共查询到20条相似文献,搜索用时 15 毫秒
1.
Tai‐Chih Kuo Peng‐Chen Lee Ching‐Wei Tsai Wen‐Yih Chen 《Journal of molecular recognition : JMR》2013,26(3):149-159
Protein‐nucleic acids binding driven by electrostatic interactions typically are characterized by the release of counter ions, and the salt‐inhibited binding association constant (Ka) and the magnitude of exothermic binding enthalpy (ΔH). Here, we report a non‐classical thermodynamics of streptavidin (SA)–aptamer binding in NaCl (140–350 mM) solutions near room temperatures (23–27 °C). By using isothermal titration calorimetry (ITC) and circular dichroism (CD)/fluorescence spectroscopy, we found that the binding was enthalpy driven with a large entropy cost (ΔH ?20.58 kcal mol?1, TΔS ?10.99 kcal mol?1, and Ka 1.08 × 107 M?1 at 140 mM NaCl 25 °C). With the raise of salt concentrations, the ΔH became more exothermic, yet the Ka was almost unchanged (ΔH ?26.29 kcal mol?1 and Ka 1.50 × 107 M?1 at 350 mM NaCl 25 °C). The data suggest that no counter Na+ was released in the binding. Spectroscopy data suggest that the binding, with a stoichiometry of 2, was accompanied with substantial conformational changes on SA, and the changes were insensitive to the variation of salt concentrations. To account for the non‐classical results, we propose a salt bridge exchange model. The intramolecular binding‐site salt bridge(s) of the free SA and the charged phosphate group of aptamers re‐organize to form the binding complex by forming a new intermolecular salt bridge(s). The salt bridge exchange binding process requires minimum amount of counter ions releasing but dehydration of the contacting surface of SA and the aptamer. The energy required for dehydration is reduced in the case of binding solution with higher salt concentration and account for the higher binding exothermic mainly. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
2.
The binding of four epitope-related peptides and three library-derived, epitope-unrelated peptides of different lengths (10-14 amino acids) and sequence by anti-p24 (HIV-1) monoclonal antibody CB4-1 and its Fab fragment was studied by isothermal titration calorimetry. The binding constants K(A) at 25 degrees C vary between 5.1 x 10(7) M (-1) for the strongest and 1.4 x 10(5) M (-1) for the weakest binder. For each of the peptides complex formation is enthalpically driven and connected with unfavorable entropic contributions; however, the ratio of enthalpy and entropy contributions to deltaG(0) differs markedly for the individual peptides. A plot of -deltaH(0) vs -TdeltaS(0) shows a linear correlation of the data for a wide variety of experimental conditions as expected for a process with deltaC(p) much larger than deltaS(0). The dissimilarity of deltaC(p) and deltaS(0) also explains why deltaH(0) and TdeltaS(0) show similar temperature dependences resulting in relatively small changes of deltaG(0) with temperature. The heat capacity changes deltaC(p) upon antibody-peptide complex formation determined for three selected peptides vary only in a small range, indicating basic thermodynamic similarity despite different key residues interacting in the complexes. Furthermore, the comparison of van't Hoff and calorimetric enthalpies point to a non-two-state binding mechanism. Protonation effects were excluded by measurements in buffers of different ionization enthalpies. Differences in the solution conformation of the peptides as demonstrated by circular dichroic measurements do not explain different binding affinities of the peptides; specifically a high helix content in solution is not essential for high binding affinity despite the helical epitope conformation in the crystal structure of p24. 相似文献
3.
1 Introduction Serumalbuminproteinsareamongthemosthighlystudiedandappliedinbiochemistry[1~ 4].Albuministhemostabundantproteininbloodplasmaandoneofitsmainfunctionsisbasedonauniqueabilitytobindnumerousendogenousandexogenouscompounds.Duetoitsligandbindingpropertiesalbuminservesasacirculatingdepotofsomemetabolites.Thisdepoteffectisoftenmadeuseofindrugtherapy. Humanserumalbumin(HSA)isasinglepeptidechainconsistingof 5 85aminoacids( 6 6 5ku)asdeterminedbyaminoacidsequencestudies[5] andasde… 相似文献
4.
