共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Lydie Vamparys Benoist Laurent Alessandra Carbone Sophie Sacquin‐Mora 《Proteins》2016,84(10):1408-1421
Protein–protein interactions play a key part in most biological processes and understanding their mechanism is a fundamental problem leading to numerous practical applications. The prediction of protein binding sites in particular is of paramount importance since proteins now represent a major class of therapeutic targets. Amongst others methods, docking simulations between two proteins known to interact can be a useful tool for the prediction of likely binding patches on a protein surface. From the analysis of the protein interfaces generated by a massive cross‐docking experiment using the 168 proteins of the Docking Benchmark 2.0, where all possible protein pairs, and not only experimental ones, have been docked together, we show that it is also possible to predict a protein's binding residues without having any prior knowledge regarding its potential interaction partners. Evaluating the performance of cross‐docking predictions using the area under the specificity‐sensitivity ROC curve (AUC) leads to an AUC value of 0.77 for the complete benchmark (compared to the 0.5 AUC value obtained for random predictions). Furthermore, a new clustering analysis performed on the binding patches that are scattered on the protein surface show that their distribution and growth will depend on the protein's functional group. Finally, in several cases, the binding‐site predictions resulting from the cross‐docking simulations will lead to the identification of an alternate interface, which corresponds to the interaction with a biomolecular partner that is not included in the original benchmark. Proteins 2016; 84:1408–1421. © 2016 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc. 相似文献
3.
Alberto Meseguer Lluis Dominguez Patricia M. Bota Joaquim Aguirre‐Plans Jaume Bonet Narcis Fernandez‐Fuentes Baldo Oliva 《Protein science : a publication of the Protein Society》2020,29(10):2112-2130
Protein–protein interactions (PPIs) in all the molecular aspects that take place both inside and outside cells. However, determining experimentally the structure and affinity of PPIs is expensive and time consuming. Therefore, the development of computational tools, as a complement to experimental methods, is fundamental. Here, we present a computational suite: MODPIN, to model and predict the changes of binding affinity of PPIs. In this approach we use homology modeling to derive the structures of PPIs and score them using state‐of‐the‐art scoring functions. We explore the conformational space of PPIs by generating not a single structural model but a collection of structural models with different conformations based on several templates. We apply the approach to predict the changes in free energy upon mutations and splicing variants of large datasets of PPIs to statistically quantify the quality and accuracy of the predictions. As an example, we use MODPIN to study the effect of mutations in the interaction between colicin endonuclease 9 and colicin endonuclease 2 immune protein from Escherichia coli. Finally, we have compared our results with other state‐of‐art methods. 相似文献
4.
Mark Nicholas Wass Carles Pons Florencio Pazos Alfonso Valencia 《Molecular systems biology》2011,7(1)
Deciphering the whole network of protein interactions for a given proteome (‘interactome’) is the goal of many experimental and computational efforts in Systems Biology. Separately the prediction of the structure of protein complexes by docking methods is a well‐established scientific area. To date, docking programs have not been used to predict interaction partners. We provide a proof of principle for such an approach. Using a set of protein complexes representing known interactors in their unbound form, we show that a standard docking program can distinguish the true interactors from a background of 922 non‐redundant potential interactors. We additionally show that true interactions can be distinguished from non‐likely interacting proteins within the same structural family. Our approach may be put in the context of the proposed ‘funnel‐energy model’; the docking algorithm may not find the native complex, but it distinguishes binding partners because of the higher probability of favourable models compared with a collection of non‐binders. The potential exists to develop this proof of principle into new approaches for predicting interaction partners and reconstructing biological networks. 相似文献
5.
6.
In order to generate protein assemblies with a desired function, the rational design of protein–protein binding interfaces is of significant interest. Approaches based on random mutagenesis or directed evolution may involve complex experimental selection procedures. Also, molecular modeling approaches to design entirely new proteins and interactions with partner molecules can involve large computational efforts and screening steps. In order to simplify at least the initial effort for designing a putative binding interface between two proteins the Match_Motif approach has been developed. It employs the large collection of known protein–protein complex structures to suggest interface modifications that may lead to improved binding for a desired input interaction geometry. The approach extracts interaction motifs based on the backbone structure of short (four residues) segments and the relative arrangement with respect to short segments on the partner protein. The interaction geometry is used to search through a database of such motifs in known stable bound complexes. All matches are rapidly identified (within a few seconds) and collected and can be used to guide changes in the interface that may lead to improved binding. In the output, an alternative interface structure is also proposed based on the frequency of occurrence of side chains at a given interface position in all matches and based on sterical considerations. Applications of the procedure to known complex structures and alternative arrangements are presented and discussed. The program, data files, and example applications can be downloaded from https://www.groups.ph.tum.de/t38/downloads/. 相似文献
7.
