首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Oligomerization of γ‐Synuclein is known to have implications for both neurodegeneration and cancer. Although it is known to co‐exist with the fibrillar deposits of α‐Synuclein (Lewy bodies), a hallmark in Parkinson's disease (PD), the effect of potential therapeutic modulators on the fibrillation pathway of γ‐Syn remains unexplored. By a combined use of various biophysical tools and cytotoxicity assays we demonstrate that the flavonoid epigallocatechin‐3‐gallate (EGCG) significantly suppresses γ‐Syn fibrillation by affecting its nucleation and binds with the unstructured, nucleus forming oligomers of γ‐Syn to modulate the pathway to form α‐helical containing higher‐order oligomers (~158 kDa and ~ 670 kDa) that are SDS‐resistant and conformationally restrained in nature. Seeding studies reveal that these oligomers although “on‐pathway” in nature, are kinetically retarded and rate‐limiting species that slows down fibril elongation. We observe that EGCG also disaggregates the protofibrils and mature γ‐Syn fibrils into similar SDS‐resistant oligomers. Steady‐state and time‐resolved fluorescence spectroscopy and isothermal titration calorimetry (ITC) reveal a weak non‐covalent interaction between EGCG and γ‐Syn with the dissociation constant in the mM range (Kd ~ 2–10 mM). Interestingly, while EGCG‐generated oligomers completely rescue the breast cancer (MCF‐7) cells from γ‐Syn toxicity, it reduces the viability of neuroblastoma (SH‐SY5Y) cells. However, the disaggregated oligomers of γ‐Syn are more toxic than the disaggregated fibrils for MCF‐7cells. These findings throw light on EGCG‐mediated modulation of γ‐Syn fibrillation and suggest that investigation on the effects of such modulators on γ‐Syn fibrillation is critical in identifying effective therapeutic strategies using small molecule modulators of synucleopathies.  相似文献   

2.
Aggregation of the disordered protein α‐synuclein into amyloid fibrils is a central feature of synucleinopathies, neurodegenerative disorders that include Parkinson's disease. Small, pre‐fibrillar oligomers of misfolded α‐synuclein are thought to be the key toxic entities, and α‐synuclein misfolding can propagate in a prion‐like way. We explored whether a compound with anti‐prion activity that can bind to unfolded parts of the protein PrP, the cyclic tetrapyrrole Fe‐TMPyP, was also active against α‐synuclein aggregation. Observing the initial stages of aggregation via fluorescence cross‐correlation spectroscopy, we found that Fe‐TMPyP inhibited small oligomer formation in a dose‐dependent manner. Fe‐TMPyP also inhibited the formation of mature amyloid fibrils in vitro, as detected by thioflavin T fluorescence. Isothermal titration calorimetry indicated Fe‐TMPyP bound to monomeric α‐synuclein with a stoichiometry of 2, and two‐dimensional heteronuclear single quantum coherence NMR spectra revealed significant interactions between Fe‐TMPyP and the C‐terminus of the protein. These results suggest commonalities among aggregation mechanisms for α‐synuclein and the prion protein may exist that can be exploited as therapeutic targets.  相似文献   

3.
Inclusions of intraneuronal alpha‐synuclein (α‐synuclein) can be detected in brains of patients with Parkinson's disease and dementia with Lewy bodies. The aggregation of α‐synuclein is a central feature of the disease pathogenesis. Among the different α‐synuclein species, large oligomers/protofibrils have particular neurotoxic properties and should therefore be suitable as both therapeutic and diagnostic targets. Two monoclonal antibodies, mAb38F and mAb38E2, with high affinity and strong selectivity for large α‐synuclein oligomers were generated. These antibodies, which do not bind amyloid‐beta or tau, recognize Lewy body pathology in brains from patients with Parkinson's disease and dementia with Lewy bodies and detect pathology earlier in α‐synuclein transgenic mice than linear epitope antibodies. An oligomer‐selective sandwich ELISA, based on mAb38F, was set up to analyze brain extracts of the transgenic mice. The overall levels of α‐synuclein oligomers/protofibrils were found to increase with age in these mice, although the levels displayed a large interindividual variation. Upon subcellular fractionation, higher levels of α‐synuclein oligomers/protofibrils could be detected in the endoplasmic reticulum around the age when behavioral disturbances develop. In summary, our novel oligomer‐selective α‐synuclein antibodies recognize relevant pathology and should be important tools to further explore the pathogenic mechanisms in Lewy body disorders. Moreover, they could be potential candidates both for immunotherapy and as reagents in an assay to assess a potential disease biomarker.  相似文献   

