首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, we describe the engineering and X‐ray crystal structure of Thermal Green Protein (TGP), an extremely stable, highly soluble, non‐aggregating green fluorescent protein. TGP is a soluble variant of the fluorescent protein eCGP123, which despite being highly stable, has proven to be aggregation‐prone. The X‐ray crystal structure of eCGP123, also determined within the context of this paper, was used to carry out rational surface engineering to improve its solubility, leading to TGP. The approach involved simultaneously eliminating crystal lattice contacts while increasing the overall negative charge of the protein. Despite intentional disruption of lattice contacts and introduction of high entropy glutamate side chains, TGP crystallized readily in a number of different conditions and the X‐ray crystal structure of TGP was determined to 1.9 Å resolution. The structural reasons for the enhanced stability of TGP and eCGP123 are discussed. We demonstrate the utility of using TGP as a fusion partner in various assays and significantly, in amyloid assays in which the standard fluorescent protein, EGFP, is undesirable because of aberrant oligomerization. Proteins 2015; 83:1225–1237. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
Apoptosis or programmed cell death is a regulatory process in cells in response to stimuli perturbing physiological conditions. The Bcl‐2 family of proteins plays an important role in regulating homeostasis during apoptosis. In the process, the molecular interactions among the three members of this family, the pro‐apoptotic, anti‐apoptotic and BH3‐only proteins at the mitochondrial outer membrane define the fate of a cell. Here, we report the crystal structures of the human anti‐apoptotic protein Bcl‐XL in complex with BH3‐only BIDBH3 and BIMBH3 peptides determined at 2.0 Å and 1.5 Å resolution, respectively. The BH3 peptides bind to the canonical hydrophobic pocket in Bcl‐XL and adopt an alpha helical conformation in the bound form. Despite a similar structural fold, a comparison with other BH3 complexes revealed structural differences due to their sequence variations. In the Bcl‐XL‐BIDBH3 complex we observed a large pocket, in comparison with other BH3 complexes, lined by residues from helices α1, α2, α3, and α5 located adjacent to the canonical hydrophobic pocket. These results suggest that there are differences in the mode of interactions by the BH3 peptides that may translate into functional differences in apoptotic regulation. Proteins 2015; 83:1262–1272. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
During the characterization of mutants and covalently inhibited complexes of Fusarium solani cutinase, nine different crystal forms have been obtained so far. Protein mutants with a different surface charge distribution form new intermolecular salt bridges or long-range electrostatic interactions that are accompanied by a change in the crystal packing. The whole protein surface is involved in the packing contacts and the hydrophobicities of the protein surfaces in mutual contact turned out to be noncorrelated, which indicates that the packing interactions are nonspecific. In the case of the hydrophobic variants, the packing contacts showed some specificity, as the protein in the crystal tends to form either crystallographic or noncrystallographic dimers, which shield the hydrophobic surface from the solvent. The likelihood of surface atoms to be involved in a crystal contact is the same for both polar and nonpolar atoms. However, when taking areas in the 200–600 Å2 range, instead of individual atoms, the either highly hydrophobic or highly polar surface regions were found to have an increased probability of establishing crystal lattice contacts. The protein surface surrounding the active-site crevice of cutinase constitutes a large hydrophobic area that is involved in packing contacts in all the various crystalline contexts. Proteins 31:320–333, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
Vaults are ubiquitous ribonucleoprotein complexes involved in a diversity of cellular processes, including multidrug resistance, transport mechanisms and signal transmission. The vault particle shows a barrel‐shaped structure organized in two identical moieties, each consisting of 39 copies of the major vault protein MVP. Earlier data indicated that vault halves can dissociate at acidic pH. The crystal structure of the vault particle solved at 8 Å resolution, together with the 2.1‐Å structure of the seven N‐terminal domains (R1–R7) of MVP, reveal the interactions governing vault association and provide an explanation for a reversible dissociation induced by low pH. The structural comparison with the recently published 3.5 Å model shows major discrepancies, both in the main chain tracing and in the side chain assignment of the two terminal domains R1 and R2.  相似文献   

