首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 0 毫秒
1.
Template-based geometric simulation is a specialised method for modelling flexible framework structures made up of rigid units using a simplified, localised physical model. The strengths of the method are its ability to handle large all-atom structural models rapidly and at minimal computational expense, and to provide insights into the links between local bonding and steric geometry and global flexibility. We review the implementation of geometric simulation in the ‘GASP’ software, and its application to the study of materials including zeolites, perovskites and metal–organic frameworks. The latest version (5) of GASP has significant improvements and extensions, in particular an improved algorithm for relaxation of atomic positions, and the capacity to handle both polyhedral and molecular structural units. GASP is freely available to researchers.  相似文献   

2.
Hepatitis C virus (HCV) NS3 helicase couples adenosine triphosphate (ATP) binding and hydrolysis to polynucleotide unwinding. Understanding the regulation mechanism of ATP binding will facilitate targeting of the ATP-binding site for potential therapeutic development for hepatitis C. T324, an amino acid residue connecting domains 1 and 2 of NS3 helicase, has been suggested as part of a flexible hinge for opening of the ATP-binding cleft, although the detailed mechanism remains largely unclear. We used computational simulation to examine the mutational effect of T324 on the dynamics of the ATP-binding site. A mutant model, T324A, of the NS3 helicase apo structure was created and energy was minimized. Molecular dynamics simulation was conducted for both wild type and the T324A mutant apo structures to compare their differences. For the mutant structure, histogram analysis of pairwise distances between residues in domains 1 and 2 (E291-Q460, K210-R464 and R467-T212) showed that separation between the two domains was reduced by ~10% and the standard deviation by ~33%. Root mean square fluctuation (RMSF) analysis demonstrated that residues in close proximity to residue 324 have at least 30% RMSF value reductions in the mutant structure. Solvent RMSF analysis showed that more water molecules were trapped near D290 and H293 in domain 1 to form an extensive interaction network constraining cleft opening. We also demonstrated that the T324A mutation established a new atomic interaction with V331, revealing that an atomic interaction cascade from T324 to residues in domains 1 and 2 controls the flexibility of the ATP-binding cleft.  相似文献   

3.
4.
5.
Protein collective motions play a critical role in many biochemical processes. How to predict the functional motions and the related key residue interactions in proteins is important for our understanding in the mechanism of the biochemical processes. Normal mode analysis (NMA) of the elastic network model (ENM) is one of the effective approaches to investigate the structure-encoded motions in proteins. However, the motion modes revealed by the conventional NMA approach do not necessarily correspond to a specific function of protein. In the present work, a new analysis method was proposed to identify the motion modes responsible for a specific function of proteins and then predict the key residue interactions involved in the functional motions by using a perturbation approach. In our method, an internal coordinate that accounts for the specific function was introduced, and the Cartesian coordinate space was transformed into the internal/Cartesian space by using linear approximation, where the introduced internal coordinate serves as one of the axes of the coordinate space. NMA of ENM in this internal/Cartesian space was performed and the function-relevant motion modes were identified according to their contributions to the specific function of proteins. Then the key residue interactions important for the functional motions of the protein were predicted as the interactions whose perturbation largely influences the fluctuation along the internal coordinate. Using our proposed methods, the maltose transporter (MalFGK2) from E. Coli was studied. The functional motions and the key residue interactions that are related to the channel-gating function of this protein were successfully identified.  相似文献   

6.
Recently, two independent (15)N NMR relaxation studies indicated that in contrast to the decreased flexibility expected for induced-fit interactions, the backbone flexibility of major urinary protein isoform I (MUP-I) slightly increased upon complex formation with its natural pheromone 2-sec-butyl-4,5-dihydrothiazol. We have investigated the subtle details of molecular interactions by molecular dynamics simulations in explicit solvent. The calculated order parameters S(2) for a free- and ligand-bound protein supply evidence that mobility in various regions of MUP-I can be directly related to small conformational changes of the free- and complexed protein resulting from modifications of the hydrogen bonding network.  相似文献   