4.
It has been postulated that the accumulation of extracellular α‐synuclein (α‐syn) might alter the neuronal membrane by formation of ‘pore‐like structures’ that will lead to alterations in ionic homeostasis. However, this has never been demonstrated to occur in brain neuronal plasma membranes. In this study, we show that α‐syn oligomers rapidly associate with hippocampal membranes in a punctate fashion, resulting in increased membrane conductance (5 fold over control) and the influx of both calcium and a fluorescent glucose analogue. The enhancement in intracellular calcium (1.7 fold over control) caused a large increase in the frequency of synaptic transmission (2.5 fold over control), calcium transients (3 fold over control), and synaptic vesicle release. Both primary hippocampal and dissociated nigral neurons showed rapid increases in membrane conductance by α‐syn oligomers. In addition, we show here that α‐syn caused synaptotoxic failure associated with a decrease in SV2, a membrane protein of synaptic vesicles associated with neurotransmitter release. In conclusion, extracellular α‐syn oligomers facilitate the perforation of the neuronal plasma membrane, thus explaining, in part, the synaptotoxicity observed in neurodegenerative diseases characterized by its extracellular accumulation.

  相似文献   


5.
6.
To inquire into the role of the carboxyl group as determinant of the properties of 5,6‐dihydroxyindole melanins, melanins from aerial oxidation of 5,6‐dihydroxyindole‐2‐carboxylic acid (DHICA) and its DHICA methyl ester (MeDHICA) were comparatively tested for their antioxidant activity. MALDI MS spectrometry analysis of MeDHICA melanin provided evidence for a collection of intact oligomers. EPR analysis showed g‐values almost identical and signal amplitudes (ΔB) comparable to those of DHICA melanin, but spin density was one order of magnitude higher, with a different response to pH changes. Antioxidant assays were performed, and a model of lipid peroxidation was used to compare the protective effects of the melanins. In all cases, MeDHICA melanin performed better than DHICA melanin. This capacity was substantially maintained following exposure to air in aqueous buffer over 1 week or to solar simulator over 3 hr. Different from DHICA melanin, MeDHICA melanin was proved to be fairly soluble in different water‐miscible organic solvents, suggesting its use in dermocosmetic applications.  相似文献   

7.
Deposition of beta‐amyloid (Aβ) is considered as an important early event in the pathogenesis of Alzheimer's Disease (AD), and reduction of Aβ levels by various therapeutic approaches is actively being pursued. A potentially non‐inflammatory approach to facilitate clearance and reduce toxicity is to hydrolyze Aβ at its α‐secretase site. We have previously identified a light chain fragment, mk18, with α‐secretase‐like catalytic activity, producing the 1–16 and 17–40 amino acid fragments of Aβ40 as primary products, although hydrolysis is also observed following other lysine and arginine residues. To improve the specific activity of the recombinant antibody by affinity maturation, we constructed a single chain variable fragment (scFv) library containing a randomized CDR3 heavy chain region. A biotinylated covalently reactive analog mimicking α‐secretase site cleavage was synthesized, immobilized on streptavidin beads, and used to select yeast surface expressed scFvs with increased specificity for Aβ. After two rounds of selection against the analog, yeast cells were individually screened for proteolytic activity towards an internally quenched fluorogenic substrate that contains the α‐secretase site of Aβ. From 750 clones screened, the two clones with the highest increase in proteolytic activity compared to the parent mk18 were selected for further study. Kinetic analyses using purified soluble scFvs showed a 3‐ and 6‐fold increase in catalytic activity (kcat/KM) toward the synthetic Aβ substrate compared to the original scFv primarily due to an expected decrease in KM rather than an increase in kcat. This affinity maturation strategy can be used to select for scFvs with increased catalytic specificity for Aβ. These proteolytic scFvs have potential therapeutic applications for AD by decreasing soluble Aβ levels in vivo. © 2009 American Institute of Chemical Engineers. Biotechnol. Prog., 2009  相似文献   

