首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Site-directed mutagenesis in the active site of Thermoactinomyces vulgaris carboxypeptidase T (CpT), which is capable of hydrolyzing both hydrophobic and positively charged substrates, resulted in five mutants: CpT1 (A243G), CpT2 (D253G/T255D), CpT3 (A243G/D253G/T255D), CpT4 (G207S/A243G/D253G/T255D), and CpT5 (G207S/A243G/T250A/D253G/T255D). These mutants step-by-step reconstruct the primary specificity pocket of carboxypeptidase B (CpB), which is capable of cleaving only positively charged C-terminal residues. All of the mutants retained the substrate specificity of the wild-type CpT. Based on comparison of three-dimensional structures of CpB and the CpT5 model, it was suggested that the lower affinity of CpT5 for positively charged substrates than the affinity of CpB could be caused by differences in nature and spatial location of Leu247 and Ile247 and of His68 and Asp65 residues in CpT and CpB, respectively, and also in location of the water molecule bound with Ala250. An additional hydrophobic region was detected in the CpT active site formed by Tyr248, Leu247, Leu203, Ala243, CH3-group of Thr250, and CO-groups of Tyr248 and Ala243, which could be responsible for binding hydrophobic substrates. Thus, notwithstanding the considerable structural similarity of CpT and pancreatic carboxypeptidases, the mechanisms underlying their substrate specificities are different.  相似文献   

4.
The importance of a protein–protein interaction to a signaling pathway can be established by showing that amino acid mutations that weaken the interaction disrupt signaling, and that additional mutations that rescue the interaction recover signaling. Identifying rescue mutations, often referred to as second‐site suppressor mutations, controls against scenarios in which the initial deleterious mutation inactivates the protein or disrupts alternative protein–protein interactions. Here, we test a structure‐based protocol for identifying second‐site suppressor mutations that is based on a strategy previously described by Kortemme and Baker. The molecular modeling software Rosetta is used to scan an interface for point mutations that are predicted to weaken binding but can be rescued by mutations on the partner protein. The protocol typically identifies three types of specificity switches: knob‐in‐to‐hole redesigns, switching hydrophobic interactions to hydrogen bond interactions, and replacing polar interactions with nonpolar interactions. Computational predictions were tested with two separate protein complexes; the G‐protein Gαi1 bound to the RGS14 GoLoco motif, and UbcH7 bound to the ubiquitin ligase E6AP. Eight designs were experimentally tested. Swapping a buried hydrophobic residue with a polar residue dramatically weakened binding affinities. In none of these cases were we able to identify compensating mutations that returned binding to wild‐type affinity, highlighting the challenges inherent in designing buried hydrogen bond networks. The strongest specificity switches were a knob‐in‐to‐hole design (20‐fold) and the replacement of a charge–charge interaction with nonpolar interactions (55‐fold). In two cases, specificity was further tuned by including mutations distant from the initial design. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
6.
In this study we introduce a computationally‐driven enzyme redesign workflow for altering cofactor specificity from NADPH to NADH. By compiling and comparing data from previous studies involving cofactor switching mutations, we show that their effect cannot be explained as straightforward changes in volume, hydrophobicity, charge, or BLOSUM62 scores of the residues populating the cofactor binding site. Instead, we find that the use of a detailed cofactor binding energy approximation is needed to adequately capture the relative affinity towards different cofactors. The implicit solvation models Generalized Born with molecular volume integration and Generalized Born with simple switching were integrated in the iterative protein redesign and optimization (IPRO) framework to drive the redesign of Candida boidinii xylose reductase (CbXR) to function using the non‐native cofactor NADH. We identified 10 variants, out of the 8,000 possible combinations of mutations, that improve the computationally assessed binding affinity for NADH by introducing mutations in the CbXR binding pocket. Experimental testing revealed that seven out of ten possessed significant xylose reductase activity utilizing NADH, with the best experimental design (CbXR‐GGD) being 27‐fold more active on NADH. The NADPH‐dependent activity for eight out of ten predicted designs was either completely abolished or significantly diminished by at least 90%, yielding a greater than 104‐fold change in specificity to NADH (CbXR‐REG). The remaining two variants (CbXR‐RTT and CBXR‐EQR) had dual cofactor specificity for both nicotinamide cofactors.  相似文献   

