首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to correlate between spectroscopic and structural changes in a protein, the environment of Trp 135 in T4 lysozyme was deliberately perturbed by the replacement of Gln 105 with alanine (Q105A), glycine (Q105G), and glutamic acid (Q105E). In wild-type lysozyme, Trp 135 is buried, but the indole nitrogen is hydrogen-bonded to the side-chain of Gln 105. In the Q105G and Q105A mutant structures, the indole nitrogen becomes accessible to solvent. Crystallographic analysis shows that the structures of all of the mutants are similar to wild-type. There are, however, distinct rearrangements of the local solvent structure in response to the new side-chains. There are also small but significant changes in the relative orientations of the two domains of the protein that appear to result from a series of small, concerted movements of side-chains adjacent to residue 105. Evaluation of the fluorescence and phosphorescence of the mutant proteins in terms of their observed three-dimensional structures shows that large spectral changes do not necessarily imply large changes in structure or in static solvent accessibility. Increases in polar relaxation about the excited state of tryptophan may be the result of only small increases in local dynamics or solvent exposure. 1H-NMR was also used to monitor the effects of the substitutions on Trp 138. In Q105E, but not in Q105G, Q105A and WT, the Hε1 chemical shift of Trp 138 is very pH-dependent, apparently reflecting the titration of Glu 105 which has a spectroscopically determined pKa of 6.0. The elevation of the pKa of Glu 105 in Q105E is also reflected in the pH dependence of the stability of this mutant. © 1993 Wiley-Liss, Inc.  相似文献   

2.
Glutamine-binding protein (GlnBP) from Escherichia coli is a monomer (26 kDa) that is responsible for the first step in the active transport of L-glutamine across the cytoplasmic membrane. GlnBP consists of two domains (termed large and small) linked by two antiparallel beta-strands. The large domain is similar to the small domain but it contains two additional alpha-helices and three more short antiparallel beta-strands. The deep cleft formed between the two domains contains the ligand-binding site. The binding of L-glutamine leads to cleft closing and a significant structural change with the formation of the so-called "closed form" structure. The protein contains two tryptophan residues (W32 and W220) and 10 tyrosine residues. We used phosphorescence spectroscopy measurements to characterize the role of the two tryptophan residues in the protein structure in the absence and the presence of glutamine. Our results pointed out that the phosphorescence of GlnBP is easily detected in fluid solutions where the emission of the two tryptophan residues is readily discriminated by the drastic difference in the phosphorescence lifetime allowing the assignments of the short lifetime to W220 and the long lifetime to W32. In addition, our results showed that the triplet lifetime of the superficial W220 is unusually short because of intramolecular quenching by the proximal Y163. On the contrary, the lifetime of W32 is several hundred milliseconds long, implicating a well-ordered, compact fold of the surrounding polypeptide. The spectroscopic data were analyzed and discussed together with a detailed inspection of the 3D structure of GlnBP.  相似文献   

3.
The glutathione S-transferase (GST) isoenzyme A1–1 from rat contains a single tryptophan, Trp 21, which is expected to lie within α-helix 1 based on comparison with the X-ray crystal structures of the pi- and mu-class enzymes. Steady-state and multifrequency phase/modulation fluorescence studies have been performed in order to characterize the fluorescence parameters of this tryptophan and to document ligand-induced conformational changes in this region of the protein. Addition of S-hexyl glutathione to GST isoenzyme A1–1 causes an increase in the steady-state fluorescence intensity, whereas addition of the substrate glutathione has no effect. Frequency-domain excited-state lifetime measurements indicate that Trp 21 exhibits three exponential decays in substrate-free GST. In the presence of S-hexyl glutathione, the data are also best described by the sum of three exponential decays, but the recovered lifetime values change. For the substrate-free protein, the short lifetime component contributes 9–16% of the total intensity at four wavelengths spanning the emission. The fractional intensity of this lifetime component is decreased to less than 3% in the presence of S-hexyl glutathione. Steady-state quenching experiments indicate that Trp 21 is insensitive to quenching by iodide, but it is readily quenched by acrylamide. Acrylamide-quenching experiments at several emission wavelengths indicate that the long-wavelength components become quenched more easily in the presence of S-hexyl glutathione. Differential fluorescence polarization measurements also have been performed, and the data describe the sum of two anisotropy decay rates. The recovered rotational correlation times for this model are 26 ns and 0.81 ns, which can be attributed to global motion of the protein dimer, and fast local motion of the tryptophan side chain. These results demonstrate that regions of GST that are not in direct contact with bound substrates are mobile and undergo microconformational rearrangement when the “H-site” is occupied.  相似文献   

