首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acyl‐CoA‐binding protein (ACBP) is a ubiquitously expressed protein that binds intracellular acyl‐CoA esters. Several studies have suggested that ACBP acts as an acyl‐CoA pool former and regulates long‐chain fatty acids (LCFA) metabolism in peripheral tissues. In the brain, ACBP is known as Diazepam‐Binding Inhibitor, a secreted peptide acting as an allosteric modulator of the GABAA receptor. However, its role in central LCFA metabolism remains unknown. In the present study, we investigated ACBP cellular expression, ACBP regulation of LCFA intracellular metabolism, FA profile, and FA metabolism‐related gene expression using ACBP‐deficient and control mice. ACBP was mainly found in astrocytes with high expression levels in the mediobasal hypothalamus. We demonstrate that ACBP deficiency alters the central LCFA‐CoA profile and impairs unsaturated (oleate, linolenate) but not saturated (palmitate, stearate) LCFA metabolic fluxes in hypothalamic slices and astrocyte cultures. In addition, lack of ACBP differently affects the expression of genes involved in FA metabolism in cortical versus hypothalamic astrocytes. Finally, ACBP deficiency increases FA content and impairs their release in response to palmitate in hypothalamic astrocytes. Collectively, these findings reveal for the first time that central ACBP acts as a regulator of LCFA intracellular metabolism in astrocytes.

  相似文献   


2.
OXA‐51 is a class D β‐lactamase that is thought to be the native carbapenemase of Acinetobacter baumannii. Many variants of OXA‐51 containing active site substitutions have been identified from A. baumannii isolates, and some of these substitutions increase hydrolytic activity toward carbapenem antibiotics. We have determined the high‐resolution structures of apo OXA‐51 and OXA‐51 with one such substitution (I129L) with the carbapenem doripenem trapped in the active site as an acyl‐intermediate. The structure shows that acyl‐doripenem adopts an orientation very similar to carbapenem ligands observed in the active site of OXA‐24/40 (doripenem) and OXA‐23 (meropenem). In the OXA‐51 variant/doripenem complex, the indole ring of W222 is oriented away from the doripenem binding site, thereby eliminating a clash that is predicted to occur in wildtype OXA‐51. Similarly, in the OXA‐51 variant complex, L129 adopts a different rotamer compared to I129 in wildtype OXA‐51. This alternative position moves its side chain away from the hydroxyethyl moiety of doripenem and relieves another potential clash between the enzyme and carbapenem substrates. Molecular dynamics simulations of OXA‐51 and OXA‐51 I129L demonstrate that compared to isoleucine, a leucine at this position greatly favors a rotamer that accommodates the ligand. These results provide a molecular justification for how this substitution generates enhanced binding affinity for carbapenems, and therefore helps explain the prevalence of this substitution in clinical OXA‐51 variants.  相似文献   

3.
4.
Poly‐γ‐glutamate (γ‐PGA) has applications in food, medical, cosmetic, animal feed, and wastewater industries. Bacillus subtilis DB430, which possesses the γ‐PGA synthesis ywsC‐ywtAB genes in its chromosome, cannot produce γ‐PGA. An efficient synthetic expression control sequence (SECS) was introduced into the upstream region of the ywtABC genes, and this resulted in γ‐PGA‐producing B. subtilis mutant strains. Mutant B. subtilis PGA6‐2 stably produces high levels of γ‐PGA in medium A without supplementation of extra glutamic acid or ammonium chloride. The mutant B. subtilis PGA 6‐2 is not only a γ‐PGA producer, but it is also a candidate for the genetic and metabolic engineering of γ‐PGA production. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