7.
赵赣 《生物学杂志》2010,27(3):69-70,100
迄今为止的资料表明,大多数植酸酶与酸性磷酸酶的关系密切。通过测定Km,即可判断只有以植酸(盐)为最适底物的酶(包括酸性磷酸酶)才是严格意义上的植酸酶。  相似文献   

8.
Amadoriases, also known as fructosyl amine oxidases (FAOX), are enzymes that catalyze the de‐glycosylation of fructosyl amino acids. As such, they are excellent candidates for the development of enzyme‐based diagnostic and therapeutic tools against age‐ and diabetes‐induced protein glycation. However, mostly because of the lack of a complete structural characterization of the different members of the family, the molecular bases of their substrate specificity have yet to be fully understood. The high resolution crystal structures of the free and the substrate‐bound form of Amadoriase I shown herein allow for the identification of key structural features that account for the diverse substrate specificity shown by this class of enzymes. This is of particular importance in the context of the rather limited and partially incomplete structural information that has so far been available in the literature on the members of the FAOX family. Moreover, using molecular dynamics simulations, we describe the tunnel conformation and the free energy profile experienced by the ligand in going from bulk water to the catalytic cavity, showing the presence of four gating helices/loops, followed by an “L‐shaped” narrow cavity. In summary, the tridimensional architecture of Amadoriase I presented herein provides a reference structural framework for the design of novel enzymes for diabetes monitoring and protein deglycation. Proteins 2016; 84:744–758. © 2016 Wiley Periodicals, Inc.  相似文献   

9.
The structural and enzymatic characteristics of a cutinase‐like enzyme (CLE) from Cryptococcus sp. strain S‐2, which exhibits remote homology to a lipolytic enzyme and a cutinase from the fungus Fusarium solani (FS cutinase), were compared to investigate the unique substrate specificity of CLE. The crystal structure of CLE was solved to a 1.05 Å resolution. Moreover, hydrolysis assays demonstrated the broad specificity of CLE for short and long‐chain substrates, as well as the preferred specificity of FS cutinase for short‐chain substrates. In addition, site‐directed mutagenesis was performed to increase the hydrolysis activity on long‐chain substrates, indicating that the hydrophobic aromatic residues are important for the specificity to the long‐chain substrate. These results indicate that hydrophobic residues, especially the aromatic ones exposed to solvent, are important for retaining lipase activity. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
11.
Earthworm fibrinolytic enzyme component A (EFE-a) possesses an S1 pocket, which is typical for an elastase-like enzyme, but it can still hydrolyze varieties of substrates, and it exhibits wide substrate specificity. Former structure studies suggested that the four-residue insertion after Val(217) might endow EFE-a with this specificity. Based on the native crystal structure at a resolution of 2.3A, we improved the native crystal structure to 1.8A and determined its complex structure with the inhibitor Meo-Suc-Ala-Ala-Pro-Val-CMK at a resolution of 1.9A. The final structures show that: (1) EFE-a possesses multisubstrate-binding sites interacting with the substrates; (2) significant conformation adjustment takes place at two loops binding to the N-terminal of the substrates, which may enhance the interaction between the enzyme and the substrates. These characteristics make the substrate-specificity of EFE-a less dependent on the property of its S1-pocket and may endow the enzyme with the ability to hydrolyze chymotrypsin-specific substrates and even trypsin-specific substrates.  相似文献   

12.
Structural basis of substrate specificity in the serine proteases.   总被引:21,自引:12,他引:21       下载免费PDF全文
Structure-based mutational analysis of serine protease specificity has produced a large database of information useful in addressing biological function and in establishing a basis for targeted design efforts. Critical issues examined include the function of water molecules in providing strength and specificity of binding, the extent to which binding subsites are interdependent, and the roles of polypeptide chain flexibility and distal structural elements in contributing to specificity profiles. The studies also provide a foundation for exploring why specificity modification can be either straightforward or complex, depending on the particular system.  相似文献   

