首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During insect larval–pupal metamorphosis, proteins in the hemolymph are absorbed by the fat body for the maintenance of intracellular homeostasis; however, the type of proteins and how these proteins are internalized into the fat body are unclear. In Bombyx mori, the developmental profiles of total proteins in the hemolymph and fat body showed that hemolymph‐decreased protein bands (55–100 kDa) were in accordance with those protein bands that increased in the fat body. Inhibition of clathrin‐dependent endocytosis predominantly blocked the transportation of 55–100 kDa proteins from the hemolymph into the fat body, which was further verified by RNA interference treatment of Bmclathrin. Six hexamerins were shown to comprise ~90% of the total identified proteins in both the hemolymph and fat body by mass spectrum (MS) analysis. In addition, hemolymph‐specific proteins were mainly involved in material transportation, while fat body‐specific proteins particularly participated in metabolism. In this paper, four hexamerins were found for the first time, and potential proteins absorbed by the fat body from the hemolymph through clathrin‐dependent endocytosis were identified. This study sheds light on the protein absorption mechanism during insect metamorphosis.  相似文献   

2.
3.
In holometabolus insects, morphology of the larval fat body is remodeled during metamorphosis. In higher Diptera, remodeling of the fat body is achieved by cell death of larval fat body cells and differentiation of the adult fat body from primordial cells. However, little is known about remodeling of the fat body at pupal metamorphosis in Lepidoptera. In this study, we found that cell death of the larval fat body in Bombyx mori occurs at shortly after pupation. About 30% of the fat body cells underwent cell death on days 1 and 2 after pupation. The cell death involved genomic DNA fragmentation, a characteristic of apoptosis. Surgical manipulation and in vitro culture of fat body cells revealed that 20-hydroxyecdysone and juvenile hormone had no effect on either initiation or progression of cell death. During cell death, a large increase in activity of caspase-3, a key enzyme of cell death, was observed. Western blot analysis of the active form of caspase-3-like protein revealed that the length of caspase-3 of B. mori was much larger than that of caspase-3 in other species. The results suggest that larval fat body cells of B. mori are removed through cell death, which is mediated by a caspase probably categorized in a novel family.  相似文献   

4.
Proteolytic enzymes are involved in insect molting and metamorphosis, and play a vital role in the programmed cell death of obsolete organs. Here we show the expression profile of cathepsin B in the fat body of the silkworm Bombyx mori during development. We also compare the expression profiles of B. mori cathepsins B (BmCatB) and D (BmCatD) during normal development and after RNA interference (RNAi)-mediated inhibition. BmCatB is induced by 20-OH-ecdysone, and is expressed in the fat body of B. mori during molting and the larval–pupal and pupal–adult transformations, where its expression leads to programmed cell death. In particular, BmCatB is highly expressed in the fat body of B. mori during the larval–pupal transformation, and BmCatB RNAi treatment resulted in an arrest of the larval–pupal transformation. RNAi-mediated BmCatB knockdown sustained the expression of BmCatD during the larval–pupal transformation. On the other hand, when BmCatD was inhibited via RNAi, the expression of BmCatB was upregulated. Based on these results, we conclude that BmCatB is involved in the programmed cell death of the fat body during B. mori metamorphosis, and that BmCatB and BmCatD contribute to B. mori metamorphosis.  相似文献   

5.
During the metamorphosis of the silkworm, Bombyx mori, three major hemolymph proteins (MHPs) (molecular weights 17,000, 25,000, 27,000) were detected and found to be distributed in the hemolymph and in the tissues of several organs, such as the fat body, midgut, ovary, testis, and even eggs. The MHPs in eggs gradually decreased and disappeared during embryogenesis. The formation, distribution, and utilization of MHPs in tissues other than the gonad, however, were not affected by sex. Radioisotope experiments in vivo revealed that the MHPs were synthesized at an early period of the fifth larval instar. The synthesis of at least two of them occurred in the fat body. MHPs in the hemolymph entered the tissues at the onset of the larval-pupal transformation. On the basis of their appearance, distribution, and depletion, the MHPs may be classified as reserve proteins which are synthesized in the larval stage and utilized later in the developmental stages.  相似文献   

