首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The DOcking decoy‐based Optimized Potential (DOOP) energy function for protein structure prediction is based on empirical distance‐dependent atom‐pair interactions. To optimize the atom‐pair interactions, native protein structures are decomposed into polypeptide chain segments that correspond to structural motives involving complete secondary structure elements. They constitute near native ligand–receptor systems (or just pairs). Thus, a total of 8609 ligand–receptor systems were prepared from 954 selected proteins. For each of these hypothetical ligand–receptor systems, 1000 evenly sampled docking decoys with 0–10 Å interface root‐mean‐square‐deviation (iRMSD) were generated with a method used before for protein–protein docking. A neural network‐based optimization method was applied to derive the optimized energy parameters using these decoys so that the energy function mimics the funnel‐like energy landscape for the interaction between these hypothetical ligand–receptor systems. Thus, our method hierarchically models the overall funnel‐like energy landscape of native protein structures. The resulting energy function was tested on several commonly used decoy sets for native protein structure recognition and compared with other statistical potentials. In combination with a torsion potential term which describes the local conformational preference, the atom‐pair‐based potential outperforms other reported statistical energy functions in correct ranking of native protein structures for a variety of decoy sets. This is especially the case for the most challenging ROSETTA decoy set, although it does not take into account side chain orientation‐dependence explicitly. The DOOP energy function for protein structure prediction, the underlying database of protein structures with hypothetical ligand–receptor systems and their decoys are freely available at http://agknapp.chemie.fu‐berlin.de/doop/ . Proteins 2015; 83:881–890. © 2015 Wiley Periodicals, Inc.  相似文献   

2.
Liang S  Zhang C  Standley DM 《Proteins》2011,79(7):2260-2267
We used the orientation‐dependent Optimized Side Chain Atomic eneRgy (OSCAR‐o), derived in an early study, for protein loop selection. The prediction accuracy of OSCAR‐o was better than that of physics‐based force fields or statistical potential energy functions for both the RAPPER decoy set and the Jacobson decoy set. The native conformer was frequently ranked as lowest energy among the decoys. Furthermore, strong correlation was observed between the OSCAR‐o score and the root mean square deviation (RMSD) from the native structure for energy‐minimized decoys. In practical use, we applied OSCAR‐o to rescore decoys generated by a widely used loop‐modeling program, LOOPY. As a result, the mean RMSD values of top‐ranked decoys were reduced by 0.3 Å for loop targets of seven to nine residues. We expect similar performance for OSCAR‐o with other loop‐modeling algorithms in the context of decoy rescoring. A loop selection program (OSCAR‐ls) based on OSCAR‐o is available at http://sysimm.ifrec.osaka‐u.ac.jp/OSCAR/ . Proteins 2011; © 2011 Wiley‐Liss, Inc.  相似文献   

3.
Zhu J  Zhu Q  Shi Y  Liu H 《Proteins》2003,52(4):598-608
One strategy for ab initio protein structure prediction is to generate a large number of possible structures (decoys) and select the most fitting ones based on a scoring or free energy function. The conformational space of a protein is huge, and chances are rare that any heuristically generated structure will directly fall in the neighborhood of the native structure. It is desirable that, instead of being thrown away, the unfitting decoy structures can provide insights into native structures so prediction can be made progressively. First, we demonstrate that a recently parameterized physics-based effective free energy function based on the GROMOS96 force field and a generalized Born/surface area solvent model is, as several other physics-based and knowledge-based models, capable of distinguishing native structures from decoy structures for a number of widely used decoy databases. Second, we observe a substantial increase in correlations of the effective free energies with the degree of similarity between the decoys and the native structure, if the similarity is measured by the content of native inter-residue contacts in a decoy structure rather than its root-mean-square deviation from the native structure. Finally, we investigate the possibility of predicting native contacts based on the frequency of occurrence of contacts in decoy structures. For most proteins contained in the decoy databases, a meaningful amount of native contacts can be predicted based on plain frequencies of occurrence at a relatively high level of accuracy. Relative to using plain frequencies, overwhelming improvements in sensitivity of the predictions are observed for the 4_state_reduced decoy sets by applying energy-dependent weighting of decoy structures in determining the frequency. There, approximately 80% native contacts can be predicted at an accuracy of approximately 80% using energy-weighted frequencies. The sensitivity of the plain frequency approach is much lower (20% to 40%). Such improvements are, however, not observed for the other decoy databases. The rationalization and implications of the results are discussed.  相似文献   

