首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
An atomically detailed potential for docking pairs of proteins is derived using mathematical programming. A refinement algorithm that builds atomically detailed models of the complex and combines coarse grained and atomic scoring is introduced. The refinement step consists of remodeling the interface side chains of the top scoring decoys from rigid docking followed by a short energy minimization. The refined models are then re‐ranked using a combination of coarse grained and atomic potentials. The docking algorithm including the refinement and re‐ranking, is compared favorably to other leading docking packages like ZDOCK, Cluspro, and PATCHDOCK, on the ZLAB 3.0 Benchmark and a test set of 30 novel complexes. A detailed analysis shows that coarse grained potentials perform better than atomic potentials for realistic unbound docking (where the exact structures of the individual bound proteins are unknown), probably because atomic potentials are more sensitive to local errors. Nevertheless, the atomic potential captures a different signal from the residue potential and as a result a combination of the two scores provides a significantly better prediction than each of the approaches alone. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
    
Huang SY  Zou X 《Proteins》2011,79(9):2648-2661
In this study, we have developed a statistical mechanics-based iterative method to extract statistical atomic interaction potentials from known, nonredundant protein structures. Our method circumvents the long-standing reference state problem in deriving traditional knowledge-based scoring functions, by using rapid iterations through a physical, global convergence function. The rapid convergence of this physics-based method, unlike other parameter optimization methods, warrants the feasibility of deriving distance-dependent, all-atom statistical potentials to keep the scoring accuracy. The derived potentials, referred to as ITScore/Pro, have been validated using three diverse benchmarks: the high-resolution decoy set, the AMBER benchmark decoy set, and the CASP8 decoy set. Significant improvement in performance has been achieved. Finally, comparisons between the potentials of our model and potentials of a knowledge-based scoring function with a randomized reference state have revealed the reason for the better performance of our scoring function, which could provide useful insight into the development of other physical scoring functions. The potentials developed in this study are generally applicable for structural selection in protein structure prediction.  相似文献   

3.
    
《Proteins》2018,86(4):393-404
  相似文献   

4.
    
The development of an energy or scoring function for protein structure prediction is greatly enhanced by testing the function on a set of computer-generated conformations (decoys) to determine whether it can readily distinguish native-like conformations from nonnative ones. We have created \"Decoys 'R' Us,\" a database containing many such sets of conformations, to provide a resource that allows scoring functions to be improved.  相似文献   

5.
    
We have improved the original Rosetta centroid/backbone decoy set by increasing the number of proteins and frequency of near native models and by building on sidechains and minimizing clashes. The new set consists of 1,400 model structures for 78 different and diverse protein targets and provides a challenging set for the testing and evaluation of scoring functions. We evaluated the extent to which a variety of all-atom energy functions could identify the native and close-to-native structures in the new decoy sets. Of various implicit solvent models, we found that a solvent-accessible surface area-based solvation provided the best enrichment and discrimination of close-to-native decoys. The combination of this solvation treatment with Lennard Jones terms and the original Rosetta energy provided better enrichment and discrimination than any of the individual terms. The results also highlight the differences in accuracy of NMR and X-ray crystal structures: a large energy gap was observed between native and non-native conformations for X-ray structures but not for NMR structures.  相似文献   

6.
    
The DOcking decoy‐based Optimized Potential (DOOP) energy function for protein structure prediction is based on empirical distance‐dependent atom‐pair interactions. To optimize the atom‐pair interactions, native protein structures are decomposed into polypeptide chain segments that correspond to structural motives involving complete secondary structure elements. They constitute near native ligand–receptor systems (or just pairs). Thus, a total of 8609 ligand–receptor systems were prepared from 954 selected proteins. For each of these hypothetical ligand–receptor systems, 1000 evenly sampled docking decoys with 0–10 Å interface root‐mean‐square‐deviation (iRMSD) were generated with a method used before for protein–protein docking. A neural network‐based optimization method was applied to derive the optimized energy parameters using these decoys so that the energy function mimics the funnel‐like energy landscape for the interaction between these hypothetical ligand–receptor systems. Thus, our method hierarchically models the overall funnel‐like energy landscape of native protein structures. The resulting energy function was tested on several commonly used decoy sets for native protein structure recognition and compared with other statistical potentials. In combination with a torsion potential term which describes the local conformational preference, the atom‐pair‐based potential outperforms other reported statistical energy functions in correct ranking of native protein structures for a variety of decoy sets. This is especially the case for the most challenging ROSETTA decoy set, although it does not take into account side chain orientation‐dependence explicitly. The DOOP energy function for protein structure prediction, the underlying database of protein structures with hypothetical ligand–receptor systems and their decoys are freely available at http://agknapp.chemie.fu‐berlin.de/doop/ . Proteins 2015; 83:881–890. © 2015 Wiley Periodicals, Inc.  相似文献   

7.
QMEAN: A comprehensive scoring function for model quality assessment   总被引:3,自引:0,他引:3  
  相似文献   

8.
    