8.
Various neurodegenerative diseases are characterized by the accumulation of amyloidogenic proteins such as tau, α‐synuclein, and amyloid‐β. Prior to the formation of these stable aggregates, intermediate species of the respective proteins—oligomers—appear. Recently acquired data have shown that oligomers may be the most toxic and pathologically significant to neurodegenerative diseases such as Alzheimer's and Parkinson's. The covalent modification of these oligomers may be critically important for biological processes in disease. Ubiquitin and small ubiquitin‐like modifiers are the commonly used tags for degradation. While the modification of large amyloid aggregates by ubiquitination is well established, very little is known about the role ubiquitin may play in oligomer processing and the importance of the more recently discovered sumoylation. Many proteins involved in neurodegeneration have been found to be sumoylated, notably tau protein in brains afflicted with Alzheimer's. This evidence suggests that while the cell may not have difficulty recognizing dangerous proteins, in brains afflicted with neurodegenerative disease, the proteasome may be unable to properly digest the tagged proteins. This would allow toxic aggregates to develop, leading to even more proteasome impairment in a snowball effect that could explain the exponential progression in most neurodegenerative diseases. A better understanding of the covalent modifications of oligomers could have a huge impact on the development of therapeutics for neurodegenerative diseases. This review will focus on the proteolysis of tau and other amyloidogenic proteins induced by covalent modification, and recent findings suggesting a relationship between tau oligomers and sumoylation.  相似文献   

9.
Zearalenone (ZEN) is a fusarotoxin converted predominantly into α‐zearalenol (α‐Zol) and β‐zearalenol (β‐Zol) by hepatic hydroxysteroid dehydrogenases. The feeding of naturally contaminated grains with ZEN was associated with hyperestrogenic and adverse effects on humans and animals. There is a lack of information on the attribution of the toxic effects of these toxins. One wonders if these effects are due to the parent molecule (ZEN) or to its major metabolites (α‐Zol and β‐Zol). Using human Caco‐2 cells, we looked for the molecular mechanisms of toxicity of ZEN, α‐Zol, and β‐Zol. Toxicity effects were studied by MTT viability assay and oxidative stress induction by measuring malondialdehyde (MDA) generation. To check whether the oxidative stress induction was associated to DNA lesions, we looked for DNA fragmentation by means of the Comet and the diphenylamine assays. To specify cell death pathway, we investigated caspase‐3 activation, confirmed by poly(ADP‐ribose) polymerase cleavage and by Bcl‐2 depletion. Our results clearly demonstrated that ZEN as well as its two metabolites presented variable toxic effects. They induced cell death and an increase in MDA generation. These effects were associated to DNA fragmentation as well as caspase‐3 activation. The observed toxic effects seem to be relieved by the metabolism of ZEN into α‐Zol and β‐Zol. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:233–243, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20284  相似文献   