5.
Iris Antes 《Proteins》2010,78(5):1084-1104
Molecular docking programs play an important role in drug development and many well‐established methods exist. However, there are two situations for which the performance of most approaches is still not satisfactory, namely inclusion of receptor flexibility and docking of large, flexible ligands like peptides. In this publication a new approach is presented for docking peptides into flexible receptors. For this purpose a two step procedure was developed: first, the protein–peptide conformational space is scanned and approximate ligand poses are identified and second, the identified ligand poses are refined by a new molecular dynamics‐based method, optimized potential molecular dynamics (OPMD). The OPMD approach uses soft‐core potentials for the protein–peptide interactions and applies a new optimization scheme to the soft‐core potential. Comparison with refinement results obtained by conventional molecular dynamics and a soft‐core scaling approach shows significant improvements in the sampling capability for the OPMD method. Thus, the number of starting poses needed for successful refinement is much lower than for the other methods. The algorithm was evaluated on 15 protein–peptide complexes with 2–16mer peptides. Docking poses with peptide RMSD values <2.10 Å from the equilibrated experimental structures were obtained in all cases. For four systems docking into the unbound receptor structures was performed, leading to peptide RMSD values <2.12 Å. Using a specifically fitted scoring function in 11 of 15 cases the best scoring poses featured a peptide RMSD ≤2.10 Å. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Protein‐protein interactions are abundant in the cell but to date structural data for a large number of complexes is lacking. Computational docking methods can complement experiments by providing structural models of complexes based on structures of the individual partners. A major caveat for docking success is accounting for protein flexibility. Especially, interface residues undergo significant conformational changes upon binding. This limits the performance of docking methods that keep partner structures rigid or allow limited flexibility. A new docking refinement approach, iATTRACT, has been developed which combines simultaneous full interface flexibility and rigid body optimizations during docking energy minimization. It employs an atomistic molecular mechanics force field for intermolecular interface interactions and a structure‐based force field for intramolecular contributions. The approach was systematically evaluated on a large protein‐protein docking benchmark, starting from an enriched decoy set of rigidly docked protein–protein complexes deviating by up to 15 Å from the native structure at the interface. Large improvements in sampling and slight but significant improvements in scoring/discrimination of near native docking solutions were observed. Complexes with initial deviations at the interface of up to 5.5 Å were refined to significantly better agreement with the native structure. Improvements in the fraction of native contacts were especially favorable, yielding increases of up to 70%. Proteins 2015; 83:248–258. © 2014 Wiley Periodicals, Inc.  相似文献   

7.
Protein aggregation generally results from association between hydrophobic regions of individual monomers. However, additional mechanisms arising from specific interactions, such as intermolecular disulfide bond formation, may also contribute to the process. The latter is proposed to be the initiating pathway for aggregation of immunoglobulin (IgG), which is essential for triggering its immune response. To test the veracity of this hypothesis, we have employed fluorescence correlation spectroscopy to measure the kinetics of aggregation of IgG in separate experiments either allowing or inhibiting disulfide formation. Fluorescence correlation spectroscopy measurements yielded a diffusion time (τD) of ~200 µsec for Rhodamine‐labeled IgG, corresponding to a hydrodynamic radius (RH) of 56 Å for the IgG monomer. The aggregation kinetics of the protein was followed by monitoring the time evolution of τD under conditions in which its cysteine residues were either free or blocked. In both cases, the progress curves confirmed that aggregation proceeded via the nucleation‐dependent polymerization pathway. However, for aggregation in the presence of free cysteines, the lag times were shorter, and the aggregate sizes bigger, than their respective counterparts for aggregation in the presence of blocked cysteines. This result clearly demonstrates that formation of intermolecular disulfide bonds represents a preferred pathway in the aggregation process of IgG. Fluorescence spectroscopy showed that aggregates formed in experiments where disulfide formation was prevented denatured at lower concentration of guanidine hydrochloride than those obtained in experiments where the disulfides were free to form, indicating that intermolecular disulfide bridging is a valid pathway for IgG aggregation. Proteins 2015; 83:169–177. © 2014 Wiley Periodicals, Inc.  相似文献   