13.
14.
Protein engineering aimed at enhancing enzyme stability is increasingly supported by computational methods for calculation of mutant folding energies and for the design of disulfide bonds. To examine the accuracy of mutant structure predictions underlying these computational methods, crystal structures of thermostable limonene epoxide hydrolase variants obtained by computational library design were determined. Four different predicted effects indeed contributed to the obtained stabilization: (i) enhanced interactions between a flexible loop close to the N‐terminus and the rest of the protein; (ii) improved interactions at the dimer interface; (iii) removal of unsatisfied hydrogen bonding groups; and (iv) introduction of additional positively charged groups at the surface. The structures of an eightfold and an elevenfold mutant showed that most mutations introduced the intended stabilizing interactions, and side‐chain conformations were correctly predicted for 72–88% of the point mutations. However, mutations that introduced a disulfide bond in a flexible region had a larger influence on the backbone conformation than predicted. The enzyme active sites were unaltered, in agreement with the observed preservation of catalytic activities. The structures also revealed how a c‐Myc tag, which was introduced for facile detection and purification, can reduce access to the active site and thereby lower the catalytic activity. Finally, sequence analysis showed that comprehensive mutant energy calculations discovered stabilizing mutations that are not proposed by the consensus or B‐FIT methods. Proteins 2015; 83:940–951. © 2015 Wiley Periodicals, Inc.  相似文献   

15.
Domain‐swopped chimeras of the glutamate dehydrogenases from Clostridium symbiosum (CsGDH) (NAD+‐specific) and Escherichia coli (EcGDH) (NADP+‐specific) have been produced, with the aim of testing the localization of determinants of coenzyme specificity. An active chimera consisting of the substrate‐binding domain (Domain I) of CsGDH and the coenzyme‐binding domain (Domain II) of EcGDH has been purified to homogeneity, and a thorough kinetic analysis has been carried out. Results indicate that selectivity for the phosphorylated coenzyme does indeed reside solely in Domain II; the chimera utilizes NAD+ at 0.8% of the rate observed with NADP+, similar to the 0.5% ratio for EcGDH. Positive cooperativity toward L ‐glutamate, characteristic of CsGDH, has been retained with Domain I. An unforeseen feature of this chimera, however, is that, although glutamate cooperativity occurs only at higher pH values in the parent CsGDH, the chimeric protein shows it over the full pH range explored. Also surprising is that the chimera is capable of catalysing severalfold higher reaction rates (Vmax) in both directions than either of the parent enzymes from which it is constructed. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
Aminopeptidases can selectively catalyze the cleavage of the N-terminal amino acid residues from peptides and proteins. Bacillus subtilis aminopeptidase (BSAP) is most active toward p-nitroanilides (pNAs) derivatives of Leu, Arg, and Lys. The BSAP with broad substrate specificity is expected to improve its application. Based on an analysis of the predicted structure of BSAP, four residues (Leu 370, Asn 385, Ile 387, and Val 396) located in the substrate binding region were selected for saturation mutagenesis. The hydrolytic activity toward different aminoacyl-pNAs of each mutant BSAP in the culture supernatant was measured. Although the mutations resulted in a decrease of hydrolytic activity toward Leu-pNA, N385L BSAP exhibited higher hydrolytic activities toward Lys-pNA (2.2-fold) and Ile-pNA (9.1-fold) than wild-type BSAP. Three mutant enzymes (I387A, I387C and I387S BSAPs) specially hydrolyzed Phe-pNA, which was undetectable in wild-type BSAP. Among these mutant BSAPs, N385L and I387A BSAPs were selected for further characterized and used for protein hydrolysis application. Both of N385L and I387A BSAPs showed higher hydrolysis efficiency than the wild-type BASP and a combination of the wild-type and N385L and I387A BSAPs exhibited the highest hydrolysis efficiency for protein hydrolysis. This study will greatly facilitate studies aimed on change the substrate specificity and our results obtained here should be useful for BSAP application in food industry.  相似文献   