Eduardo Leyva Jorge L. Medrano-Cerano Patricia Cano-Sánchez Itzel López-González Homero Gómez-Velasco Federico del Río-Portilla Enrique García-Hernández 《Biopolymers》2019,110(1):e23242
Wheat germ agglutinin (WGA), a chitin binding lectin, has attracted increasing interest because of its unique characteristics such as conformational stability, binding specificity and transcytosis capacity. To pave the way for the study of the molecular basis of WGA's structural stability and binding capacity, as well as to facilitate its use in biomedical and biotechnological developments, we produced recombinant WGA and its 4 isolated hevein-like domains in a bacterial system. All the proteins were expressed as fusion constructs linked to a thioredoxin domain, which was enzymatically or chemically released. The structural and ligand-binding properties of recombinant WGA were similar to the wild lectin. The 4 isolated domains folded and were ligand-binding competent, indicating that each domain constitutes an independent folding unity. The biophysical characterization of the recombinant domains sheds new light on the intricate folding and binding behavior of this emblematic lectin. 相似文献
5.
Yi‐Chun Chiang Yu‐Ju Lin Jia‐Cherng Horng 《Protein science : a publication of the Protein Society》2009,18(9):1967-1977
There has been growing interest in polyproline type II (PPII) helices since PPII helices have been found in folded and unfolded proteins and involved in a variety of biological activities. Polyproline can also form type I helices (PPI) which are very different from PPII conformation and only exist in certain organic solvents. Recent studies have shown that stereoelectronic effects play a critical role in stabilizing a PPI or PPII helix. Here, we have synthesized a series of host–guest peptides with an electron‐withdrawing substituent at the 4R or 4S position of proline and used a kinetic approach to further explore stereoelectronic effects on the transition barrier of the interconversion between PPI and PPII conformations. Time‐dependent circular dichroism measurements revealed that the rates of PPII → PPI conversion were reduced upon incorporating the hydroxyl‐, fluoro‐, and methoxy‐groups at the 4R position while the rates would be increased if these substituents were at the 4S position. We quantified the changes in transition free energy by comparing their rate constants. (4R,2S)‐4‐Fluoroproline and (4S,2S)‐4‐fluoroproline have the largest effect on the transition energy barrier for PPII → PPI conversion. Our results provide important insights into the role of stereoelectronic effects on the PPII → PPI transition state barrier, which has not been reported in past thermodynamic studies. 相似文献
6.
Thu Ly Inna Krieger Dmitri Tolkatchev Cheyenna Krone Timothy Moural Fadel A. Samatey ChulHee Kang Alla S. Kostyukova 《Protein science : a publication of the Protein Society》2018,27(2):498-508
The missense mutation R21H in striated muscle tropomyosin is associated with hypertrophic cardiomyopathy, a genetic cardiac disease and a leading cause of sudden cardiac death in young people. Tropomyosin adopts conformation of a coiled coil which is critical for regulation of muscle contraction. In this study, we investigated the effects of the R21H mutation on the coiled‐coil structure of tropomyosin and its interactions with its binding partners, tropomodulin and leiomodin. Using circular dichroism and isothermal titration calorimetry, we found that the mutation profoundly destabilized the structural integrity of αTM1a1‐28Zip, a chimeric peptide containing the first 28 residues of tropomyosin. The mutated αTM1a1‐28Zip was still able to interact with tropomodulin and leiomodin. However, the mutation resulted in a ~30‐fold decrease of αTM1a1‐28Zip's binding affinity to leiomodin. We used a crystal structure of αTM1a1‐28Zip that we solved at 1.5 Å resolution to study the mutation's effect in silico by means of molecular dynamics simulation. The simulation data indicated that while the mutation disrupted αTM1a1‐28Zip's coiled‐coil structure, most notably from residue Ala18 to residue His31, it may not affect the N‐terminal end of tropomyosin. The drastic decrease of αTM1a1‐28Zip's affinity to leiomodin caused by the mutation may lead to changes in the dynamics at the pointed end of thin filaments. Therefore, the R21H mutation is likely interfering with the regulation of the normal thin filament length essential for proper muscle contraction. 相似文献
7.