8.
Lee HS  Zhang Y 《Proteins》2012,80(1):93-110
We developed BSP‐SLIM, a new method for ligand–protein blind docking using low‐resolution protein structures. For a given sequence, protein structures are first predicted by I‐TASSER; putative ligand binding sites are transferred from holo‐template structures which are analogous to the I‐TASSER models; ligand–protein docking conformations are then constructed by shape and chemical match of ligand with the negative image of binding pockets. BSP‐SLIM was tested on 71 ligand–protein complexes from the Astex diverse set where the protein structures were predicted by I‐TASSER with an average RMSD 2.92 Å on the binding residues. Using I‐TASSER models, the median ligand RMSD of BSP‐SLIM docking is 3.99 Å which is 5.94 Å lower than that by AutoDock; the median binding‐site error by BSP‐SLIM is 1.77 Å which is 6.23 Å lower than that by AutoDock and 3.43 Å lower than that by LIGSITECSC. Compared to the models using crystal protein structures, the median ligand RMSD by BSP‐SLIM using I‐TASSER models increases by 0.87 Å, while that by AutoDock increases by 8.41 Å; the median binding‐site error by BSP‐SLIM increase by 0.69Å while that by AutoDock and LIGSITECSC increases by 7.31 Å and 1.41 Å, respectively. As case studies, BSP‐SLIM was used in virtual screening for six target proteins, which prioritized actives of 25% and 50% in the top 9.2% and 17% of the library on average, respectively. These results demonstrate the usefulness of the template‐based coarse‐grained algorithms in the low‐resolution ligand–protein docking and drug‐screening. An on‐line BSP‐SLIM server is freely available at http://zhanglab.ccmb.med.umich.edu/BSP‐SLIM . Proteins 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

9.
The crystal structure of the extracellular domain of the type I tumor necrosis factor receptor (sTNF-R1) has been determined to 2.25 Å at pH 7.5. We have also solved the structure of sTNF-R1 at pH 3.7. sTNF-R1 is an elongated molecule consisting of a linear combination of four cysteine-rich motifs. Interestingly, the crystal structure reveals two distinct dimers of the receptor. One dimer is formed by a parallel arrangement of receptors, the other by an antiparallel arrangement of receptors. In the parallel arrangement of the receptors, the tumor necrosis factor (TNF) binding face of the receptor is completely exposed to solvent. However, in the antiparallel arrangement, the TNF binding face is intimately involved in the dimer interactions. Details of these recognition surfaces are discussed. Both these dimer interactions bury substantial surface area, comprise polar and apolar contact surfaces and have complimentary recognition surfaces. Thus these interactions are typical of genuine protein–protein interactions, rather than crystal packing contacts. These dimers may function to inhibit signal transduction in the absence of TNF or in the case of the parallel dimer, promote clustering of TNF/TNF receptor complexes on the cell surface.  相似文献   

10.
The armadillo domain is a right‐handed super‐helix of repeating units composed of three α‐helices each. Armadillo repeat proteins (ArmRPs) are frequently involved in protein–protein interactions, and because of their modular recognition of extended peptide regions they can serve as templates for the design of artificial peptide binding scaffolds. On the basis of sequential and structural analyses, different consensus‐designed ArmRPs were synthesized and show high thermodynamic stabilities, compared to naturally occurring ArmRPs. We determined the crystal structures of four full‐consensus ArmRPs with three or four identical internal repeats and two different designs for the N‐ and C‐caps. The crystal structures were refined at resolutions ranging from 1.80 to 2.50 Å for the above mentioned designs. A redesign of our initial caps was required to obtain well diffracting crystals. However, the structures with the redesigned caps caused domain swapping events between the N‐caps. To prevent this domain swap, 9 and 6 point mutations were introduced in the N‐ and C‐caps, respectively. Structural and biophysical analysis showed that this subsequent redesign of the N‐cap prevented domain swapping and improved the thermodynamic stability of the proteins. We systematically investigated the best cap combinations. We conclude that designed ArmRPs with optimized caps are intrinsically stable and well‐expressed monomeric proteins and that the high‐resolution structures provide excellent structural templates for the continuation of the design of sequence‐specific modular peptide recognition units based on armadillo repeats.  相似文献   