7.
Pteridine reductase (PTR1) is an NADPH-dependent short-chain reductase found in parasitic trypanosomatid protozoans. The enzyme participates in the salvage of pterins and represents a target for the development of improved therapies for infections caused by these parasites. A series of crystallographic analyses of Leishmania major PTR1 are reported. Structures of the enzyme in a binary complex with the cofactor NADPH, and ternary complexes with cofactor and biopterin, 5,6-dihydrobiopterin, and 5,6,7,8-tetrahydrobiopterin reveal that PTR1 does not undergo any major conformational changes to accomplish binding and processing of substrates, and confirm that these molecules bind in a single orientation at the catalytic center suitable for two distinct reductions. Ternary complexes with cofactor and CB3717 and trimethoprim (TOP), potent inhibitors of thymidylate synthase and dihydrofolate reductase, respectively, have been characterized. The structure with CB3717 reveals that the quinazoline moiety binds in similar fashion to the pterin substrates/products and dominates interactions with the enzyme. In the complex with TOP, steric restrictions enforced on the trimethoxyphenyl substituent prevent the 2,4-diaminopyrimidine moiety from adopting the pterin mode of binding observed in dihydrofolate reductase, and explain the inhibition properties of a range of pyrimidine derivates. The molecular detail provided by these complex structures identifies the important interactions necessary to assist the structure-based development of novel enzyme inhibitors of potential therapeutic value.  相似文献   

8.
In multi‐resolution simulations, different system components are simultaneously modeled at different levels of resolution, these being smoothly coupled together. In the case of enzyme systems, computationally expensive atomistic detail is needed in the active site to capture the chemistry of ligand binding. Global properties of the rest of the protein also play an essential role, determining the structure and fluctuations of the binding site; however, these can be modeled on a coarser level. Similarly, in the most computationally efficient scheme only the solvent hydrating the active site requires atomistic detail. We present a methodology to couple atomistic and coarse‐grained protein models, while solvating the atomistic part of the protein in atomistic water. This allows a free choice of which protein and solvent degrees of freedom to include atomistically. This multi‐resolution methodology can successfully model stable ligand binding, and we further confirm its validity by exploring the reproduction of system properties relevant to enzymatic function. In addition to a computational speedup, such an approach can allow the identification of the essential degrees of freedom playing a role in a given process, potentially yielding new insights into biomolecular function. Proteins 2016; 84:1902–1913. © 2016 Wiley Periodicals, Inc.  相似文献   

9.
Snow C  Qi G  Hayward S 《Proteins》2007,67(2):325-337
Essential dynamics sampling simulations of the domain conformations of unliganded Escherichia coli adenylate kinase have been performed to determine whether the ligand-induced closed-domain conformation is accessible to the open unliganded enzyme. Adenylate kinase is a three- domain protein with a central CORE domain and twoflanking domains, the LID and the NMPbind domains. The sampling simulations were applied to the CORE and NMPbind domain pair and the CORE and LID domain pair separately. One aim is to compare the results to those of a similar study on the enzyme citrate synthase to determine whether a similar domain-locking mechanism operates in adenylate kinase. Although for adenylate kinase the simulations suggest that the closed-domain conformation of the unliganded enzyme is at a slightly higher free energy than the open for both domain pairs, the results are radically different to those found for citrate synthase. In adenylate kinase the targeted domain conformations could always be achieved, whereas this was not the case in citrate synthase due to an apparent free-energy barrier between the open and closed conformations. Adenylate kinase has been classified as a protein that undergoes closure through a hinge mechanism, whereas citrate synthase has been assigned to the shear mechanism. This was quantified here in terms of the change in the number of interdomain contacting atoms upon closure which showed a considerable increase in adenylate kinase. For citrate synthase this number remained largely the same, suggesting that the domain faces slide over each other during closure. This suggests that shear and hinge mechanisms of domain closure may relate to the existence or absence of an appreciable barrier to closure for the unliganded protein, as the latter can hinge comparatively freely, whereas the former must follow a more constrained path. In general though it appears a bias toward keeping the unliganded enzyme in the open-domain conformation may be a common feature of domain enzymes.  相似文献   