4.
Structure prediction on a genomic scale requires a simplified energy function that can efficiently sample the conformational space of polypeptide chains. A good energy function at minimum should discriminate native structures against decoys. Here, we show that a recently developed, residue-specific, all-atom knowledge-based potential (167 atomic types) based on distance-scaled, finite ideal-gas reference state (DFIRE-all-atom) can be substantially simplified to 20 residue types located at side-chain center of mass (DFIRE-SCM) without a significant change in its capability of structure discrimination. Using 96 standard multiple decoy sets, we show that there is only a small reduction (from 80% to 78%) in success rate of ranking native structures as the top 1. The success rate is higher than two previously developed, all-atom distance-dependent statistical pair potentials. Applied to structure selections of 21 docking decoys without modification, the DFIRE-SCM potential is 29% more successful in recognizing native complex structures than an all-atom statistical potential trained by a database of dimeric interfaces. The potential also achieves 92% accuracy in distinguishing true dimeric interfaces from artificial crystal interfaces. In addition, the DFIRE potential with the C(alpha) positions as the interaction centers recognizes 123 native structures out of a comprehensive 125-protein TOUCHSTONE decoy set in which each protein has 24,000 decoys with only C(alpha) positions. Furthermore, the performance by DFIRE-SCM on newly established 25 monomeric and 31 docking Rosetta-decoy sets is comparable to (or better than in the case of monomeric decoy sets) that of a recently developed, all-atom Rosetta energy function enhanced with an orientation-dependent hydrogen bonding potential.  相似文献   

5.
Liang S  Meroueh SO  Wang G  Qiu C  Zhou Y 《Proteins》2009,75(2):397-403
The identification of near native protein-protein complexes among a set of decoys remains highly challenging. A strategy for improving the success rate of near native detection is to enrich near native docking decoys in a small number of top ranked decoys. Recently, we found that a combination of three scoring functions (energy, conservation, and interface propensity) can predict the location of binding interface regions with reasonable accuracy. Here, these three scoring functions are modified and combined into a consensus scoring function called ENDES for enriching near native docking decoys. We found that all individual scores result in enrichment for the majority of 28 targets in ZDOCK2.3 decoy set and the 22 targets in Benchmark 2.0. Among the three scores, the interface propensity score yields the highest enrichment in both sets of protein complexes. When these scores are combined into the ENDES consensus score, a significant increase in enrichment of near-native structures is found. For example, when 2000 dock decoys are reduced to 200 decoys by ENDES, the fraction of near-native structures in docking decoys increases by a factor of about six in average. ENDES was implemented into a computer program that is available for download at http://sparks.informatics.iupui.edu.  相似文献   

6.
Protein decoy data sets provide a benchmark for testing scoring functions designed for fold recognition and protein homology modeling problems. It is commonly believed that statistical potentials based on reduced atomic models are better able to discriminate native-like from misfolded decoys than scoring functions based on more detailed molecular mechanics models. Recent benchmark tests on small data sets, however, suggest otherwise. In this work, we report the results of extensive decoy detection tests using an effective free energy function based on the OPLS all-atom (OPLS-AA) force field and the Surface Generalized Born (SGB) model for the solvent electrostatic effects. The OPLS-AA/SGB effective free energy is used as a scoring function to detect native protein folds among a total of 48,832 decoys for 32 different proteins from Park and Levitt's 4-state-reduced, Levitt's local-minima, Baker's ROSETTA all-atom, and Skolnick's decoy sets. Solvent electrostatic effects are included through the Surface Generalized Born (SGB) model. All structures are locally minimized without restraints. From an analysis of the individual energy components of the OPLS-AA/SGB energy function for the native and the best-ranked decoy, it is determined that a balance of the terms of the potential is responsible for the minimized energies that most successfully distinguish the native from the misfolded conformations. Different combinations of individual energy terms provide less discrimination than the total energy. The results are consistent with observations that all-atom molecular potentials coupled with intermediate level solvent dielectric models are competitive with knowledge-based potentials for decoy detection and protein modeling problems such as fold recognition and homology modeling.  相似文献   