5.
Alzheimer's disease is the most common form of dementia in humans and is related to the accumulation of the amyloid‐β (Aβ) peptide and its interaction with metals (Cu, Fe, and Zn) in the brain. Crystallographic structural information about Aβ peptide deposits and the details of the metal‐binding site is limited owing to the heterogeneous nature of aggregation states formed by the peptide. Here, we present a crystal structure of Aβ residues 1–16 fused to the N‐terminus of the Escherichia coli immunity protein Im7, and stabilized with the fragment antigen binding fragment of the anti‐Aβ N‐terminal antibody WO2. The structure demonstrates that Aβ residues 10–16, which are not in complex with the antibody, adopt a mixture of local polyproline II‐helix and turn type conformations, enhancing cooperativity between the two adjacent histidine residues His13 and His14. Furthermore, this relatively rigid region of Aβ (residues, 10–16) appear as an almost independent unit available for trapping metal ions and provides a rationale for the His13‐metal‐His14 coordination in the Aβ1–16 fragment implicated in Aβ metal binding. This novel structure, therefore, has the potential to provide a foundation for investigating the effect of metal ion binding to Aβ and illustrates a potential target for the development of future Alzheimer's disease therapeutics aimed at stabilizing the N‐terminal monomer structure, in particular residues His13 and His14, and preventing Aβ metal‐binding‐induced neurotoxicity.Proteins 2013; 81:1748–1758. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
7.
8.
NagZ is an exo‐N‐acetyl‐β‐glucosaminidase, found within Gram‐negative bacteria, that acts in the peptidoglycan recycling pathway to cleave N‐acetylglucosamine residues off peptidoglycan fragments. This activity is required for resistance to cephalosporins mediated by inducible AmpC β‐lactamase. NagZ uses a catalytic mechanism involving a covalent glycosyl enzyme intermediate, unlike that of the human exo‐N‐acetyl‐β‐glucosaminidases: O‐GlcNAcase and the β‐hexosaminidase isoenzymes. These latter enzymes, which remove GlcNAc from glycoconjugates, use a neighboring‐group catalytic mechanism that proceeds through an oxazoline intermediate. Exploiting these mechanistic differences we previously developed 2‐N‐acyl derivatives of O‐(2‐acetamido‐2‐deoxy‐D ‐glucopyranosylidene)amino‐N‐phenylcarbamate (PUGNAc), which selectively inhibits NagZ over the functionally related human enzymes and attenuate antibiotic resistance in Gram‐negatives that harbor inducible AmpC. To understand the structural basis for the selectivity of these inhibitors for NagZ, we have determined its crystallographic structure in complex with N‐valeryl‐PUGNAc, the most selective known inhibitor of NagZ over both the human β‐hexosaminidases and O‐GlcNAcase. The selectivity stems from the five‐carbon acyl chain of N‐valeryl‐PUGNAc, which we found ordered within the enzyme active site. In contrast, a structure determination of a human O‐GlcNAcase homologue bound to a related inhibitor N‐butyryl‐PUGNAc, which bears a four‐carbon chain and is selective for both NagZ and O‐GlcNAcase over the human β‐hexosamnidases, reveals that this inhibitor induces several conformational changes in the active site of this O‐GlcNAcase homologue. A comparison of these complexes, and with the human β‐hexosaminidases, reveals how selectivity for NagZ can be engineered by altering the 2‐N‐acyl substituent of PUGNAc to develop inhibitors that repress AmpC mediated β‐lactam resistance.  相似文献   

9.
EstU1 is a unique family VIII carboxylesterase that displays hydrolytic activity toward the amide bond of clinically used β‐lactam antibiotics as well as the ester bond of p‐nitrophenyl esters. EstU1 assumes a β‐lactamase‐like modular architecture and contains the residues Ser100, Lys103, and Tyr218, which correspond to the three catalytic residues (Ser64, Lys67, and Tyr150, respectively) of class C β‐lactamases. The structure of the EstU1/cephalothin complex demonstrates that the active site of EstU1 is not ideally tailored to perform an efficient deacylation reaction during the hydrolysis of β‐lactam antibiotics. This result explains the weak β‐lactamase activity of EstU1 compared with class C β‐lactamases. Finally, structural and sequential comparison of EstU1 with other family VIII carboxylesterases elucidates an operative molecular strategy used by family VIII carboxylesterases to extend their substrate spectrum. Proteins 2013; 81:2045–2051. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
Bacillus subtilis is one of the most studied gram‐positive bacteria. In this work, YvgN and YtbE from B. subtilis, assigned as AKR5G1 and AKR5G2 of aldo‐keto reductase (AKR) superfamily. AKR catalyzes the NADPH‐dependent reduction of aldehyde or aldose substrates to alcohols. YvgN and YtbE were studied by crystallographic and enzymatic analyses. The apo structures of these proteins were determined by molecular replacement, and the structure of holoenzyme YvgN with NADPH was also solved, revealing the conformational changes upon cofactor binding. Our biochemical data suggest both YvgN and YtbE have preferential specificity for derivatives of benzaldehyde, such as nitryl or halogen group substitution at the 2 or 4 positions. These proteins also showed broad catalytic activity on many standard substrates of AKR, such as glyoxal, dihydroxyacetone, and DL‐glyceraldehyde, suggesting a possible role in bacterial detoxification.  相似文献   

