions were drawn regarding the functional role played by the wild-type residue at each SDR position. The reported results highlight the value of in vitro scanning saturation mutagenesis for engineering antibody binding specificity, for evaluating the plasticity of proteins, and for comprehensive structure-function studies and analysis.  相似文献   

19.
Patrick Slama 《Proteins》2016,84(3):397-407
Histone post‐translational modifications play a critical role in the regulation of gene expression. Methylation of lysines at N‐terminal tails of histones has been shown to be involved in such regulation. While this modification was long considered to be irreversible, two different classes of enzymes capable of carrying out the demethylation of histone lysines were recently identified: the oxidases, such as LSD1, and the oxygenases (JmjC‐containing). Here, a family‐wide analysis of the second of these classes is proposed, with over 300 proteins studied at the sequence level. We show that a correlated evolution analysis yields some position/residue pairs which are critical at comparing JmjC sequences and enables the classification of JmjC domains into five families. A few positions appear more frequently among conditions, such as positions 23 (directly C‐terminal to the second iron ligand), 24, 252 and 253 (directly N‐terminal to a conserved Asn). Implications of family conditions are studied in detail on PHF2, revealing the meaningfulness of the sequence‐derived conditions at the structural level. These results should help obtain insights on the diversity of JmjC‐containing proteins solely by considering some of the amino acids present in their JmjC domain. Proteins 2016; 84:397–407. © 2016 Wiley Periodicals, Inc.  相似文献   

20.
1. The activity of liver alcohol dehydrogenase with cyclohexanol and cyclohexanone as substrates was studied, and the initial-rate parameters were determined from measurements at low substrate concentrations. In contrast with aliphatic ketones, cyclohexanone is a fairly good substrate, although less active than aliphatic aldehydes. The Michaelis constant for cyclohexanol is of the same order as that for ethanol, and the maximum rate and Michaelis constant for NAD(+) obtained with cyclohexanol are very similar to those obtained with primary aliphatic alcohols. The data for this substrate at low concentrations are therefore consistent with a compulsory-order mechanism in which ternary complexes are not rate-limiting. 2. With large concentrations of NAD(+), substrate activation is observed with increasing concentrations of cyclohexanol, whereas with small NAD(+) concentrations substrate inhibition is observed. This complex behaviour is explained by a mechanism previously proposed for this enzyme, which also satisfactorily described the kinetics of oxidation of primary and secondary aliphatic alcohols and aldehydes, including the substrate inhibition exhibited by primary alcohols, and the reduction of aldehydes. The activation with large concentrations of both NAD(+) and cyclohexanol is attributed to the formation of an abortive complex, E.NADH.ROH, from which NADH dissociates more rapidly than from the normal product complex E.NADH. Substrate inhibition in the presence of small NAD(+) concentrations is attributed to the formation of an active complex E.ROH, with which NAD(+) reacts more slowly than with the free enzyme. 3. Some support for these mechanisms of substrate activation and inhibition is obtained by approximate theoretical calculations, and their applicability to other two-substrate reactions that exhibit complex initial-rate behaviour, as a more likely alternative to the postulate of a second binding site for the substrate, is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号