7.
Arriving at the native conformation of a polypeptide chain characterized by minimum most free energy is a problem of long standing interest in protein structure prediction endeavors. Owing to the computational requirements in developing free energy estimates, scoring functions--energy based or statistical--have received considerable renewed attention in recent years for distinguishing native structures of proteins from non-native like structures. Several cleverly designed decoy sets, CASP (Critical Assessment of Techniques for Protein Structure Prediction) structures and homology based internet accessible three dimensional model builders are now available for validating the scoring functions. We describe here an all-atom energy based empirical scoring function and examine its performance on a wide series of publicly available decoys. Barring two protein sequences where native structure is ranked second and seventh, native is identified as the lowest energy structure in 67 protein sequences from among 61,659 decoys belonging to 12 different decoy sets. We further illustrate a potential application of the scoring function in bracketing native-like structures of two small mixed alpha/beta globular proteins starting from sequence and secondary structural information. The scoring function has been web enabled at www.scfbio-iitd.res.in/utility/proteomics/energy.jsp.  相似文献   

8.
Zhou R  Silverman BD  Royyuru AK  Athma P 《Proteins》2003,52(4):561-572
A recent study of 30 soluble globular protein structures revealed a quasi-invariant called the hydrophobic ratio. This invariant, which is the ratio of the distance at which the second order hydrophobic moment vanished to the distance at which the zero order moment vanished, was found to be 0.75 +/- 0.05 for 30 protein structures. This report first describes the results of the hydrophobic profiling of 5,387 non-redundant globular protein domains of the Protein Data Bank, which yields a hydrophobic ratio of 0.71 +/- 0.08. Then, a new hydrophobic score is defined based on the hydrophobic profiling to discriminate native-like proteins from decoy structures. This is tested on three widely used decoy sets, namely the Holm and Sander decoys, Park and Levitt decoys, and Baker decoys. Since the hydrophobic moment profiling characterizes a global feature and requires reasonably good statistics, this imposes a constraint upon the size of the protein structures in order to yield relatively smooth moment profiles. We show that even subject to the limitations of protein size (both Park & Levitt and Baker sets are small protein decoys), the hydrophobic moment profiling and hydrophobic score can provide useful information that should be complementary to the information provided by force field calculations.  相似文献   

9.
Protein structure refinement by optimization   总被引:1,自引:0,他引:1       下载免费PDF全文
Martin Carlsen  Peter Røgen 《Proteins》2015,83(9):1616-1624
Knowledge‐based protein potentials are simplified potentials designed to improve the quality of protein models, which is important as more accurate models are more useful for biological and pharmaceutical studies. Consequently, knowledge‐based potentials often are designed to be efficient in ordering a given set of deformed structures denoted decoys according to how close they are to the relevant native protein structure. This, however, does not necessarily imply that energy minimization of this potential will bring the decoys closer to the native structure. In this study, we introduce an iterative strategy to improve the convergence of decoy structures. It works by adding energy optimized decoys to the pool of decoys used to construct the next and improved knowledge‐based potential. We demonstrate that this strategy results in significantly improved decoy convergence on Titan high resolution decoys and refinement targets from Critical Assessment of protein Structure Prediction competitions. Our potential is formulated in Cartesian coordinates and has a fixed backbone potential to restricts motions to be close to those of a dihedral model, a fixed hydrogen‐bonding potential and a variable coarse grained carbon alpha potential consisting of a pair potential and a novel solvent potential that are b‐spline based as we use explicit gradient and Hessian for efficient energy optimization. Proteins 2015; 83:1616–1624. © 2015 Wiley Periodicals, Inc.  相似文献   