11.
12.
Gamma‐aminobutyric acid type A receptors (GABAARs) are the most important inhibitory chloride ion channels in the central nervous system and are major targets for a wide variety of drugs. The subunit compositions of GABAARs determine their function and pharmacological profile. GABAARs are heteropentamers of subunits, and (α1)2(β3)2(γ2L)1 is a common subtype. Biochemical and biophysical studies of GABAARs require larger quantities of receptors of defined subunit composition than are currently available. We previously reported high‐level production of active human α1β3 GABAAR using tetracycline‐inducible stable HEK293 cells. Here we extend the strategy to receptors containing three different subunits. We constructed a stable tetracycline‐inducible HEK293‐TetR cell line expressing human (N)–FLAG–α1β3γ2L–(C)–(GGS)3GK–1D4 GABAAR. These cells achieved expression levels of 70–90 pmol [3H]muscimol binding sites/15‐cm plate at a specific activity of 15–30 pmol/mg of membrane protein. Incorporation of the γ2 subunit was confirmed by the ratio of [3H]flunitrazepam to [3H]muscimol binding sites and sensitivity of GABA‐induced currents to benzodiazepines and zinc. The α1β3γ2L GABAARs were solubilized in dodecyl‐d ‐maltoside, purified by anti‐FLAG affinity chromatography and reconstituted in CHAPS/asolectin at an overall yield of ~30%. Typical purifications yielded 1.0–1.5 nmoles of [3H]muscimol binding sites/60 plates. Receptors with similar properties could be purified by 1D4 affinity chromatography with lower overall yield. The composition of the purified, reconstituted receptors was confirmed by ligand binding, Western blot, and proteomics. Allosteric interactions between etomidate and [3H]muscimol binding were maintained in the purified state.  相似文献   

13.
14.
15.
Plant β‐galactosidases hydrolyze cell wall β‐(1,4)‐galactans to play important roles in cell wall expansion and degradation, and turnover of signaling molecules, during ripening. Tomato β‐galactosidase 4 (TBG4) is an enzyme responsible for fruit softening through the degradation of β‐(1,4)‐galactan in the pericarp cell wall. TBG4 is the only enzyme among TBGs 1–7 that belongs to the β‐galactosidase/exo‐β‐(1,4)‐galactanase subfamily. The enzyme can hydrolyze a wide range of plant‐derived (1,4)‐ or 4‐linked polysaccharides, and shows a strong ability to attack β‐(1,4)‐galactan. To gain structural insight into its substrate specificity, we determined crystal structures of TBG4 and its complex with β‐d ‐galactose. TBG4 comprises a catalytic TIM barrel domain followed by three β‐sandwich domains. Three aromatic residues in the catalytic site that are thought to be important for substrate specificity are conserved in GH35 β‐galactosidases derived from bacteria, fungi and animals; however, the crystal structures of TBG4 revealed that the enzyme has a valine residue (V548) replacing one of the conserved aromatic residues. The V548W mutant of TBG4 showed a roughly sixfold increase in activity towards β‐(1,6)‐galactobiose, and ~0.6‐fold activity towards β‐(1,4)‐galactobiose, compared with wild‐type TBG4. Amino acid residues corresponding to V548 of TBG4 thus appear to determine the substrate specificities of plant β‐galactosidases towards β‐1,4 and β‐1,6 linkages.  相似文献   