10.
α‐Crystallin is a member of small heat shock proteins and is believed to play an exceptional role in the stability of eye lens proteins. The disruption or denaturation of the protein arrangement or solubility of the crystallin proteins can lead to vision problems including cataract. In the present study, we have examined the effect of chemical denaturants urea and guanidine hydrochloride (GdnHCl) on α‐crystallin aggregation, with special emphasis on protein conformational changes, unfolding, and amyloid fibril formation. GdnHCl (4 M) induced a 16 nm red shift in the intrinsic fluorescence of α‐crystallin, compared with 4 nm shift by 8 M urea suggesting a major change in α‐crystallin structure. Circular dichroism analysis showed marked increase in the ellipticity of α‐crystallin at 216 nm, suggesting gain in β‐sheet structure in the presence of GdnHCl (0.5–1 M) followed by unfolding at higher concentration (2–6 M). However, only minor changes in the secondary structure of α‐crystallin were observed in the presence of urea. Moreover, 8‐anilinonaphthalene‐1‐sulfonic acid fluorescence measurement in the presence of GdnHCl and urea showed changes in the hydrophobicity of α‐crystallin. Amyloid studies using thioflavin T fluorescence and congo red absorbance showed that GdnHCl induced amyloid formation in α‐crystallin, whereas urea induced aggregation in this protein. Electron microscopy studies further confirmed amyloid formation of α‐crystallin in the presence of GdnHCl, whereas only aggregate‐like structures were observed in α‐crystallin treated with urea. Our results suggest that α‐crystallin is susceptible to unfolding in the presence of chaotropic agents like urea and GdnHCl. The destabilized protein has increased likelihood to fibrillate. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Vinpocetine is a neuroprotective drug that exerts beneficial effects on neurological symptoms and cerebrovascular disease. 3‐nitropropionic acid (3‐NPA) is a toxin that irreversibly inhibits succinate dehydrogenase, the mitochondrial enzyme that acts in the electron transport chain at complex II. In previous studies in striatum‐isolated nerve endings (synaptosomes), we found that vinpocetine decreased dopamine (DA) at expense of its main metabolite 3,4‐dihydroxyphenylacetic acid (DOPAC), and that 3‐NPA increased DA, reactive oxygen species (ROS), DA‐quinone products formation, and decreased DOPAC. Therefore, in this study, the possible effect of vinpocetine on 3‐NPA‐induced increase in DA, ROS, lipid peroxidation, and DA‐quinone products formation in striatum synaptosomes were investigated, and compared with the effects of the antioxidant α‐tocopherol. Results show that the increase in DA induced by 3‐NPA was inhibited by both 25 μM vinpocetine and 50 μM α‐tocopherol. Vinpocetine, as α‐tocopherol, also inhibited 3‐NPA‐induced increase in ROS (as judged by DCF fluorescence), lipid peroxidation (as judged by TBA‐RS formation), and DA‐quinone products formation (as judged by the nitroblue tetrazolium reduction method). As in addition to the inhibition of complex II exerted by 3‐NPA, 3‐NPA increases DA‐oxidation products that in turn can inhibit other sites of the respiratory chain, the drop in DA produced by vinpocetine and α‐tocopherol may importantly contribute to their protective action from oxidative damage, particularly in DA‐rich structures.  相似文献   

12.
The relation of α‐synuclein (αS) aggregation to Parkinson's disease (PD) has long been recognized, but the mechanism of toxicity, the pathogenic species and its molecular properties are yet to be identified. To obtain insight into the function different aggregated αS species have in neurotoxicity in vivo, we generated αS variants by a structure‐based rational design. Biophysical analysis revealed that the αS mutants have a reduced fibrillization propensity, but form increased amounts of soluble oligomers. To assess their biological response in vivo, we studied the effects of the biophysically defined pre‐fibrillar αS mutants after expression in tissue culture cells, in mammalian neurons and in PD model organisms, such as Caenorhabditis elegans and Drosophila melanogaster. The results show a striking correlation between αS aggregates with impaired β‐structure, neuronal toxicity and behavioural defects, and they establish a tight link between the biophysical properties of multimeric αS species and their in vivo function.  相似文献   

13.
The most conspicuous feature in idiopathic parkinsonism is the degeneration of pigmented neurons in the substantia nigra. A major problem for the study of the significance of neuromelanin for the development of parkinsonism is that common experimental animals lack neuromelanin in substantia nigra. The aim of this study was to develop an in vitro model that could be used to study the role of neuromelanin in chemically induced toxicity in dopaminergic cells. Cultured neuron‐like PC12 cells were exposed to synthetic dopamine melanin (0–1.0 mg/ml) for 48 h, resulting in uptake of dopamine melanin particles into the cells. The intracellular distribution of dopamine melanin granules was similar to that found in neuromelanin‐containing neurons. Dopamine melanin, up to 0.5 mg/ml, had negligible effects on ultrastructure, induction of the endoplasmic reticulum‐stress protein glucose regulating protein 78, activation of caspase‐3 and cell viability. The decreased cell viability in response to the cytotoxic peptide amyloid‐β25?35 was similar in melanin‐loaded cells and in control cells without melanin. The results of the studies suggest that melanin‐loaded PC12 cells can serve as an in vitro model for studies on the role of neuromelanin for the toxicity of chemicals, in particular neurotoxicants with melanin affinity, in pigmented neurons.  相似文献   