10.
We present a knowledge‐based function to score protein decoys based on their similarity to native structure. A set of features is constructed to describe the structure and sequence of the entire protein chain. Furthermore, a qualitative relationship is established between the calculated features and the underlying electromagnetic interaction that dominates this scale. The features we use are associated with residue–residue distances, residue–solvent distances, pairwise knowledge‐based potentials and a four‐body potential. In addition, we introduce a new target to be predicted, the fitness score, which measures the similarity of a model to the native structure. This new approach enables us to obtain information both from decoys and from native structures. It is also devoid of previous problems associated with knowledge‐based potentials. These features were obtained for a large set of native and decoy structures and a back‐propagating neural network was trained to predict the fitness score. Overall this new scoring potential proved to be superior to the knowledge‐based scoring functions used as its inputs. In particular, in the latest CASP (CASP10) experiment our method was ranked third for all targets, and second for freely modeled hard targets among about 200 groups for top model prediction. Ours was the only method ranked in the top three for all targets and for hard targets. This shows that initial results from the novel approach are able to capture details that were missed by a broad spectrum of protein structure prediction approaches. Source codes and executable from this work are freely available at http://mathmed.org /#Software and http://mamiris.com/ . Proteins 2014; 82:752–759. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
Loose C  Klepeis JL  Floudas CA 《Proteins》2004,54(2):303-314
A new force field for pairwise residue interactions as a function of C(alpha) to C(alpha) distances is presented. The force field was developed through the solution of a linear programming formulation with large sets of constraints. The constraints are based on the construction of >80,000 low-energy decoys for a set of proteins and requiring the decoy energies for each protein system to be higher than the native conformation of that particular protein. The generation of a robust force field was facilitated by the use of a novel decoy generation process, which involved the rational selection of proteins to add to the training set and included a significant energy minimization of the decoys. The force field was tested on a large set of decoys for various proteins not included in the training set and shown to perform well compared with a leading force field in identifying the native conformation for these proteins.  相似文献   

12.
Structure prediction and quality assessment are crucial steps in modeling native protein conformations. Statistical potentials are widely used in related algorithms, with different parametrizations typically developed for different contexts such as folding protein monomers or docking protein complexes. Here, we describe BACH‐SixthSense, a single residue‐based statistical potential that can be successfully employed in both contexts. BACH‐SixthSense shares the same approach as BACH, a knowledge‐based potential originally developed to score monomeric protein structures. A term that penalizes steric clashes as well as the distinction between polar and apolar sidechain‐sidechain contacts are crucial novel features of BACH‐SixthSense. The performance of BACH‐SixthSense in discriminating correctly the native structure among a competing set of decoys is significantly higher than other state‐of‐the‐art scoring functions, that were specifically trained for a single context, for both monomeric proteins (QMEAN, Rosetta, RF_CB_SRS_OD, benchmarked on CASP targets) and protein dimers (IRAD, Rosetta, PIE*PISA, HADDOCK, FireDock, benchmarked on 14 CAPRI targets). The performance of BACH‐SixthSense in recognizing near‐native docking poses within CAPRI decoy sets is good as well. Proteins 2015; 83:621–630. © 2015 Wiley Periodicals, Inc.  相似文献   

13.
Hsieh MJ  Luo R 《Proteins》2004,56(3):475-486
A well-behaved physics-based all-atom scoring function for protein structure prediction is analyzed with several widely used all-atom decoy sets. The scoring function, termed AMBER/Poisson-Boltzmann (PB), is based on a refined AMBER force field for intramolecular interactions and an efficient PB model for solvation interactions. Testing on the chosen decoy sets shows that the scoring function, which is designed to consider detailed chemical environments, is able to consistently discriminate all 62 native crystal structures after considering the heteroatom groups, disulfide bonds, and crystal packing effects that are not included in the decoy structures. When NMR structures are considered in the testing, the scoring function is able to discriminate 8 out of 10 targets. In the more challenging test of selecting near-native structures, the scoring function also performs very well: for the majority of the targets studied, the scoring function is able to select decoys that are close to the corresponding native structures as evaluated by ranking numbers and backbone Calpha root mean square deviations. Various important components of the scoring function are also studied to understand their discriminative contributions toward the rankings of native and near-native structures. It is found that neither the nonpolar solvation energy as modeled by the surface area model nor a higher protein dielectric constant improves its discriminative power. The terms remaining to be improved are related to 1-4 interactions. The most troublesome term is found to be the large and highly fluctuating 1-4 electrostatics term, not the dihedral-angle term. These data support ongoing efforts in the community to develop protein structure prediction methods with physics-based potentials that are competitive with knowledge-based potentials.  相似文献   