16.
Peptide models built from cis‐ and trans‐2‐aminocyclobutane‐1‐carboxylic acids (ACBCs) are studied in the solid phase by combining Fourier‐transform infrared spectroscopy (FTIR) absorption spectroscopy, vibrational circular dichroism (VCD), and quantum chemical calculations using density functional theory (DFT). The studied systems are N‐tert‐butyloxycarbonyl (Boc) derivatives of 2‐aminocyclobutanecarboxylic acid (ACBC) benzylamides, namely Boc?(cis‐ACBC)?NH?Bn and Boc?(trans‐ACBC)?NH?Bn. These two diastereomers show very different VCD signatures and intensities, which of the trans‐ACBC derivative being one order of magnitude larger in the region of the ν (CO) stretch. The spectral signature of the cis‐ACBC derivative is satisfactorily reproduced by that of the monomer extracted from the solid‐state geometry of related ACBC derivatives, which shows that no long‐range effects are implicated for this system. In terms of hydrogen bonds, the geometry of this monomer is intermediate between the C6 and C8 structures (exhibiting a 6‐ or 8‐membered cyclic NH?O hydrogen bond) previously evidenced in the gas phase. The benzyl group must be in an extended geometry to reproduce satisfactorily the shape of the VCD spectrum in the ν (CO) range, which qualifies VCD as a potential probe of dispersion interaction. In contrast, reproducing the IR and VCD spectrum of the trans‐ACBC derivative requires clusters larger than four units, exhibiting strong intermolecular H‐bonding patterns. A qualitative agreement is obtained for a tetramer, although the intensity enhancement is not reproduced. These results underline the sensitivity of VCD to the long‐range organisation in the crystal.  相似文献   

17.
18.
Ketone bodies (KBs) were known to suppress seizure. Untraditionally, neurons were recently reported to utilize fatty acids and produce KBs, but the effect of seizure on neuronal ketogenesis has not been researched. Zinc‐α2‐glycoprotein (ZAG) was reported to suppress seizure via unclear mechanism. Interestingly, ZAG was involved in fatty acid β‐oxidation and thus may exert anti‐epileptic effect by promoting ketogenesis. However, this promotive effect of ZAG on neuronal ketogenesis has not been clarified. In this study, we performed immunoprecipitation and mass spectrometry to identify potential interaction partners with ZAG. The mechanisms of how ZAG translocated into mitochondria were determined by quantitative coimmunoprecipitation after treatment with apoptozole, a heat shock cognate protein 70 (HSC70) inhibitor. ZAG level was modulated by lentivirus in neurons or adeno‐associated virus in rat brains. Seizure models were induced by magnesium (Mg2+)‐free artificial cerebrospinal fluid in neurons or intraperitoneal injection of pentylenetetrazole kindling in rats. Ketogenesis was determined by cyclic thio‐NADH method in supernatant of neurons or brain homogenate. The effect of peroxisome proliferator–activated receptor γ (PPARγ) on ZAG expression was examined by Western blot, quantitative real‐time polymerase chain reaction (qRT‐PCR) and chromatin immunoprecipitation qRT‐PCR. We found that seizure induced ketogenesis deficiency via a ZAG‐dependent mechanism. ZAG entered mitochondria through a HSC70‐dependent mechanism, promoted ketogenesis by binding to four β‐subunits of long‐chain L‐3‐hydroxyacyl‐CoA dehydrogenase (HADHB) and alleviated ketogenesis impairment in a neuronal seizure model and pentylenetetrazole‐kindled epileptic rats. Additionally, PPARγ activation up‐regulated ZAG expression by binding to promoter region of AZGP1 gene and promoted ketogenesis through a ZAG‐dependent mechanism.  相似文献   

19.
A GH1 β‐glucosidase from the fungus Hamamotoa singularis (HsBglA) has high transgalactosylation activity and efficiently converts lactose to galactooligosaccharides. Consequently, HsBglA is among the most widely used enzymes for industrial galactooligosaccharide production. Here, we present the first crystal structures of HsBglA with and without 4′‐galactosyllactose, a tri‐galactooligosaccharide, at 3.0 and 2.1 Å resolutions, respectively. These structures reveal details of the structural elements that define the catalytic activity and substrate binding of HsBglA, and provide a possible interpretation for its high catalytic potency for transgalactosylation reaction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号