4.
Experimental nuclear magnetic resonance results for the Arc Repressor have shown that this dimeric protein dissociates into a molten globule at high pressure. This structural change is accompanied by a modification of the hydrogen-bonding pattern of the intermolecular beta-sheet: it changes its character from intermolecular to intramolecular with respect to the two monomers. Molecular dynamics simulations of the Arc Repressor, as a monomer and a dimer, at elevated pressure have been performed with the aim to study this hypothesis and to identify the major structural and dynamical changes of the protein under such conditions. The monomer appears less stable than the dimer. However, the complete dissociation has not been seen because of the long timescale needed to observe this phenomenon. In fact, the protein structure altered very little when increasing the pressure. It became slightly compressed and the dynamics of the side-chains and the unfolding process slowed down. Increasing both, temperature and pressure, a tendency of conversion of intermolecular into intramolecular hydrogen bonds in the beta-sheet region has been detected, supporting the mentioned hypothesis. Also, the onset of denaturation of the separated chains was observed.  相似文献   

5.
We investigated the pathway for pressure unfolding of metmyoglobin using molecular dynamics (MD) for a range of pressures (0.1 MPa to 1.2 GPa) and a temperature of 300 K. We find that the unfolding of metmyoglobin proceeds via a two-step mechanism native --> molten globule intermediate --> unfolded, where the molten globule forms at 700 MPa. The simulation describes qualitatively the experimental behavior of metmyoglobin under pressure. We find that unfolding of the alpha-helices follows the sequence of migrating hydrogen bonds (i,i + 4) --> (i,i + 2).  相似文献   

6.
In this work, we used fluorescence spectroscopy, molecular dynamics simulation, and Fourier transform infrared spectroscopy for investigating the effect of trehalose binding and maltose binding on the structural properties and the physical parameters of the recombinant D-trehalose/D-maltose binding protein (TMBP) from the hyperthermophilic archaeon Thermococcus litoralis. The binding of the two sugars to TMBP was studied in the temperature range 20 degrees-100 degrees C. The results show that TMBP possesses remarkable temperature stability and its secondary structure does not melt up to 90 degrees C. Although both the secondary structure itself and the sequence of melting events were not significantly affected by the sugar binding, the protein assumes different conformations with different physical properties depending whether maltose or trehalose is bound to the protein. At low and moderate temperatures, TMBP possesses a structure that is highly compact both in the absence and in the presence of two sugars. At about 90 degrees C, the structure of the unliganded TMBP partially relaxes whereas both the TMBP/maltose and the TMBP/trehalose complexes remain in the compact state. In addition, Fourier transform infrared results show that the population of alpha-helices exposed to the solvent was smaller in the absence than in the presence of the two sugars. The spectroscopic results are supported by molecular dynamics simulations. Our data on dynamics and stability of TMBP can contribute to a better understanding of transport-related functions of TMBP and constitute ground for targeted modifications of this protein for potential biotechnological applications.  相似文献   

7.
Sso7d is a 62-residue protein from the hyperthemophilic archaeon Sulfolobus solfataricus with a denaturation temperature close to 100 degrees C around neutral pH. An engineered form of Sso7d truncated at leucine 54 (L54Delta) is significantly less stable, with a denaturation temperature of 53 degrees C. Molecular dynamics (MD) studies of Sso7d and its truncated form at two different temperatures have been performed. The results of the MD simulations at 300 K indicate that: (1) the flexibility of Sso7d chain at 300 K agrees with that detected from X-ray and NMR structural studies; (2) L54Delta remains stable in the native folded conformation and possesses an overall dynamic behavior similar to that of the parent protein. MD simulations performed at 500 K, 10 ns long, indicate that, while Sso7d is in-silico resistant to high temperature, the truncated variant partially unfolds, revealing the early phases of the thermal unfolding pathway of the protein. Analysis of the trajectories of L54Delta suggests that the unzipping of the N-terminal and C-terminal beta-strands should be the first event of the unfolding pathway, and points out the regions more resistant to thermal unfolding. These findings allow one to understand the role played by specific interactions connecting the two ends of the chain for the high thermal stability of Sso7d, and support recent hypotheses on its folding mechanism emerged from site-directed mutagenesis studies.  相似文献   