6.
The accumulation and utilization of storage proteins are prominent events linked to the metamorphosis of holometabolous insects. The female-specific storage protein 1 (SP1) is the major storage protein found in the hemolymph and fat body of female larvae of the groundnut pest, Amsacta albistriga. Here we show SP1 expression and localization in differentiated fat body tissues using biochemical and immunohistochemistry scrutiny. Comparison of A. albistriga SP1 with that of other species with respect to amino acid composition and N-terminal sequences show that SP1 is a methonine-rich protein and its identity was confirmed by means of immunoblot analysis. Northern blot studies revealed that the SP1 gene demonstrates stage- and tissue-specific expression in the peripheral fat body cells during the mid-larval period of fifth instar of A. albistriga. During the larval pupal transformation, SP1 are sequestered mainly by the perivisceral fat body tissues, until they serve the purpose of supplying amino acids for the production of egg yolk proteins. Further, electron microscopic studies using immunogold tracer techniques confirmed the localization of crystalline SP1 reserves, stored in the perivisceral fat body tissues. Hence, the peripheral fat body is responsible for biosynthesis of storage proteins, whereas the perivisceral fat body is a specialized storage organ.  相似文献   

7.

Background

Metamorphosis is a complex, highly conserved and strictly regulated development process that involves the programmed cell death of obsolete larval organs. Here we show a novel functional role for the aspartic proteinase cathepsin D during insect metamorphosis.

Results

Cathepsin D of the silkworm Bombyx mori (BmCatD) was ecdysone-induced, differentially and spatially expressed in the larval fat body of the final instar and in the larval gut of pupal stage, and its expression led to programmed cell death. Furthermore, BmCatD was highly induced in the fat body of baculovirus-infected B. mori larvae, suggesting that this gene is involved in the induction of metamorphosis of host insects infected with baculovirus. RNA interference (RNAi)-mediated BmCatD knock-down inhibited programmed cell death of the larval fat body, resulting in the arrest of larval-pupal transformation. BmCatD RNAi also inhibited the programmed cell death of larval gut during pupal stage.

Conclusion

Based on these results, we concluded that BmCatD is critically involved in the programmed cell death of the larval fat body and larval gut in silkworm metamorphosis.  相似文献   

8.
9.
During metamorphosis, holometabolous insects eliminate obsolete larval tissues via programmed cell death. In contrast, tissues required for further development are retained and often remodeled to meet the needs of the adult fly. The larval fat body is involved in fueling metamorphosis, and thus it escapes cell death and is instead remodeled during prepupal development. The molecular mechanisms by which the fat body escapes programmed cell death have not yet been described, but it has been established that fat-body remodeling requires 20-hydroxyecdysone (20E) signaling. We have determined that 20E signaling is required within the fat body for the cell-shape changes and cell detachment that are characteristic of fat-body remodeling. We demonstrate that the nuclear hormone receptor ßFTZ-F1 is a key modulator of 20E hormonal induction of fat body remodeling and Matrix metalloproteinase 2 (MMP2) expression in the fat body. We show that induction of MMP2 expression in the fat body requires 20E signaling, and that MMP2 is necessary and sufficient to induce fat-body remodeling.  相似文献   

10.
20E-hydroxyecdysone (20E) plays important roles in larval molting and metamorphosis in insects and is also involved in the insect innate immune response. Insect metamorphosis is a highly successful strategy for environmental adaptation and is the most vulnerable stage during which the insect is susceptible to various pathogens. 20E regulates a series of antimicrobial peptides (AMPs) through the immunodeficiency (IMD) pathway activation in Drosophila; nevertheless, whether other immune pathways are involved in 20E-regulated insect immunity is unknown. Our previous studies showed that BmMD-2A is a member of the MD-2-related lipid recognition (ML) family of proteins that are involved in the Bombyx mori innate immunity Toll signaling pathway. In this study, we further demonstrate that BmMD-2A is also positively regulated by 20E, and the BmMD-2A neutralization experiment suggested that 20E activates some downstream immune effect factors, the AMP genes against Escherichia coli and Staphylococcus aureus, through the regulation of BmMD-2A in larval metamorphosis, implying that B. mori may use the Toll-ML signaling pathway to maintain innate immune balance in the larval-pupal metamorphosis stage, which is a different innate immunity pathway regulated by 20E compared to the IMD pathway in Drosophila.  相似文献   