14.
In this study, the application of temperature‐based replica‐exchange (T‐ReX) simulations for structure refinement of decoys taken from the I‐TASSER dataset was examined. A set of eight nonredundant proteins was investigated using self‐guided Langevin dynamics (SGLD) with a generalized Born implicit solvent model to sample conformational space. For two of the protein test cases, a comparison of the SGLD/T‐ReX method with that of a hybrid explicit/implicit solvent molecular dynamics T‐ReX simulation model is provided. Additionally, the effect of side‐chain placement among the starting decoy structures, using alternative rotamer conformations taken from the SCWRL4 modeling program, was investigated. The simulation results showed that, despite having near‐native backbone conformations among the starting decoys, the determinant of their refinement is side‐chain packing to a level that satisfies a minimum threshold of native contacts to allow efficient excursions toward the downhill refinement regime on the energy landscape. By repacking using SCWRL4 and by applying the RWplus statistical potential for structure identification, the SGLD/T‐ReX simulations achieved refinement to an average of 38% increase in the number of native contacts relative to the original I‐TASSER decoy sets and a 25% reduction in values of Cα root‐mean‐square deviation. The hybrid model succeeded in obtaining a sharper funnel to low‐energy states for a modeled target than the implicit solvent SGLD model; yet, structure identification remained roughly the same. Without meeting a threshold of near‐native packing of side chains, the T‐ReX simulations degrade the accuracy of the decoys, and subsequently, refinement becomes tantamount to the protein folding problem. Proteins 2013. 2012 Published by Wiley Periodicals, Inc.  相似文献   

15.
Abstract

Arriving at the native conformation of a polypeptide chain characterized by minimum most free energy is a problem of long standing interest in protein structure prediction endeavors. Owing to the computational requirements in developing free energy estimates, scoring functions—energy based or statistical—have received considerable renewed attention in recent years for distinguishing native structures of proteins from non-native like structures. Several cleverly designed decoy sets, CASP (Critical Assessment of Techniques for Protein Structure Prediction) structures and homology based internet accessible three dimensional model builders are now available for validating the scoring functions. We describe here an all-atom energy based empirical scoring function and examine its performance on a wide series of publicly available decoys. Barring two protein sequences where native structure is ranked second and seventh, native is identified as the lowest energy structure in 67 protein sequences from among 61,659 decoys belonging to 12 different decoy sets. We further illustrate a potential application of the scoring function in bracketing native-like structures of two small mixed alpha/beta globular proteins starting from sequence and secondary structural information. The scoring function has been web enabled at www.scfbio-iitd.res.in/utility/proteomics/energy.jsp  相似文献   

16.
A distance-dependent atom-pair potential that treats long range and local interactions separately has been developed and optimized to distinguish native protein structures from sets of incorrect or decoy structures. Atoms are divided into 30 types based on chemical properties and relative position in the amino acid side-chains. Several parameters affecting the calculation and evaluation of this statistical potential, such as the reference state, the bin width, cutoff distances between pairs, and the number of residues separating the atom pairs, are adjusted to achieve the best discrimination. The native structure has the lowest energy for 39 of the 40 sets of original ROSETTA decoys (1000 structures per set) and 23 of the 25 improved decoys (approximately 1900 structures per set). Combined with the orientation-dependent backbone hydrogen bonding potential used by ROSETTA and a statistical solvation potential based on the solvent exclusion model of Lazaridis & Karplus, this potential is used as a scoring function for conformational search based on a genetic algorithm method. After unfolding the native structure by changing every phi and psi angle by either +/-3, +/-5 or +/-7 degrees, five small proteins can be efficiently refolded, in some cases to within 0.5 A C(alpha) distance matrix error (DME) to the native state. Although no significant correlation is found between the total energy and structural similarity to the native state, a surprisingly strong correlation exists between the radius of gyration and the DME for low energy structures.  相似文献   