Cells are interactive living systems where proteins movements, interactions and regulation are substantially free from centralized management. How protein physico‐chemical and geometrical properties determine who interact with whom remains far from fully understood. We show that characterizing how a protein behaves with many potential interactors in a complete cross‐docking study leads to a sharp identification of its cellular/true/native partner(s). We define a sociability index, or S‐index, reflecting whether a protein likes or not to pair with other proteins. Formally, we propose a suitable normalization function that accounts for protein sociability and we combine it with a simple interface‐based (ranking) score to discriminate partners from non‐interactors. We show that sociability is an important factor and that the normalization permits to reach a much higher discriminative power than shape complementarity docking scores. The social effect is also observed with more sophisticated docking algorithms. Docking conformations are evaluated using experimental binding sites. These latter approximate in the best possible way binding sites predictions, which have reached high accuracy in recent years. This makes our analysis helpful for a global understanding of partner identification and for suggesting discriminating strategies. These results contradict previous findings claiming the partner identification problem being solvable solely with geometrical docking. Proteins 2016; 85:137–154. © 2016 Wiley Periodicals, Inc. 相似文献
8.
Tumor necrosis factor-alpha (TNFα)-blocking therapy, using biologic TNFα antagonists, has been approved for the treatment of several diseases including rheumatoid arthritis, psoriasis and Crohn's disease. There have been few detailed studies of binding characterizations for the complex formation by TNFα and clinically relevant antagonists, particularly Infliximab (Remicade®) and Etanercept (Enbrel®). Here we characterized the binding stoichiometry and size of soluble TNFα–antagonist complexes and identified energetically important binding sites on TNFα for the three antagonists, Etanercept, Infliximab, and the recently developed humanized TNFα neutralizing monoclonal antibody, YHB1411-2. Size-exclusion chromatography and dynamic light scattering analyses revealed that the three antagonists formed distinct thermodynamically stable TNFα–antagonist complexes that exhibited differences in their size and composition. Energetically important binding residues on TNFα were identified for each antagonist by a sequence of experiments that consisted of competition binding assays, fragmentations, loop mutations, and single-point mutations using yeast surface-displayed TNFα, which was further confirmed for solubly purified TNFα mutants by surface plasmon resonance technique. Analyses of the binding geometry based on binding site location, spatial constraints, and valency satisfaction allowed us to interpret the thermodynamically stable complexes as follows: one molecule of Etanercept and one molecule of trimeric TNFα (Etanercept1––TNFα1), Infliximab6–TNFα3, and YHB1411–24-TNFα2. The distinct features of the soluble antagonist–TNFα complex formation among the antagonists may give further insights into their different neutralizing mechanisms and pharmacokinetic profiles. 相似文献
9.
10.
Joël Janin 《Protein science : a publication of the Protein Society》2014,23(12):1813-1817
A minimal model of protein–protein binding affinity that takes into account only two structural features of the complex, the size of its interface, and the amplitude of the conformation change between the free and bound subunits, is tested on the 144 complexes of a structure‐affinity benchmark. It yields Kd values that are within two orders of magnitude of the experiment for 67% of the complexes, within three orders for 88%, and fails on 12%, which display either large conformation changes, or a very high or a low affinity. The minimal model lacks the specificity and accuracy needed to make useful affinity predictions, but it should help in assessing the added value of parameters used by more elaborate models, and set a baseline for evaluating their performances. 相似文献
11.
Mutations at protein–protein recognition sites alter binding strength by altering the chemical nature of the interacting surfaces. We present a simple surface energy model, parameterized with empirical values, yielding mean energies of ?48 cal mol?1 Å?2 for interactions between hydrophobic surfaces, ?51 to ?80 cal mol?1 Å?2 for surfaces of complementary charge, and 66–83 cal mol?1 Å?2 for electrostatically repelling surfaces, relative to the aqueous phase. This places the mean energy of hydrophobic surface burial at ?24 cal mol?1 Å?2. Despite neglecting configurational entropy and intramolecular changes, the model correlates with empirical binding free energies of a functionally diverse set of rigid‐body interactions (r = 0.66). When used to rerank docking poses, it can place near‐native solutions in the top 10 for 37% of the complexes evaluated, and 82% in the top 100. The method shows that hydrophobic burial is the driving force for protein association, accounting for 50–95% of the cohesive energy. The model is available open‐source from http://life.bsc.es/pid/web/surface_energy/ and via the CCharpPPI web server http://life.bsc.es/pid/ccharppi/ . Proteins 2015; 83:640–650. © 2015 Wiley Periodicals, Inc. 相似文献
12.