11.
12.
Lipophorin (Lp) acts in the circulation of insects to selectively deliver lipids to target tissues. In the present study, we wanted to show that Lp is taken up into larval fat body cells and the adult ovary in Galleria mellonella. Larval fat body and adult ovary tissues were incubated at room temperature for 30 min with fluorescein isothiocyanate (FITC)‐labeled Lp. Fluorescence microscopy and sodium dodecylsulfate (SDS)–polyacrylamide gel electrophoresis (PAGE) revealed that fat body and ovary tissues internalize fluorescence‐labeled Lp. The results suggest that both lipids and proteins are taken up by fat body cells and the ovary and also that large amounts of proteins and lipids taken up can serve as building blocks and as a source of energy. Immunological relationships with other insects were investigated using western blotting. The data showed that the Lp of Galleria mellonella is related to that of Hyphantria cunea.  相似文献   

13.
Programmed cell death (PCD) is a focal topic for understanding processes underlying metamorphosis in insects, especially so in holometabolous orders. During adult morphogenesis it allows for the elimination of larva-specific tissues and the reorganization of others for their functionalities in adult life. In Rhynchosciara, this PCD process could be classified as autophagic cell death, yet the expression of apoptosis-related genes and certain morphological aspects suggest that processes, autophagy and apoptosis may be involved. Aiming to reveal the morphological changes that salivary gland and fat body cells undergo during metamorphosis we conducted microscopy analyses to detect chromatin condensation and fragmentation, as well as alterations in the cytoplasm of late pupal tissues of Rhynchosciara americana. Transmission electron microscopy and confocal microscopy revealed cells in variable stages of death. By analyzing the morphological structure of the salivary gland we observed the presence of cells with autophagic vacuoles and apoptotic bodies and DNA fragmentation was confirmed with the TUNEL assay in salivary gland. The reorganization of fat body occurs with discrete detection of cell death by TUNEL assay. However, both salivary gland histolysis and fat body reorganization occur under control of the hormone ecdysone.  相似文献   

14.
1. Insects with complete metamorphosis (holometaboly) are extremely successful, constituting over 60% of all described animal species. Complete metamorphosis confers significant advantages because it enables organisms to optimise life‐history components through temporal partitioning, and thereby to exploit multiple ecological niches. Yet holometaboly can also impose costs, and several lineages have evolved life cycle modifications to avoid complete metamorphosis. 2. In this review, we discuss different strategies that have evolved that result in the loss of complete metamorphosis (type I and type II paedomorphosis). In addition, the ecological pressures and developmental modifications that facilitate this avoidance are considered, as well as the importance of life cycle complexity in life‐history evolution. 3. Interestingly, only female holometabolous insects have entirely avoided complete metamorphosis, and it is always the ancestrally juvenile morphology that is retained. These findings point to a strong sex‐biased trade‐off between investment in reproduction and development. While the loss of complete metamorphosis in females has occurred independently on several occasions across holometabolous insects, only a small number of species possessing this ability have been described. 4. Thus, complete metamorphosis, which originated only once in insects, appears to have been almost fully retained. This indicates that significant modifications to the holometabolan metamorphic ground plan are highly constrained, and suggests that the transition to complete metamorphosis is evolutionarily irreversible.  相似文献   

15.
16.
A cDNA encoding a novel heptahelical receptor from the prothoracic glands of the silkworm, Bombyx mori was cloned and sequenced during screening of a prothoracicotropic hormone (PTTH) receptor. Orthologs of this receptor are found not only in insects, but also in the vertebrates. In B. mori, ubiquitous expression of the mRNA was observed in the larva. Also, a higher expression level in the prothoracic glands was observed before molting and metamorphosis and was impaired after pupal molting. But, further analysis is required to confirm whether this receptor cDNA encodes the PTTH receptor.  相似文献   