8.
Predicting the effect of missense variations on protein stability and dynamics is important for understanding their role in diseases, and the link between protein structure and function. Approaches to estimate these changes have been proposed, but most only consider single‐point missense variants and a static state of the protein, with those that incorporate dynamics are computationally expensive. Here we present DynaMut2, a web server that combines Normal Mode Analysis (NMA) methods to capture protein motion and our graph‐based signatures to represent the wildtype environment to investigate the effects of single and multiple point mutations on protein stability and dynamics. DynaMut2 was able to accurately predict the effects of missense mutations on protein stability, achieving Pearson's correlation of up to 0.72 (RMSE: 1.02 kcal/mol) on a single point and 0.64 (RMSE: 1.80 kcal/mol) on multiple‐point missense mutations across 10‐fold cross‐validation and independent blind tests. For single‐point mutations, DynaMut2 achieved comparable performance with other methods when predicting variations in Gibbs Free Energy (ΔΔG) and in melting temperature (ΔTm). We anticipate our tool to be a valuable suite for the study of protein flexibility analysis and the study of the role of variants in disease. DynaMut2 is freely available as a web server and API at http://biosig.unimelb.edu.au/dynamut2 .  相似文献   

9.
The effects of hydrostatic pressure on the structure and stability of porcine odorant-binding protein (pOBP) in the presence and absence of the odorant molecule 2-isobutyl-3-methoxypyrazine (IBMP) were studied by steady-state and time-resolved fluorescence spectroscopy as well as by molecular dynamics simulation. The authors found that the application of moderate values of hydrostatic pressure to pOBP solutions perturbed the microenvironment of Trp(16) and disrupted its highly quenched complex with Met(39). In addition, compared with the protein in the absence of IBMP, the MD simulations experiments carried out at different pressures highlighted the role of this ligand in stabilizing the Trp(16)/Met(39) interaction even at 2000 bar. The obtained results will assist for the tailoring of this protein as specific sensing element in a new class of fluorescence-based biosensors for the detection of explosives.  相似文献   

10.
The effect of the pressure on the structure and stability of the D-Galactose/D-Glucose binding protein (GGBP) from Escherichia coli was studied by steady-state and time-resolved fluorescence spectroscopy, and the ability of glucose ligand to stabilize the GGBP structure was also investigated. Steady-state fluorescence experiments showed a marked quenching of fluorescence emission of GGBP in the absence of glucose. Instead, the presence of glucose seems to stabilize the structure of GGBP at low and moderate pressure values. Time-resolved fluorescence measurements showed that the GGBP taumean in the absence of glucose varies significantly up to 600 bar, while in the presence of the ligand it is almost unaffected by pressure increase up to 600 bar. The effect of the pressure on GGBP was also studied by molecular dynamics simulations. The simulation data support the spectroscopic results and confirm that the presence of glucose is able to contrast the negative effects of pressure on the protein structure. Taken together, the spectroscopic and computer simulation studies suggest that at pressure values up to 2000 bar the structure of GGBP in the absence of glucose remains folded, but a significant perturbation of the protein secondary structures can be detected. The binding of glucose reduces the negative effect of pressure on protein structure and confers protection from perturbation especially at moderate pressure values.  相似文献   

11.
The transient receptor potential (TRP) superfamily is subdivided into several subfamilies on the basis of sequence similarity, which is highly heterogeneous but shows a molecular architecture that resembles the one present in members of the Kv channel superfamily. Because of this diversity, they produce a large variety of channels with different gating and permeability properties. Elucidation of these particular features necessarily requires comparative studies based on structural and functional data. The present study aims to compilate, analyze, and determine, in a coherent way, the relationship between intrinsic side‐chain flexibility and the allosteric coupling in members of the TRPV, TRPM, and TRPC families. Based on the recently determined structures of TRPV1 and TRPV2, we have generated protein models for single subunits of TRPV5, TRPM8, and TRPC5 channels. With these models, we focused our attention on the apparently crucial role of the GP dipeptide at the center of the S4‐S5 linker and discussed its role in the interaction with the TRP domain, specifically with the highly‐conserved Trp during this coupling. Our analysis suggests an important role of the S4‐S5L flexibility in the thermosensitivity, where heat‐activated channels possess rigid S4‐S5 linkers, whereas cold‐activated channels have flexible ones. Finally, we also present evidence of the key interaction between the conserved Trp residue of the TRP box and of several residues in the S4‐S5L, importantly the central Pro. Proteins 2017; 85:630–646. © 2016 Wiley Periodicals, Inc.  相似文献   