17.
An accurate scoring function is a key component for successful protein structure prediction. To address this important unsolved problem, we develop a generalized orientation and distance-dependent all-atom statistical potential. The new statistical potential, generalized orientation-dependent all-atom potential (GOAP), depends on the relative orientation of the planes associated with each heavy atom in interacting pairs. GOAP is a generalization of previous orientation-dependent potentials that consider only representative atoms or blocks of side-chain or polar atoms. GOAP is decomposed into distance- and angle-dependent contributions. The DFIRE distance-scaled finite ideal gas reference state is employed for the distance-dependent component of GOAP. GOAP was tested on 11 commonly used decoy sets containing 278 targets, and recognized 226 native structures as best from the decoys, whereas DFIRE recognized 127 targets. The major improvement comes from decoy sets that have homology-modeled structures that are close to native (all within ∼4.0 Å) or from the ROSETTA ab initio decoy set. For these two kinds of decoys, orientation-independent DFIRE or only side-chain orientation-dependent RWplus performed poorly. Although the OPUS-PSP block-based orientation-dependent, side-chain atom contact potential performs much better (recognizing 196 targets) than DFIRE, RWplus, and dDFIRE, it is still ∼15% worse than GOAP. Thus, GOAP is a promising advance in knowledge-based, all-atom statistical potentials. GOAP is available for download at http://cssb.biology.gatech.edu/GOAP.  相似文献   

18.
This work presents a novel C(alpha)--C(alpha) distance dependent force field which is successful in selecting native structures from an ensemble of high resolution near-native conformers. An enhanced and diverse protein set, along with an improved decoy generation technique, contributes to the effectiveness of this potential. High quality decoys were generated for 1489 nonhomologous proteins and used to train an optimization based linear programming formulation. The goal in developing a set of high resolution decoys was to develop a simple, distance-dependent force field that yields the native structure as the lowest energy structure and assigns higher energies to decoy structures that are quite similar as well as those that are less similar. The model also includes a set of physical constraints that were based on experimentally observed physical behavior of the amino acids. The force field was tested on two sets of test decoys not in the training set and was found to excel on all the metrics that are widely used to measure the effectiveness of a force field. The high resolution force field was successful in correctly identifying 113 native structures out of 150 test cases and the average rank obtained for this test was 1.87. All the high resolution structures (training and testing) used for this work are available online and can be downloaded from http://titan.princeton.edu/HRDecoys.  相似文献   

19.
We introduce a side‐chain‐inclusive scoring function, named OPUS‐SSF, for ranking protein structural models. The method builds a scoring function based on the native distributions of the coordinate components of certain anchoring points in a local molecular system for peptide segments of 5, 7, 9, and 11 residues in length. Differing from our previous OPUS‐CSF [Xu et al., Protein Sci. 2018; 27: 286–292], which exclusively uses main chain information, OPUS‐SSF employs anchoring points on side chains so that the effect of side chains is taken into account. The performance of OPUS‐SSF was tested on 15 decoy sets containing totally 603 proteins, and 571 of them had their native structures recognized from their decoys. Similar to OPUS‐CSF, OPUS‐SSF does not employ the Boltzmann formula in constructing scoring functions. The results indicate that OPUS‐SSF has achieved a significant improvement on decoy recognition and it should be a very useful tool for protein structural prediction and modeling.  相似文献   

20.
Most structure prediction algorithms consist of initial sampling of the conformational space, followed by rescoring and possibly refinement of a number of selected structures. Here we focus on protein docking, and show that while decoupling sampling and scoring facilitates method development, integration of the two steps can lead to substantial improvements in docking results. Since decoupling is usually achieved by generating a decoy set containing both non‐native and near‐native docked structures, which can be then used for scoring function construction, we first review the roles and potential pitfalls of decoys in protein–protein docking, and show that some type of decoys are better than others for method development. We then describe three case studies showing that complete decoupling of scoring from sampling is not the best choice for solving realistic docking problems. Although some of the examples are based on our own experience, the results of the CAPRI docking and scoring experiments also show that performing both sampling and scoring generally yields better results than scoring the structures generated by all predictors. Next we investigate how the selection of training and decoy sets affects the performance of the scoring functions obtained. Finally, we discuss pathways to better alignment of the two steps, and show some algorithms that achieve a certain level of integration. Although we focus on protein–protein docking, our observations most likely also apply to other conformational search problems, including protein structure prediction and the docking of small molecules to proteins.Proteins 2013; 81:1874–1884. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号