14.
Deposition of insoluble fibrillar aggregates of β‐amyloid (Aβ) peptides in the brain is a hallmark of Alzheimer's disease. Apart from forming fibrils, these peptides also exist as soluble aggregates. Fibrillar and a variety of nonfibrillar aggregates of Aβ have also been obtained in vitro. Hexafluoroisopropanol (HFIP) has been widely used to dissolve Aβ and other amyloidogenic peptides. In this study, we show that the dissolution of Aβ40, 42, and 43 in HFIP followed by drying results in highly ordered aggregates. Although α‐helical conformation is observed, it is not stable for prolonged periods. Drying after prolonged incubation of Aβ40, 42, and 43 peptides in HFIP leads to structural transition from α‐helical to β‐conformation. The peptides form short fibrous aggregates that further assemble giving rise to highly ordered ring‐like structures. Aβ16–22, a highly amyloidogenic peptide stretch from Aβ, also formed very similar rings when dissolved in HFIP and dried. HFIP could not induce α‐helical conformation in Aβ16–22, and rings were obtained from freshly dissolved peptide. The rings formed by Aβ40, 42, 43, and Aβ16–22 are composed of the peptides in β‐conformation and cause enhancement in thioflavin T fluorescence, suggesting that the molecular architecture of these structures is amyloid‐like. Our results clearly indicate that dissolution of Aβ40, 42 and 43 and the amyloidogenic fragment Aβ16–22 in HFIP results in the formation of annular amyloid‐like structures. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
We have recently reported that a ~19‐kDa polypeptide, rPK‐4, is a protein kinase Cs inhibitor that is 89% homologous to the 1171–1323 amino acid region of the 228‐kDa human pericentriolar material‐1 (PCM‐1) protein (Chakravarthy et al. 2012). We have now discovered that rPK‐4 binds oligomeric amyloid‐β peptide (Aβ)1‐42 with high affinity. Most importantly, a PCM‐1‐selective antibody co‐precipitated Aβ and amyloid β precursor protein (AβPP) from cerebral cortices and hippocampi from AD (Alzheimer's disease) transgenic mice that produce human AβPP and Aβ1‐42, suggesting that PCM‐1 may interact with amyloid precursor protein/Aβ in vivo. We have identified rPK‐4′s Aβ‐binding domain using a set of overlapping synthetic peptides. We have found with ELISA, dot‐blot, and polyacrylamide gel electrophoresis techniques that a ~ 5 kDa synthetic peptide, amyloid binding peptide (ABP)‐p4‐5 binds Aβ1‐42 at nM levels. Most importantly, ABP‐p4‐5, like rPK‐4, appears to preferentially bind Aβ1‐42 oligomers, believed to be the toxic AD‐drivers. As expected from these observations, ABP‐p4‐5 prevented Aβ1‐42 from killing human SH‐SY5Y neuroblastoma cells via apoptosis. These findings indicate that ABP‐p4‐5 is a possible candidate therapeutic for AD.  相似文献   