Martínez-Rodríguez S Andújar-Sánchez M Neira JL Clemente-Jiménez JM Jara-Pérez V Rodríguez-Vico F Las Heras-Vázquez FJ 《Protein science : a publication of the Protein Society》2006,15(12):2729-2738
Hydantoin racemase enzyme plays a crucial role in the reaction cascade known as \"hydantoinase process.\" In conjunction with a stereoselective hydantoinase and a stereospecific carbamoylase, it allows the total conversion from D,L-5-monosubstituted hydantoins, with a low rate of racemization, to optically pure D- or L-amino acids. Residues Cys76 and Cys181 belonging to hydantoin racemase from Sinorhizobium meliloti (SmeHyuA) have been proved to be involved in catalysis. Here, we report biophysical data of SmeHyuA Cys76 and Cys181 to alanine mutants, which point toward a two-base mechanism for the racemization of 5-monosubstituted hydantoins. The secondary and the tertiary structure of the mutants were not significantly affected, as shown by circular dichroism. Calorimetric and fluorescence experiments have shown that Cys76 is responsible for recognition and proton retrieval of D-isomers, while Cys181 is responsible for L-isomer recognition and racemization. This recognition process is further supported by measurements of protein stability followed by chemical denaturation in the presence of the corresponding compound. 相似文献
8.
Bor Luen Tang 《Journal of biomolecular structure & dynamics》2013,31(4):613-614
The binding of ciprofloxacin to lysozyme in the presence of three Ag nano-particles of varying sizes was for the first time investigated by multispectroscopic and isothermal titration calorimetry techniques at pH 7.4. The results indicated that ciprofloxacin quenched the fluorescence intensity of lysozyme through a static mechanism but in the presence of size-II Ag nano-particles, there were two kinds of interaction behaviors. The interaction between ciprofloxacin and lysozyme occurred via a second type of binding site, whereas in the presence of the Ag nano-particles, some changes occurred. The secondary structure of lysozyme–ciprofloxacin in the presence of Ag nano-particles was determined by circular dichroism. The thermodynamic parameters of the interaction between ciprofloxacin and lysozyme in the presence of Ag nano-particles were measured according to the van’t Hoff equation. The enthalpy (ΔH○) and entropy (ΔS○) changes were calculated to be ?49.7 (kJ?mol?1) and ?20.1 (J?mol?1?K?1), respectively, which indicated that the interaction of ciprofloxacin with lysozyme was driven mainly by van der Waals forces and hydrogen bonding. In the presence of the three different-sized Ag nano-particles, the enthalpic and the entropic changes were both negative which indicated that hydrogen bonding with van der Waals forces played major roles in the binding between ciprofloxacin and lysozyme. Recent developments in nano-materials offer new pathways for controlling the protein behavior through surface interactions. These data indicate that the recent research on nano-particle/protein interactions will emphasize the importance of such interactions in biological systems with applications including the diagnosis and treatment of human diseases. 相似文献
9.
Muskotál A Király R Sebestyén A Gugolya Z Végh BM Vonderviszt F 《FEBS letters》2006,580(16):3916-3920
Premature polymerization of flagellin (FliC), the main component of flagellar filaments, is prevented by the FliS chaperone in the cytosol. Interaction of FliS with flagellin was characterized by isothermal titration calorimetry producing an association constant of 1.9x10(7) M-1 and a binding stoichiometry of 1:1. Experiments with truncated FliC fragments demonstrated that the C-terminal disordered region of flagellin is essential for FliS binding. As revealed by thermal unfolding experiments, FliS does not function as an antifolding factor keeping flagellin in a secretion-competent conformation. Instead, FliS binding facilitates the formation of alpha-helical secondary structure in the chaperone binding region of flagellin. 相似文献
10.
Del Vecchio P Carullo P Barone G Pagano B Graziano G Iannetti A Acquaviva R Leonardi A Formisano S 《Proteins》2008,70(3):748-760
11.