17.
A survey is presented of model building techniques, computer-assisted molecular dynamics simulations and a new theory of enzyme catalysis. Some aspects of the theoretical formalism are given. Enzyme active-site directed drug design is illustrated with examples taken from molecular modeling studies using FAD-containing disulphide oxidoreductases, proteinases and carbonic anhydrases.  相似文献   

18.
Paul Mach  Patrice Koehl 《Proteins》2013,81(9):1556-1570
It is well known that protein fold recognition can be greatly improved if models for the underlying evolution history of the folds are taken into account. The improvement, however, exists only if such evolutionary information is available. To circumvent this limitation for protein families that only have a small number of representatives in current sequence databases, we follow an alternate approach in which the benefits of including evolutionary information can be recreated by using sequences generated by computational protein design algorithms. We explore this strategy on a large database of protein templates with 1747 members from different protein families. An automated method is used to design sequences for these templates. We use the backbones from the experimental structures as fixed templates, thread sequences on these backbones using a self‐consistent mean field approach, and score the fitness of the corresponding models using a semi‐empirical physical potential. Sequences designed for one template are translated into a hidden Markov model‐based profile. We describe the implementation of this method, the optimization of its parameters, and its performance. When the native sequences of the protein templates were tested against the library of these profiles, the class, fold, and family memberships of a large majority (>90%) of these sequences were correctly recognized for an E‐value threshold of 1. In contrast, when homologous sequences were tested against the same library, a much smaller fraction (35%) of sequences were recognized; The structural classification of protein families corresponding to these sequences, however, are correctly recognized (with an accuracy of >88%). Proteins 2013; © 2013 Wiley Periodicals, Inc.  相似文献   

19.
Short-chain dehydrogenase Gox2181 from Gluconobacter oxydans catalyzes the reduction of 2,3-pentanedione by using NADH as the physiological electron donor. To realize its synthetic biological application for coenzyme recycling use, computational design and site-directed mutagenesis have been used to engineer Gox2181 to utilize not only NADH but also NADPH as the electron donor. Single and double mutations at residues Q20 and D43 were made in a recombinant expression system that corresponded to Gox2181-D43Q and Gox2181-Q20R&D43Q, respectively. The design of mutant Q20R not only resolved the hydrogen bond interaction and electrostatic interaction between R and 2′-phosphate of NADPH, but also could enhance the binding with 2′-phophated of NADPH by combining with D43Q. Molecular dynamics simulation has been carried out to testify the hydrogen bond interactions between mutation sites and 2′-phosphate of NADPH. Steady-state turnover measurement results indicated that Gox2181-D43Q could use both NADH and NADPH as its coenzyme, and so could Gox2181-Q20R&D43Q. Meanwhile, compared to the wild-type enzyme, Gox2181-D43Q exhibited dramatically reduced enzymatic activity while Gox2181-Q20R&D43Q successfully retained the majority of enzymatic activity.  相似文献   

20.
A loop closure-based sequential algorithm, PRODA_MATCH, was developed to match catalytic residues onto a scaffold for enzyme design in silico. The computational complexity of this algorithm is polynomial with respect to the number of active sites, the number of catalytic residues, and the maximal iteration number of cyclic coordinate descent steps. This matching algorithm is independent of a rotamer library that enables the catalytic residue to take any required conformation during the reaction coordinate. The catalytic geometric parameters defined between functional groups of transition state (TS) and the catalytic residues are continuously optimized to identify the accurate position of the TS. Pseudo-spheres are introduced for surrounding residues, which make the algorithm take binding into account as early as during the matching process. Recapitulation of native catalytic residue sites was used as a benchmark to evaluate the novel algorithm. The calculation results for the test set show that the native catalytic residue sites were successfully identified and ranked within the top 10 designs for 7 of the 10 chemical reactions. This indicates that the matching algorithm has the potential to be used for designing industrial enzymes for desired reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号