11.
Prosurfactant protein C (proSP‐C) is a 197‐residue integral membrane protein, in which the C‐terminal domain (CTC, positions 59–197) is localized in the endoplasmic reticulum (ER) lumen and contains a Brichos domain (positions 94–197). Mature SP‐C corresponds largely to the transmembrane (TM) region of proSP‐C. CTC binds to SP‐C, provided that it is in nonhelical conformation, and can prevent formation of intracellular amyloid‐like inclusions of proSP‐C that harbor mutations linked to interstitial lung disease (ILD). Herein it is shown that expression of proSP‐C (1–58), that is, the N‐terminal propeptide and the TM region, in HEK293 cells results in virtually no detectable protein, while coexpression of CTC in trans yields SDS‐soluble monomeric proSP‐C (1–58). Recombinant human (rh) CTC binds to cellulose‐bound peptides derived from the nonpolar TM region, but not the polar cytosolic part, of proSP‐C, and requires ≥5‐residues for maximal binding. Binding of rhCTC to a nonhelical peptide derived from SP‐C results in α‐helix formation provided that it contains a long TM segment. Finally, rhCTC and rhCTC Brichos domain shows very similar substrate specificities, but rhCTCL188Q, a mutation linked to ILD is unable to bind all peptides analyzed. These data indicate that the Brichos domain of proSP‐C is a chaperone that induces α‐helix formation of an aggregation‐prone TM region.  相似文献   

12.
SHP‐1 belongs to the family of non‐receptor protein tyrosine phosphatases (PTPs) and generally acts as a negative regulator in a variety of cellular signaling pathways. Previously, the crystal structures of the tail‐truncated SHP‐1 and SHP‐2 revealed an autoinhibitory conformation. To understand the regulatory mechanism of SHP‐1, we have determined the crystal structure of the full‐length SHP‐1 at 3.1 Å. Although the tail was disordered in current structure, the huge conformational rearrangement of the N‐SH2 domain and the incorporation of sulfate ions into the ligand‐binding site of each domain indicate that the SHP‐1 is in the open conformation. The N‐SH2 domain in current structure is shifted away from the active site of the PTP domain to the other side of the C‐SH2 domain, resulting in exposure of the active site. Meanwhile, the C‐SH2 domain is twisted anticlockwise by about 110°. In addition, a set of new interactions between two SH2 domains and between the N‐SH2 and the catalytic domains is identified, which could be responsible for the stabilization of SHP‐1 in the open conformation. Based on the structural comparison, a model for the activation of SHP‐1 is proposed. J. Cell. Biochem. 112: 2062–2071, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