R. Tyler-Cross M. Sobel D. Marques R. B. Harris 《Protein science : a publication of the Protein Society》1994,3(4):620-627
The serine proteinase inhibitor antithrombin III (ATIII) is a key regulatory protein of intrinsic blood coagulation. ATIII attains its full biological activity only upon binding polysulfated oligosaccharides, such as heparin. A series of synthetic peptides have been prepared based on the proposed heparin binding regions of ATIII and their ability to bind heparin has been assessed by CD spectrometry, by isothermal titration calorimetry, and by the ability of the peptides to compete with ATIII for binding heparin in a factor Xa procoagulant enzyme assay. Peptide F123-G148, which encompasses both the purported high-affinity pentasaccharide binding region and an adjacent, C-terminally directed segment of ATIII, was found to bind heparin with good affinity, but amino-terminal truncations of this sequence, including L130-G148 and K136-G148 displayed attenuated heparin binding activities. In fact, K136-G148 appears to encompass only a low-affinity heparin binding site. In contrast, peptides based solely on the high-affinity binding site (K121-A134) displayed much higher affinities for heparin. By CD spectrometry, these high-affinity peptides are chiefly random coil in nature, but low microM concentrations of heparin induce significant alpha-helix conformation. K121-A134 also effectively competes with ATIII for binding heparin. Thus, through the use of synthetic peptides that encompass part, if not all, of the heparin binding site(s) within ATIII, we have further elucidated the structure-function relations of heparin-ATIII interactions. 相似文献
12.
Thermodynamic studies have been made on the effect of Cr+3 on the conformation and structure of bovine β lactoglobulin-A, (Blg-A) in 50 mM sodium chloride solution at 27°C using isothermal titration calorimetry (ITC), circular dichroism (CD) and fluorescence spectroscopy.
There is a set of six identical and independent binding sites for Cr+3 by a dissociation binding constant of 124 μM and the molar enthalpy of binding −17.8 kJ/mol. Circular dichroism studies do not show any significant change in the secondary
structure of the protein after the binding of chromium ion on the Blg-A. Fluorescence spectroscopy studies do not show any
considerable change in the tertiary structure of Blg-A due to the increasing of Cr+3 in low concentration. However, occupation of fourth and fifth binding sites for chromium ions induce partially unfolding
in the tertiary structure of the protein resulted from solvent – exposed hydrophobic patches on BLG-A. 相似文献
13.
14.
Predicting Ligand Binding Affinity with Alchemical Free Energy Methods in a Polar Model Binding Site
Sarah E. Boyce David L. Mobley Gabriel J. Rocklin Ken A. Dill 《Journal of molecular biology》2009,394(4):747-3155
We present a combined experimental and modeling study of organic ligand molecules binding to a slightly polar engineered cavity site in T4 lysozyme (L99A/M102Q). For modeling, we computed alchemical absolute binding free energies. These were blind tests performed prospectively on 13 diverse, previously untested candidate ligand molecules. We predicted that eight compounds would bind to the cavity and five would not; 11 of 13 predictions were correct at this level. The RMS error to the measurable absolute binding energies was 1.8 kcal/mol. In addition, we computed “relative” binding free energies for six phenol derivatives starting from two known ligands: phenol and catechol. The average RMS error in the relative free energy prediction was 2.5 kcal/mol (phenol) and 1.1 kcal/mol (catechol). To understand these results at atomic resolution, we obtained x-ray co-complex structures for nine of the diverse ligands and for all six phenol analogs. The average RMSD of the predicted pose to the experiment was 2.0 Å (diverse set), 1.8 Å (phenol-derived predictions), and 1.2 Å (catechol-derived predictions). We found that predicting accurate affinities and rank-orderings required near-native starting orientations of the ligand in the binding site. Unanticipated binding modes, multiple ligand binding, and protein conformational change all proved challenging for the free energy methods. We believe that these results can help guide future improvements in physics-based absolute binding free energy methods. 相似文献
15.