17.
Apoptosis and autophagy play crucial roles during Bombyx mori metamorphosis and in response to various adverse conditions, including starvation. Recently, calpain, one of the major intracellular proteases, has been reported to be involved in apoptosis and autophagy in mammals. BmATG5 and BmATG6 have been identified to mediate apoptosis following autophagy induced by 20‐hydroxyecdysone and starvation in B. mori. However, B. mori calpains and their functions remain unclear. In this study, phylogenetic analysis of calpains from B. mori, Drosophila melanogaster and Homo sapiens were performed and the results showed distinct close relationships of BmCalpain‐A/B with DmCalpain‐A/B, BmCalpain‐C with DmCalpain‐C, and BmCalpain‐7 with HsCalpain‐7. Then, the expression profiles of BmCalpains were analyzed by quantitative real‐time polymerase chain reaction, and results showed that expression of BmCalpain‐A/B, BmCalpain‐C and BmCalpain‐7 was significantly increased during B. mori metamorphosis and induced in the fat body and midgut of starved larvae, which is consistent with the expression profiles of BmAtg5, BmAtg6 and BmCaspase‐1. Moreover, the apoptosis‐associated cleavage of BmATG6 in Bm‐12 cells was significantly enhanced when BmCalpain‐A/B and BmCalpain‐7 were induced by starvation, and was partially inhibited by the inhibitor of either calpain or caspase, but completely inhibited when both types of inhibitors were applied together. Our results indicated that BmCalpains, including BmCalpain‐A/B, ‐C and ‐7, may be involved in autophagy and apoptosis during B. mori metamorphosis and after starvation, and may also contribute to the apoptosis‐associated cleavage of BmATG6.  相似文献   

18.
19.
Eukaryotic cells can decorate their proteins with carbohydrate structures or glycans, significantly affecting the properties and activities of these proteins. Despite the importance of protein glycosylation in numerous biological processes, our knowledge of this modification in insects is far from complete. While N-glycosylation is the most studied, the study of O-glycans in insects is still very fragmentary and these studies are limited to a specific developmental stage or a specific tissue. In this article, matrix-assisted laser desorption/ionization (MALDI)-Fourier transform ion cyclotron resonance (FTICR) mass spectrometry (MS) technology was used to analyze the O-glycan profile for the different developmental stages of egg, larva, pupa, and adult of the red flour beetle Tribolium castaneum, an important insect model and pest worldwide. The results on the O-glycan profile showed that the mucin-type glycans dominate the O-glycome of the red flour beetle. Interestingly, some of the more complex mucin-type O-glycans, such as a tetra- (O-GalNAcGalGlcAGalNAc) and pentasaccharide O-glycan (O-GalNAc(GalGlcA)GalNAcGlcA), were highly abundant during the pupa stage, the intermediate stage between larval and adult stage in holometabolous insects, demonstrating that insect metamorphosis is accompanied with a change in the insect O-glycan profile. Together with the N-glycan profile, the current data are a foundation to better understand the role of protein glycosylation in the development of insects.  相似文献   

20.
The δ15N values of adult holometabolous insects exceed those of larvae, but otherwise little information on terrestrial invertebrates has been obtained in food‐web analyses using stable isotope ratios (δ15N, δ13C). Changes in δ13C during metamorphosis and differences between males and females have not been examined. We collected the larvae and cocoons of Euthrix potatoria (L.) (Lepidoptera: Lasiocampidae) in the field and used them to assess the species’ isotopic fractionation. Each emerged moth was divided into five body parts. We conducted stable N and C isotope analyses for each body part, as well as for cocoons and exuviae, and also compared stable isotope ratios between sexes. We confirmed δ15N enrichment through metamorphosis and estimated that δ15N enrichment is accomplished by the relative concentration of 15N due to the excretion of copious meconium, which contains abundant 14N. We also observed changes in δ13C values through metamorphosis. Both isotope values tended to change more in males than in females. The proportion of the whole‐adult weight represented by meconium was higher in males than in females, suggesting that high meconium secretion in males contributes to the sexual difference in δ15N. These phenomena may be common in Holometabola, which require a pupal stage. For more accurate food‐web assessments, it is important to consider stable isotope changes during different life cycles, as well as sexual differences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号