13.
The present study addresses the effect of structural distortion, caused by protein modeling errors, on calculated binding affinities toward small molecules. The binding affinities to a total of 300 distorted structures based on five different protein–ligand complexes were evaluated to establish a broadly applicable relationship between errors in protein structure and errors in calculated binding affinities. Relatively accurate protein models (less than 2 Å RMSD within the binding site) demonstrate a 14.78 (±7.5)% deviation in binding affinity from that calculated by using the corresponding crystal structure. For structures of 2–3 Å, 3–4 Å, and >4 Å RMSD within the binding site, the error in calculated binding affinity increases to 20.8 (±5.98), 22.79 (±11.3), and 29.43 (±11.47)%, respectively. The results described here may be used in combination with other tools to evaluate the utility of modeled protein structures for drug development or other ligand‐binding studies. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
Water molecules play an important role in protein folding and protein interactions through their structural association with proteins. Examples of such structural association can be found in protein crystal structures, and can often explain protein functionality in the context of structure. We herein report the systematic analysis of the local structures of proteins interacting with water molecules, and the characterization of their geometric features. We first examined the interaction of water molecules with a large local interaction environment by comparing the preference of water molecules in three regions, namely, the protein–protein interaction (PPI) interfaces, the crystal contact (CC) interfaces, and the non‐interfacial regions. High preference of water molecules to the PPI and CC interfaces was found. In addition, the bound water on the PPI interface was more favorably associated with the complex interaction structure, implying that such water‐mediated structures may participate in the shaping of the PPI interface. The pairwise water‐mediated interaction was then investigated, and the water‐mediated residue–residue interaction potential was derived. Subsequently, the types of polar atoms surrounding the water molecules were analyzed, and the preference of the hydrogen bond acceptor was observed. Furthermore, the geometries of the structures interacting with water were analyzed, and it was found that the major structure on the protein surface exhibited planar geometry rather than tetrahedral geometry. Several previously undiscovered characteristics of water–protein interactions were unfolded in this study, and are expected to lead to a better understanding of protein structure and function. Proteins 2016; 84:43–51. © 2015 Wiley Periodicals, Inc.  相似文献   

15.
Ultra‐high resolution protein crystal structures have been considered as relatively reliable sources for defining details of protein geometry, such as the extent to which the peptide unit deviates from planarity. Chellapa and Rose (Proteins 2015; 83:1687) recently called this into question, reporting that for a dozen representative protein structures determined at ~1 Å resolution, the diffraction data could be equally well fit with models restrained to have highly planar peptides, i.e. having a standard deviation of the ω torsion angles of only ~1° instead of the typically observed value of ~6°. Here, we document both conceptual and practical shortcomings of that study and show that the more tightly restrained models are demonstrably incorrect and do not fit the diffraction data equally well. We emphasize the importance of inspecting electron density maps when investigating the agreement between a model and its experimental data. Overall, this report reinforces that modern standard refinement protocols have been well‐conceived and that ultra‐high resolution protein crystal structures, when evaluated carefully and used with an awareness of their levels of coordinate uncertainty, are powerful sources of information for providing reliable information about the details of protein geometry.  相似文献   

16.
Lactoferrin is an iron binding glycoprotein with a molecular weight of 80 kDa. The molecule is divided into two lobes representing the N-terminal and C-terminal halves of the polypeptide chain, each containing an iron binding site. The serine proteinases such as trypsin, chymotrypsin, and pepsin hydrolyze lactoferrin into two unequal halves while proteinase K divides this protein into two equal halves. In the first step of hydrolysis by proteinase K, the C- and N-lobes, each having a molecular weight of approximately 40 kDa, are generated. In the next step, the lobes are further hydrolyzed into small molecular weight peptides. The proteinase K isolated from the hydrolyzed product does not show enzymatic activity suggesting that the enzyme is inhibited. Furthermore, the hydrolysis experiments on N-lobe and C-lobe showed that the inhibitory fragment came from the C-lobe. The purified lactoferrin fragment was found to be a decapeptide with an amino acid sequence of H2N-Val-Ala-Gln-Gly-Ala-Ala-Gly-Leu-Ala-COOH. The complex formed between proteinase K and lactoferrin fragment was crystallized by microdialysis. The crystals belonged to the monoclinic space group P21with cell dimensions a = 44.4 Å, b = 38.6 Å, c = 79.2 Å, β = 105.8o and Z = 2. The crystal structure has been determined at 2.4 Å resolution. It has been refined to an R factor of 0.163 for 9044 reflections. The Lf-fragment forms several intermolecular interactions with proteinase K. The Ser-224 Oγ and His-57 Nϵ2 move away to a distance of 3.68 Å in the complex. In the crystal structure, Gln-3I (I indicates inhibitor i.e., lactoferrin fragment) is involved in a direct intermolecular interaction with a symmetry related proteinase K molecule through a strong hydrogen bond with Asp-254. The mode of intermolecular interactions in the complex conformational features of the enzyme and placement of the fragment with respect to the enzyme resemble with the molecular complex of proteinase K with its natural inhibitor PKI3 from wheat. Proteins 33:30–38, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
18.
The mechanosensitive channel of small conductance (MscS) contributes to the survival of bacteria during osmotic downshock by transiently opening large diameter pores for the efflux of cellular contents before the membrane ruptures. Two crystal structures of the Escherichia coli MscS are currently available, the wild type protein in a nonconducting state at 3.7 Å resolution (Bass et al., Science 2002; 298:1582–1587) and the Ala106Val variant in an open state at 3.45 Å resolution (Wang et al., Science 2008; 321:1179–1183). Both structures used protein solubilized in the detergent fos‐choline‐14. We report here crystal structures of MscS from E. coli and Helicobacter pylori solubilized in the detergent β‐dodecylmaltoside at resolutions of 4.4 and 4.2 Å, respectively. While the cytoplasmic domains are unchanged in these structures, distinct conformations of the transmembrane domains are observed. Intriguingly, β‐dodecylmaltoside solubilized wild type E. coli MscS adopts the open state structure of A106V E. coli MscS, while H. pylori MscS resembles the nonconducting state structure observed for fos‐choline‐14 solubilized E. coli MscS. These results highlight the sensitivity of membrane protein conformational equilibria to variations in detergent, crystallization conditions, and protein sequence.  相似文献   