Wehenkel A Bellinzoni M Schaeffer F Villarino A Alzari PM 《Journal of molecular biology》2007,374(4):890-898
Phospho-Ser/Thr protein phosphatases (PPs) are dinuclear metalloenzymes classed into two large families, PPP and PPM, on the basis of sequence similarity and metal ion dependence. The archetype of the PPM family is the α isoform of human PP2C (PP2Cα), which folds into an α/β domain similar to those of PPP enzymes. The recent structural studies of three bacterial PPM phosphatases, Mycobacterium tuberculosis MtPstP, Mycobacterium smegmatis MspP, and Streptococcus agalactiae STP, confirmed the conservation of the overall fold and dinuclear metal center in the family, but surprisingly revealed the presence of a third conserved metal-binding site in the active site. To gain insight into the roles of the three-metal center in bacterial enzymes, we report structural and metal-binding studies of MtPstP and MspP. The structure of MtPstP in a new trigonal crystal form revealed a fully active enzyme with the canonical dinuclear metal center but without the third metal ion bound to the catalytic site. The absence of metal correlates with a partially unstructured flap segment, indicating that the third manganese ion contributes to reposition the flap, but is dispensable for catalysis. Studies of metal binding to MspP using isothermal titration calorimetry revealed that the three Mn2+-binding sites display distinct affinities, with dissociation constants in the nano- and micromolar range for the two catalytic metal ions and a significantly lower affinity for the third metal-binding site. In agreement, the structure of inactive MspP at acidic pH was determined at atomic resolution and shown to lack the third metal ion in the active site. Structural comparisons of all bacterial phosphatases revealed positional variations in the third metal-binding site that are correlated with the presence of bound substrate and the conformation of the flap segment, supporting a role of this metal ion in assisting enzyme-substrate interactions. 相似文献
16.
Mobley DL Graves AP Chodera JD McReynolds AC Shoichet BK Dill KA 《Journal of molecular biology》2007,371(4):1118-1134
A central challenge in structure-based ligand design is the accurate prediction of binding free energies. Here we apply alchemical free energy calculations in explicit solvent to predict ligand binding in a model cavity in T4 lysozyme. Even in this simple site, there are challenges. We made systematic improvements, beginning with single poses from docking, then including multiple poses, additional protein conformational changes, and using an improved charge model. Computed absolute binding free energies had an RMS error of 1.9 kcal/mol relative to previously determined experimental values. In blind prospective tests, the methods correctly discriminated between several true ligands and decoys in a set of putative binders identified by docking. In these prospective tests, the RMS error in predicted binding free energies relative to those subsequently determined experimentally was only 0.6 kcal/mol. X-ray crystal structures of the new ligands bound in the cavity corresponded closely to predictions from the free energy calculations, but sometimes differed from those predicted by docking. Finally, we examined the impact of holding the protein rigid, as in docking, with a view to learning how approximations made in docking affect accuracy and how they may be improved. 相似文献
17.
Welfle K Misselwitz R Sabat R Volk HD Schneider-Mergener J Reineke U Welfle H 《Journal of molecular recognition : JMR》2001,14(2):89-98
The mechanism of recognition of proteins and peptides by antibodies and the factors determining binding affinity and specificity are mediated by essentially the same features. However, additional effects of the usually unfolded and flexible solution structure of peptide ligands have to be considered. In an earlier study we designed and optimized six peptides (pepI to pepVI) mimicking the discontinuous binding site of interleukin-10 for the anti-interleukin-10 monoclonal antibody (mab) CB/RS/1. Three of them were selected for analysis of their solution conformation by circular dichroism measurements. The peptides differ in the content of alpha-helices and in the inducibility of helical secondary structures by trifluoroethanol. These properties, however, do not correlate with the binding affinity. PepVI, a 32-mer cyclic epitope mimic, has the highest affinity to mab CB/RS/1 identified to date. CD difference spectroscopy suggests an increase of the alpha-helix content of pepVI with complex formation. Binding of pepVI to mab CB/RS/1 is characterized by a large negative, favorable binding enthalpy and a smaller unfavorable loss of entropy (DeltaH degrees = -16.4 kcal x mol(-1), TDeltaS degrees = -6.9 kcal x mol(-1)) resulting in DeltaG degrees = -9.5 kcal x mol(-1) at 25 degrees C as determined by isothermal titration calorimetry. Binding of pepVI is enthalpically driven over the entire temperature range studied (10-35 degrees C). Complex formation is not accompanied by proton uptake or release. A negative heat capacity change DeltaC(p) of -0.354 kcal x mol(-1) x K(-1) was determined from the temperature dependence of DeltaH degrees. The selection of protein mimics with the observed thermodynamic properties is promoted by the applied identification and iterative optimization procedure. 相似文献
18.