12.
Room-temperature tryptophan phosphorescence and fluorescence have been used to study the slow internal dynamics and the conformational state of Escherichia coli alkaline phosphatase in the temperature range from 0 to 100°C. The heating of alkaline phosphatase solution within the 0–70°C range has been shown to amplify considerably the internal dynamics. The further raise of temperature to 95°C brings about a reversible increase in the internal dynamics and partial unfolding of the globule. The heating of protein solution within a narrow temperature range of 97–100°C gives rise to irreversible conformational transition with complete globule unfolding, sharp amplification of the internal dynamics, and loss of enzymatic activity.  相似文献   

13.
Okumura H 《Proteins》2012,80(10):2397-2416
A multibaric‐multithermal molecular dynamics (MD) simulation of a 10‐residue protein, chignolin, was performed. All‐atom model with the Amber parm99SB force field was used for the protein and the TIP3P model was used for the explicit water molecules. This MD simulation covered wide ranges of temperature between 260 and 560 K and pressure between 0.1 and 600 MPa and sampled many conformations without getting trapped in local‐minimum free‐energy states. Folding events to the native β‐hairpin structure occurred five times and unfolding events were observed four times. As the temperature and/or pressure increases, fraction of folded chignolin decreases. The partial molar enthalpy change ΔH and partial molar volume change ΔV of unfolding were calculated as ΔH = 24.1 ± 4.9 kJ/mol and ΔV = ?5.6 ± 1.5 cm3/mol, respectively. These values agree well with recent experimental results. Illustrating typical local‐minimum free‐energy conformations, folding and unfolding pathways were revealed. When chignolin unfolds from the β‐hairpin structure, only the C terminus or both C and N termini open first. It may undergo an α‐helix or 310‐helix structure and finally unfolds to the extended structure. Difference of the mechanism between temperature denaturation and pressure denaturation is also discussed. Temperature denaturation is caused by making the protein transferred to a higher entropy state and making it move around more with larger space. The reason for pressure denaturation is that water molecules approach the hydrophobic residues, which are not well hydrated at the folded state, and some hydrophobic contacts are broken. Proteins 2012;. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
Bovine odorant-binding protein (bOBP), a member of the lipocalin family, presents the so-called 3D "domain-swapped" protein structure. In fact, in solution, it appears as a dimer in which each monomer is composed by the classical lipocalin fold, with a central beta-barrel followed by a stretch of residues and the alpha-helix domain protruding out of the barrel and crossing the dimer interface. Recently, a deswapped mutant form of bOBP was obtained, in which a Gly residue was inserted after position 121 and the two residues in position 64 and 156 were replaced by Cys residues for restoring the disulfide bridge common to the lipocalin family. In this work, we used Fourier transform infrared spectroscopy and molecular dynamics simulations to investigate the effect of temperature on the structural stability and conformational dynamics of the mutant bOBP. The spectroscopic and molecular simulation data pointed out that the hydrophobic regions of the protein matrix appear to be an important factor for the protein stability and integrity. In addition, it was also found that the mutant bOBP is significantly stabilized by the binding of the ligand, which may have an impact on the biological function of bOBP. The obtained results will allow for a better use of this protein as probe for the design of advanced protein-based biosensors for the detection of compounds used in the fabrication of explosive powders.  相似文献   