10.
11.
Triacylglycerols (TAGs) and wax esters (WEs) are beside polyhydroxyalkanoates (PHAs) important storage lipids in some groups of prokaryotes. Accumulation of these lipids occurs in cells when they are cultivated under conditions of unbalanced growth in the presence of high concentrations of a suitable carbon source, which can be used for fatty acid and storage lipid biosyntheses. The key enzymes, which mediate both WE and TAG formations from long-chain acyl-coenzyme A (CoA) as acyl donor and long-chain fatty alcohols or diacylglycerols as respective acyl acceptors in bacteria, are WE synthases/acyl-CoA:diacylglycerol acyltransferases (WS/DGATs). The WS/DGATs identified so far represent rather unspecific enzymes with broad spectra of possible substrates; this makes them interesting for many biotechnological applications. This review traces the molecular structure and biochemical properties including the probable regions responsible for acyltransferase properties, enzymatic activity and substrate specifities. The phylogenetic relationships based on amino acid sequence similarities of this unique class of enzymes were revealed. Furthermore, recent advances in understanding the physiological functions of WS/DGATs in their natural hosts including pathogenic Mycobacterium tuberculosis were discussed.  相似文献   

12.
Alexander Veksler  Rony Granek 《Proteins》2012,80(12):2692-2700
We present a tensorial elastic network model (TNM) to describe the equilibrium fluctuations of proteins near their native fold structure. The model combines the anisotropic network model (ANM), bond bending elasticity, and backbone twist elasticity, and can predict both the isotropic fluctuations, similar to the Gaussian network model (GNM), and anisotropic fluctuations, similar to the ANM. TNM performs equally well for B‐factor predictions as GNM and predicts the anisotropy of B‐factors better than ANM. The model also outperforms the ANM in its predictability of the complete anisotropic displacement parameters. Proteins 2012; © 2012 Wiley Periodicals, Inc.  相似文献   

13.
Wenjun Zheng  Frederick Sachs 《Proteins》2017,85(12):2198-2208
The PIEZO channels, a family of mechanosensitive channels in vertebrates, feature a fast activation by mechanical stimuli (eg, membrane tension) followed by a slower inactivation. Although a medium‐resolution structure of the trimeric form of PIEZO1 was solved by cryo‐electron microscopy (cryo‐EM), key structural changes responsible for the channel activation and inactivation are still unknown. Toward decrypting the structural mechanism of the PIEZO1 activation and inactivation, we performed systematic coarse‐grained modeling using an elastic network model and related modeling/analysis tools (ie, normal mode analysis, flexibility and hotspot analysis, correlation analysis, and cryo‐EM‐based hybrid modeling and flexible fitting). We identified four key motional modes that may drive the tension‐induced activation and inactivation, with fast and slow relaxation time, respectively. These modes allosterically couple the lateral and vertical motions of the peripheral domains to the opening and closing of the intra‐cellular vestibule, enabling external mechanical forces to trigger, and regulate the activation/inactivation transitions. We also calculated domain‐specific flexibility profiles, and predicted hotspot residues at key domain‐domain interfaces and hinges. Our results offer unprecedented structural and dynamic information, which is consistent with the literature on mutational and functional studies of the PIEZO channels, and will guide future studies of this important family of mechanosensitive channels.  相似文献   

14.
The emerging field of synthetic biology has led to the design of tailor-made synthetic circuits for several therapeutic applications. Biological networks can be reprogramed by designing synthetic circuits that modulate the expression of target proteins. IPCS (inositol phosphorylceramide synthase) has been an attractive target in the sphingolipid metabolism of the parasite Leishmania. In this study, we have constructed a tristable circuit for the IPCS protein. The circuit has been validated and its long-term behavior has been assessed. The robustness and evolvability of the circuit has been estimated using evolutionary algorithms. The tristable synthetic circuit has been specifically designed to improve the rate of production of phosphatidylcholine: ceramide cholinephosphotransferase 4 (SLS4 protein). Site-specific delivery of the circuit into the parasite-infected macrophages could serve as a possible therapeutic intervention of the infectious disease ‘Leishmaniasis’.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号