Mohd Faizan Siddiqui 《Journal of biomolecular structure & dynamics》2013,31(15):4120-4131
AbstractOxyfluorfen (2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene) is a nitrophenyl ether herbicide. Phytocystatins are crucial plant proteins which regulate various physiological processes and are also responsible for maintaining protease–antiprotease balance within plants. Thus, the present article deciphers the interaction of oxyfluorfen with garlic phytocystatin (GPC) through various spectroscopic and calorimetric techniques. The cysteine proteinase inhibitory assay was done to assess the inhibitory action of GPC in the presence of oxyfluorfen. The GPC loses its inhibitory activity in the presence of oxyfluorfen. The complex formation of GPC-oxyfluorfen was shown by UV absorption spectroscopy. The intrinsic fluorescence experiment affirmed the quenching of GPC in the presence of oxyfluorfen. The Stern–Volmer quenching constant and binding constant was obtained as 6.89?×?103 M?1 and 9.72?×?103 M?1, respectively. Synchronous fluorescence showed the alteration in the microenvironment around tyrosine residues. 3D fluorescence suggested the perturbation in the polarity around aromatic residues. The isothermal titration experiment suggests that the interaction of oxyfluorfen with GPC is a thermodynamically favorable reaction. Secondary structure alteration of GPC in the presence of oxyfluorfen was studied by circular dichroism (CD). The CD result showed a reduction in the α-helical content of GPC on interaction with oxyfluorfen. Consequently, all these outcomes affirmed the formation of GPC–oxyfluorfen complex along with the structural and conformational alteration. This study identifies and signifies that the exposure of oxyfluorfen induces stress within the plant system.Communicated by Ramaswamy H. Sarma 相似文献
19.
《Journal of molecular recognition : JMR》2017,30(7)
In this paper, the comparative binding behavior of antimalarial drug azure A, azure B and azure C with bovine serum albumin (BSA) has been studied. The interaction has been confirmed by multispectroscopic (UV, fluorescence, Fourier transform infrared (FT‐IR), and circular dichroism) and molecular docking techniques. The experimental results show that azure B has the highest BSA binding affinity followed by azure A and azure C. The experimental evidence of binding showed a static quenching mechanism in the interaction azures with BSA. The isothermal titration calorimetry result reveals that the binding was exothermic with positive entropy contribution in each case. The thermodynamic parameters ΔH, ΔG, and ΔS at 25°C were calculated, which indicates that the weak van der Waals forces and hydrogen bonding rather than the hydrophobic effect played an important role in the interaction. According to the theory of Förster nonradiative energy transfer, the distance (r) between the donor (BSA) and acceptor azures found to be <7 nm in all the case. The circular dichroism and FT‐IR studies show that the content of α‐helix structure has increased for the azures‐BSA system. Overall, experimental studies characterize the interaction dynamics and energetics of the binding of three toxic analogs towards the physiologically relevant serum albumins. We hope, the outcome of this work will be most helpful for synthesizing a new type of phenothiazinium derivatives of the better therapeutic application. 相似文献
20.
Christopher Eginton Saranga Naganathan Dorothy Beckett 《Protein science : a publication of the Protein Society》2015,24(2):200-211
Folding coupled to binding is ubiquitous in biology. Nevertheless, the relationship of sequence to function for protein segments that undergo coupled binding and folding remains to be determined. Specifically, it is not known if the well-established rules that govern protein folding and stability are relevant to ligand-linked folding transitions. Upon small ligand biotinoyl-5′-AMP (bio-5′-AMP) binding the Escherichia coli protein BirA undergoes a disorder-to-order transition that results in formation of a network of packed hydrophobic side chains. Ligand binding is also allosterically coupled to protein association, with bio-5′-AMP binding enhancing the dimerization free energy by −4.0 kcal/mol. Previous studies indicated that single alanine replacements in a three residue hydrophobic cluster that contributes to the larger network disrupt cluster formation, ligand binding, and allosteric activation of protein association. In this work, combined equilibrium and kinetic measurements of BirA variants with alanine substitutions in the entire hydrophobic network reveal large functional perturbations resulting from any single substitution and highly non-additive effects of multiple substitutions. These substitutions also disrupt ligand-linked folding. The combined results suggest that, analogous to protein folding, functional disorder-to-order linked to binding requires optimal packing of the relevant hydrophobic side chains that contribute to the transition. The potential for many combinations of residues to satisfy this requirement implies that, although functionally important, segments of homologous proteins that undergo folding linked to binding can exhibit sequence divergence. 相似文献