15.
Structural changes ensuing from the non‐covalent absorption of bovine beta‐lactoglobulin (BLG) on the surface of polystyrene nanoparticles were investigated by using spectroscopic approaches, by assessing the reactivity of specific residues, and by limited proteolysis/mass spectrometry. Also, the immunoreactivity of absorbed and free BLG was compared. All these approaches indicated substantial rearrangements of the protein structure in the absorbed state, in spite of the reported structural rigidity of BLG. Changes made evident by experimental measurements were confirmed by computational approaches. These indicate that adsorption‐related changes are most marked in the area between the main C‐terminal alpha helix and the beta‐barrel, and lead to full exposure of the thiol on Cys121, consistent with experimental measurements. In the computational model of bound BLG, both Trp61 and Trp19 also move away from their neighboring quenchers and become solvent‐exposed, as indicated by fluorescence measurement. Upon binding, the beta‐barrel also loosens, with a substantial increase in immunoreactivity and with noticeable changes in the trypsinolytic pattern. The possible general significance of the structural changes reported here for non‐covalently adsorbed BLG is discussed with respect to recognition events involving surface‐bound proteins, as are aspects related to the carrier function(s) of BLG, and to its use as a common ingredient in many food systems. Proteins 2014; 82:1272–1282. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
High-pressure-induced conversions, such as the inactivation of enzymes or of microorganisms, are dependent on the applied pressure and the temperature of the process. The former can be considered to be a spatially homogeneous quantity, while the latter, being a transport quantity, varies over space and time. Here we question whether the uniformity of a high-pressure conversion can be disturbed by convective and conductive heat and mass transport conditions. Enzyme inactivation is taken as a model process for a high-pressure conversion. To cover a broad range of parameters and to consider scale-up effects, the investigation is based on mathematical modeling and numerical simulation for different sizes of the pressure chamber and different solvent viscosities. Apart from viscosity, the physical properties of the enzyme solutions are assumed to be identical in all cases. Therefore, matrix effects other than that of viscosity are excluded. Moreover, the authors postulate that viscosity solely acts on the continuum mechanical scale of momentum exchange but not on the molecular scale on the inactivation kinetics. It has been found that nonuniform thermal conditions can strongly influence the result of a high-pressure process. A variation of the activity retention between 28% and 48% can be observed after 20 minutes for a 0.8-L high-pressure chamber and a matrix fluid with a viscosity comparable to that of edible oils. The same process carried out in a 6.3-L device leads to an activity retention that varies between 16% and 40%. From the analysis of the time scales for the inactivation and for hydrodynamic and thermal compensation, it can be deduced that a nonuniform activity retention has to be expected if the inactivation time scale is larger than the hydrodynamic time scale and smaller than the thermal compensation time scale.  相似文献   

17.
The conformation of three synthetic peptides encompassing the proximal and distal half of the third intracellular loop (Ni3 and Ci3) and a portion of the cytoplasmic tail (fCT) of the angiotensin II AT1A receptor has been studied using circular dischroism and fluorescence spectroscopies. The results show that the conformation of the peptides is modulated in various ways by the environmental conditions (pH, ionic strength and dielectric constant). Indeed, Ni3 and fCT fold into helical structures that possess distinct stability and polarity due to the diverse forces involved: mainly polar interactions in the first case and a combination of polar and hydrophobic interactions in the second. The presence of these various features also produce distinct intermolecular interactions. Ci3, instead, exists as an ensemble of partially folded states in equilibrium. Since the corresponding regions of the angiotensin II AT1A receptor are known to play an important role in the receptor function, due to their ability to undergo conformational changes, these data provide some new clues about their different conformational plasticity.  相似文献   

18.
19.
By combining a favorable turn sequence with a turn flanking Trp/Trp interaction and a C-terminal H-bonding interaction between a backbone amide and an i-2 Trp ring, a particularly stable (DeltaG(U) > 7 kJ/mol) truncated hairpin, Ac-WI-(D-Pro-D-Asn)-KWTG-NH(2), results. In this construct and others with a W-(4-residue turn)-W motif in severely truncated hairpins, the C-terminal Trp is the edge residue in a well-defined face-to-edge (FtE) aryl/aryl interaction. Longer hairpins and those with six-residue turns retain the reversed "edge-to-face" (EtF) Trp/Trp geometry first observed for the trpzip peptides. Mutational studies suggest that the W-(4-residue turn)-W interaction provides at least 3 kJ/mol of stabilization in excess of that due to the greater beta-propensity of Trp. The pi-cation, and Trp/Gly-H(N) interactions have been defined. The latter can give rise to >3 ppm upfield shifts for the Gly-H(N) in -WX(n)G- units both in turns (n = 2) and at the C-termini (n = 1) of hairpins. Terminal YTG units result in somewhat smaller shifts (extrapolated to 2 ppm for 100% folding). In peptides with both the EtF and FtE W/W interaction geometries, Trp to Tyr mutations indicate that Trp is the preferred "face" residue in aryl/aryl pairings, presumably because of its greater pi basicity.  相似文献   

20.
Cold atmospheric‐pressure plasmas have become of increasing importance in sterilization processes especially with the growing prevalence of multi‐resistant bacteria. Albeit the potential for technological application is obvious, much less is known about the molecular mechanisms underlying bacterial inactivation. X‐jet technology separates plasma‐generated reactive particles and photons, thus allowing the investigation of their individual and joint effects on DNA. Raman spectroscopy shows that particles and photons cause different modifications in DNA single and double strands. The treatment with the combination of particles and photons does not only result in cumulative, but in synergistic effects. Profilometry confirms that etching is a minor contributor to the observed DNA damage in vitro.

Schematics of DNA oligomer treatment with cold atmospheric‐pressure plasma.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号