19.
An efficient protein‐folding pathway leading to target structure, and the avoidance of aggregation, is essential to protein evolution and de novo design; however, design details to achieve efficient folding and avoid aggregation are poorly understood. We report characterization of the thermally‐induced aggregate of fibroblast growth factor‐1 (FGF‐1), a small globular protein, by solid‐state NMR. NMR spectra are consistent with residual structure in the aggregate and provide evidence of a structured region that corresponds to the region of the folding nucleus. NMR data on aggregated FGF‐1 also indicate the presence of unstructured regions that exhibit hydration‐dependent dynamics and suggest that unstructured regions of aggregated FGF‐1 lie outside the folding nucleus. Since it is known that regions outside the folding nucleus fold late in the folding pathway, we postulate that these regions unfold early in the unfolding pathway and that the partially folded state is more prone to intermolecular aggregation. This interpretation is further supported by comparison with a designed protein that shares the same FGF‐1 folding nucleus sequence, but has different 1° structure outside the folding nucleus, and does not thermally aggregate. The results suggest that design of an efficient folding nucleus, and the avoidance of aggregation in the folding pathway, are potentially separable design criteria – the latter of which could principally focus upon the physicochemical properties of 1° structure outside the folding nucleus.  相似文献   

20.
Xylanases are capable of decomposing xylans, the major components in plant cell wall, and releasing the constituent sugars for further applications. Because xylanase is widely used in various manufacturing processes, high specific activity, and thermostability are desirable. Here, the wild‐type and mutant (E146A and E251A) catalytic domain of xylanase from Thermoanaerobacterium saccharolyticum JW/SL‐YS485 (TsXylA) were expressed in Escherichia coli and purified subsequently. The recombinant protein showed optimal temperature and pH of 75°C and 6.5, respectively, and it remained fully active even after heat treatment at 75°C for 1 h. Furthermore, the crystal structures of apo‐form wild‐type TsXylA and the xylobiose‐, xylotriose‐, and xylotetraose‐bound E146A and E251A mutants were solved by X‐ray diffraction to high resolution (1.32–1.66 Å). The protein forms a classic (β/α)8 folding of typical GH10 xylanases. The ligands in substrate‐binding groove as well as the interactions between sugars and active‐site residues were clearly elucidated by analyzing the complex structures. According to the structural analyses, TsXylA utilizes a double displacement catalytic machinery to carry out the enzymatic reactions. In conclusion, TsXylA is effective under industrially favored conditions, and our findings provide fundamental knowledge which may contribute to further enhancement of the enzyme performance through molecular engineering. Proteins 2013; 81:1256–1265. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号