Li C. Xue Rafael A. Jordan EL‐Manzalawy Yasser Drena Dobbs Vasant Honavar 《Proteins》2014,82(2):250-267
Selecting near‐native conformations from the immense number of conformations generated by docking programs remains a major challenge in molecular docking. We introduce DockRank, a novel approach to scoring docked conformations based on the degree to which the interface residues of the docked conformation match a set of predicted interface residues. DockRank uses interface residues predicted by partner‐specific sequence homology‐based protein–protein interface predictor (PS‐HomPPI), which predicts the interface residues of a query protein with a specific interaction partner. We compared the performance of DockRank with several state‐of‐the‐art docking scoring functions using Success Rate (the percentage of cases that have at least one near‐native conformation among the top m conformations) and Hit Rate (the percentage of near‐native conformations that are included among the top m conformations). In cases where it is possible to obtain partner‐specific (PS) interface predictions from PS‐HomPPI, DockRank consistently outperforms both (i) ZRank and IRAD, two state‐of‐the‐art energy‐based scoring functions (improving Success Rate by up to 4‐fold); and (ii) Variants of DockRank that use predicted interface residues obtained from several protein interface predictors that do not take into account the binding partner in making interface predictions (improving success rate by up to 39‐fold). The latter result underscores the importance of using partner‐specific interface residues in scoring docked conformations. We show that DockRank, when used to re‐rank the conformations returned by ClusPro, improves upon the original ClusPro rankings in terms of both Success Rate and Hit Rate. DockRank is available as a server at http://einstein.cs.iastate.edu/DockRank/ . Proteins 2014; 82:250–267. © 2013 Wiley Periodicals, Inc. 相似文献
13.
14.
Devlina Chakravarty Mainak Guharoy Charles H. Robert Pinak Chakrabarti Joël Janin 《Protein science : a publication of the Protein Society》2013,22(10):1453-1457
The buried surface area (BSA), which measures the size of the interface in a protein–protein complex may differ from the accessible surface area (ASA) lost upon association (which we call DSA), if conformation changes take place. To evaluate the DSA, we measure the ASA of the interface atoms in the bound and unbound states of the components of 144 protein–protein complexes taken from the Protein–Protein Interaction Affinity Database of Kastritis et al. (2011). We observe differences exceeding 20%, and a systematic bias in the distribution. On average, the ASA calculated in the bound state of the components is 3.3% greater than in their unbound state, and the BSA, 7% greater than the DSA. The bias is observed even in complexes where the conformation changes are small. An examination of the bound and unbound structures points to a possible origin: local movements optimize contacts with the other component at the cost of internal contacts, and presumably also the binding free energy. 相似文献
15.
Derek J. Cashman Tuo Zhu Richard F. Simmerman Cathy Scott Barry D. Bruce Jerome Baudry 《Journal of molecular recognition : JMR》2014,27(10):597-608
The stromal domain (PsaC, PsaD, and PsaE) of photosystem I (PSI) reduces transiently bound ferredoxin (Fd) or flavodoxin. Experimental structures exist for all of these protein partners individually, but no experimental structure of the PSI/Fd or PSI/flavodoxin complexes is presently available. Molecular models of Fd docked onto the stromal domain of the cyanobacterial PSI site are constructed here utilizing X‐ray and NMR structures of PSI and Fd, respectively. Predictions of potential protein‐protein interaction regions are based on experimental site‐directed mutagenesis and cross‐linking studies to guide rigid body docking calculations of Fd into PSI, complemented by energy landscape theory to bring together regions of high energetic frustration on each of the interacting proteins. The results identify two regions of high localized frustration on the surface of Fd that contain negatively charged Asp and Glu residues. This study predicts that these regions interact predominantly with regions of high localized frustration on the PsaC, PsaD, and PsaE chains of PSI, which include several residues predicted by previous experimental studies. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
16.