16.
17.
Biomarkers for α‐synuclein are needed for diagnosis and prognosis in Parkinson's disease (PD ). Endogenous auto‐antibodies to α‐synuclein could serve as biomarkers for underlying synucleinopathy, but previous assessments of auto‐antibodies have shown variability and inconsistent clinical correlations. We hypothesized that auto‐antibodies to α‐synuclein could be diagnostic for PD and explain its clinical heterogeneity. To test this hypothesis, we developed an enzyme‐linked immunosorbent assay for measuring α‐synuclein auto‐antibodies in human samples. We evaluated 69 serum samples (16 healthy controls (HC ) and 53 PD patients) and 145 CSF samples (52 HC and 93 PD patients) from our Institution. Both serum and CSF were available for 24 participants. Males had higher auto‐antibody levels than females in both fluids. CSF auto‐antibody levels were significantly higher in PD patients as compared with HC , whereas serum levels were not significantly different. CSF auto‐antibody levels did not associate with amyloid‐β1–42, total tau, or phosphorylated tau. CSF auto‐antibody levels correlated with performance on the Montreal Cognitive Assessment, even when controlled for CSF amyloidβ1–42. CSF hemoglobin levels, as a proxy for contamination of CSF by blood during lumbar puncture, did not influence these observations. Using recombinant α‐synuclein with N‐ and C‐terminal truncations, we found that CSF auto‐antibodies target amino acids 100 through 120 of α‐synuclein. We conclude that endogenous CSF auto‐antibodies are significantly higher in PD patients as compared with HC , suggesting that they could indicate the presence of underlying synucleinopathy. These auto‐antibodies associate with poor cognition, independently of CSF amyloidβ1–42, and target a select C‐terminal region of α‐synuclein.

Read the Editorial Highlight for this article on page 433 .
  相似文献   

18.
β‐Amyloid (Aβ) peptide is believed to play a key role in the mechanism of Alzheimer's disease (AD). Aβ tends to aggregate to form amyloid fibrils. A variety of evidence indicates that Aβ aggregates are toxic in vitro and in vivo. An early “Aβ hypothesis” postulated that AD was the consequence of neuron death induced by insoluble deposits of large Aβ fibrils. Newer findings indicate that small soluble Aβ oligomers are the neurotoxic species, yet their structure is still unknown. Many researchers have tried to probe the differences in molecular structure between Aβ oligomers, protofibrils, and fibrils that give rise to their unique toxicities, but with limited success. In this report, we examine the hypothesis that differences in the toxicity of different aggregated Aβ species are the result of differences in species concentration and diffusivity. Using a simple mathematical analysis based on the assumption of a diffusion‐limited reaction, we demonstrate that near 10‐fold differences in toxicity between spherical oligomers and fibrils can be explained from size and concentration arguments. While this work does not suggest that Aβ oligomers and fibrils have identical molecular structures, it highlights the possibility that simple physical phenomena may contribute to the biological processes induced by Aβ. Biotechnol. Bioeng. 2010;106: 333–337. © 2010 Wiley Periodicals, Inc.  相似文献   

19.
The aggregation of the 37‐amino acid polypeptide human islet amyloid polypeptide (hIAPP), as either insoluble amyloid or as small oligomers, appears to play a direct role in the death of human pancreatic β‐islet cells in type 2 diabetes. hIAPP is considered to be one of the most amyloidogenic proteins known. The quick aggregation of hIAPP leads to the formation of toxic species, such as oligomers and fibers, that damage mammalian cells (both human and rat pancreatic cells). Whether this toxicity is necessary for the progression of type 2 diabetes or merely a side effect of the disease remains unclear. If hIAPP aggregation into toxic amyloid is on‐path for developing type 2 diabetes in humans, islet amyloid polypeptide (IAPP) aggregation would likely need to play a similar role within other organisms known to develop the disease. In this work, we compared the aggregation potential and cellular toxicity of full‐length IAPP from several diabetic and nondiabetic organisms whose aggregation propensities had not yet been determined for full‐length IAPP.  相似文献   

20.
Nanoparticles of BSA and silk fibroin (SF) with entrapped α‐tocopherol were produced via ultrasonic emulsification. Populations with particle size of 200–300 nm and highly negatively charged were obtained for all the tested formulations. Entrapment efficiencies of around 99% revealed the effective encapsulation of α‐tocopherol into the produced nanoformulations. Generally, these nanodevices did not induce significant cytotoxicity to human skin keratinocytes for all the concentrations tested. The developed formulations showed free radical scavenging of ABTS.+ ability resulting from the synergistic effect between the proteins in formulation and the entrapped tocopherol. Overall, the results contribute for the establishment of BSA:VO and BSA:SF:VO as biodegradable and non‐toxic nanoformulations for the functionalization of textile devices and controlled delivery of tocopherol into the skin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号