Protein structure docking is the process in which the quaternary structure of a protein complex is predicted from individual tertiary structures of the protein subunits. Protein docking is typically performed in two main steps. The subunits are first docked while keeping them rigid to form the complex, which is then followed by structure refinement. Structure refinement is crucial for a practical use of computational protein docking models, as it is aimed for correcting conformations of interacting residues and atoms at the interface. Here, we benchmarked the performance of eight existing protein structure refinement methods in refinement of protein complex models. We show that the fraction of native contacts between subunits is by far the most straightforward metric to improve. However, backbone dependent metrics, based on the Root Mean Square Deviation proved more difficult to improve via refinement. 相似文献
17.
Yaqin Hou Haihua Quan Weiwei Xu Yongli Bao Yuxin Li Yuan Fu Shuxue Zou 《Protein science : a publication of the Protein Society》2013,22(8):1060-1070
A plethora of both experimental and computational methods have been proposed in the past 20 years for the identification of hot spots at a protein–protein interface. The experimental determination of a protein–protein complex followed by alanine scanning mutagenesis, though able to determine hot spots with much precision, is expensive and has no guarantee of success while the accuracy of the current computational methods for hot‐spot identification remains low. Here, we present a novel structure‐based computational approach that accurately determines hot spots through docking into a set of proteins homologous to only one of the two interacting partners of a compound capable of disrupting the protein–protein interaction (PPI). This approach has been applied to identify the hot spots of human activin receptor type II (ActRII) critical for its binding toward Cripto‐I. The subsequent experimental confirmation of the computationally identified hot spots portends a potentially accurate method for hot‐spot determination in silico given a compound capable of disrupting the PPI in question. The hot spots of human ActRII first reported here may well become the focal points for the design of small molecule drugs that target the PPI. The determination of their interface may have significant biological implications in that it suggests that Cripto‐I plays an important role in both activin and nodal signal pathways. 相似文献
18.
We present an updated version of the protein–RNA docking benchmark, which we first published four years back. The non‐redundant protein–RNA docking benchmark version 2.0 consists of 126 test cases, a threefold increase in number compared to its previous version. The present version consists of 21 unbound–unbound cases, of which, in 12 cases, the unbound RNAs are taken from another complex. It also consists of 95 unbound–bound cases where only the protein is available in the unbound state. Besides, we introduce 10 new bound–unbound cases where only the RNA is found in the unbound state. Based on the degree of conformational change of the interface residues upon complex formation the benchmark is classified into 72 rigid‐body cases, 25 semiflexible cases and 19 full flexible cases. It also covers a wide range of conformational flexibility including small side chain movement to large domain swapping in protein structures as well as flipping and restacking in RNA bases. This benchmark should provide the docking community with more test cases for evaluating rigid‐body as well as flexible docking algorithms. Besides, it will also facilitate the development of new algorithms that require large number of training set. The protein–RNA docking benchmark version 2.0 can be freely downloaded from http://www.csb.iitkgp.ernet.in/applications/PRDBv2 . Proteins 2017; 85:256–267. © 2016 Wiley Periodicals, Inc. 相似文献
19.
20.
A major challenge of the protein docking problem is to define scoring functions that can distinguish near‐native protein complex geometries from a large number of non‐native geometries (decoys) generated with noncomplexed protein structures (unbound docking). In this study, we have constructed a neural network that employs the information from atom‐pair distance distributions of a large number of decoys to predict protein complex geometries. We found that docking prediction can be significantly improved using two different types of polar hydrogen atoms. To train the neural network, 2000 near‐native decoys of even distance distribution were used for each of the 185 considered protein complexes. The neural network normalizes the information from different protein complexes using an additional protein complex identity input neuron for each complex. The parameters of the neural network were determined such that they mimic a scoring funnel in the neighborhood of the native complex structure. The neural network approach avoids the reference state problem, which occurs in deriving knowledge‐based energy functions for scoring. We show that a distance‐dependent atom pair potential performs much better than a simple atom‐pair contact potential. We have compared the performance of our scoring function with other empirical and knowledge‐based scoring functions such as ZDOCK 3.0, ZRANK, ITScore‐PP, EMPIRE, and RosettaDock. In spite of the simplicity of the method and its functional form, our neural network‐based scoring function achieves a reasonable performance in rigid‐body unbound docking of proteins. Proteins 2010. © 2009 Wiley‐Liss, Inc. 相似文献