One of the major limitations of computational protein structure prediction is the deviation of predicted models from their experimentally derived true, native structures. The limitations often hinder the possibility of applying computational protein structure prediction methods in biochemical assignment and drug design that are very sensitive to structural details. Refinement of these low‐resolution predicted models to high‐resolution structures close to the native state, however, has proven to be extremely challenging. Thus, protein structure refinement remains a largely unsolved problem. Critical assessment of techniques for protein structure prediction (CASP) specifically indicated that most predictors participating in the refinement category still did not consistently improve model quality. Here, we propose a two‐step refinement protocol, called 3Drefine, to consistently bring the initial model closer to the native structure. The first step is based on optimization of hydrogen bonding (HB) network and the second step applies atomic‐level energy minimization on the optimized model using a composite physics and knowledge‐based force fields. The approach has been evaluated on the CASP benchmark data and it exhibits consistent improvement over the initial structure in both global and local structural quality measures. 3Drefine method is also computationally inexpensive, consuming only few minutes of CPU time to refine a protein of typical length (300 residues). 3Drefine web server is freely available at http://sysbio.rnet.missouri.edu/3Drefine/ . Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
    
Empirical or knowledge‐based potentials have many applications in structural biology such as the prediction of protein structure, protein–protein, and protein–ligand interactions and in the evaluation of stability for mutant proteins, the assessment of errors in experimentally solved structures, and the design of new proteins. Here, we describe a simple procedure to derive and use pairwise distance‐dependent potentials that rely on the definition of effective atomic interactions, which attempt to capture interactions that are more likely to be physically relevant. Based on a difficult benchmark test composed of proteins with different secondary structure composition and representing many different folds, we show that the use of effective atomic interactions significantly improves the performance of potentials at discriminating between native and near‐native conformations. We also found that, in agreement with previous reports, the potentials derived from the observed effective atomic interactions in native protein structures contain a larger amount of mutual information. A detailed analysis of the effective energy functions shows that atom connectivity effects, which mostly arise when deriving the potential by the incorporation of those indirect atomic interactions occurring beyond the first atomic shell, are clearly filtered out. The shape of the energy functions for direct atomic interactions representing hydrogen bonding and disulfide and salt bridges formation is almost unaffected when effective interactions are taken into account. On the contrary, the shape of the energy functions for indirect atom interactions (i.e., those describing the interaction between two atoms bound to a direct interacting pair) is clearly different when effective interactions are considered. Effective energy functions for indirect interacting atom pairs are not influenced by the shape or the energy minimum observed for the corresponding direct interacting atom pair. Our results suggest that the dependency between the signals in different energy functions is a key aspect that need to be addressed when empirical energy functions are derived and used, and also highlight the importance of additivity assumptions in the use of potential energy functions.  相似文献   

10.
    
During CASP10 in summer 2012, we tested BCL::Fold for prediction of free modeling (FM) and template‐based modeling (TBM) targets. BCL::Fold assembles the tertiary structure of a protein from predicted secondary structure elements (SSEs) omitting more flexible loop regions early on. This approach enables the sampling of conformational space for larger proteins with more complex topologies. In preparation of CASP11, we analyzed the quality of CASP10 models throughout the prediction pipeline to understand BCL::Fold's ability to sample the native topology, identify native‐like models by scoring and/or clustering approaches, and our ability to add loop regions and side chains to initial SSE‐only models. The standout observation is that BCL::Fold sampled topologies with a GDT_TS score > 33% for 12 of 18 and with a topology score > 0.8 for 11 of 18 test cases de novo. Despite the sampling success of BCL::Fold, significant challenges still exist in clustering and loop generation stages of the pipeline. The clustering approach employed for model selection often failed to identify the most native‐like assembly of SSEs for further refinement and submission. It was also observed that for some β‐strand proteins model refinement failed as β‐strands were not properly aligned to form hydrogen bonds removing otherwise accurate models from the pool. Further, BCL::Fold samples frequently non‐natural topologies that require loop regions to pass through the center of the protein. Proteins 2015; 83:547–563. © 2015 Wiley Periodicals, Inc.  相似文献   

11.
    
Gao C  Stern HA 《Proteins》2007,68(1):67-75
We perform a systematic examination of the ability of several different high-resolution, atomic-detail scoring functions to discriminate native conformations of loops in membrane proteins from non-native but physically reasonable, or \"decoy,\" conformations. Decoys constructed from changing a loop conformation while keeping the remainder of the protein fixed are a challenging test of energy function accuracy. Nevertheless, the best of the energy functions we examined recognized the native structure as lowest in energy around half the time, and consistently chose it as a low-energy structure. This suggests that the best of present energy functions, even without a representation of the lipid bilayer, are of sufficient accuracy to give reasonable confidence in predictions of membrane protein structure. We also constructed homology models for each structure, using other known structures in the same protein family as templates. Homology models were constructed using several scoring functions and modeling programs, but with a comparable sampling effort for each procedure. Our results indicate that the quality of sequence alignment is probably the most important factor in model accuracy for sequence identity from 20-40%; one can expect a reasonably accurate model for membrane proteins when sequence identity is greater than 30%, in agreement with previous studies. Most errors are localized in loop regions, which tend to be found outside the lipid bilayer. For the most discriminative energy functions, it appears that errors are most likely due to lack of sufficient sampling, although it should be stressed that present energy functions are still far from perfectly reliable.  相似文献   

12.
13.
    
We have analyzed 29 different published matrices of protein pairwise contact potentials (CPs) between amino acids derived from different sets of proteins, either crystallographic structures taken from the Protein Data Bank (PDB) or computer-generated decoys. Each of the CPs is similar to 1 of the 2 matrices derived in the work of Miyazawa and Jernigan (Proteins 1999;34:49-68). The CP matrices of the first class can be approximated with a correlation of order 0.9 by the formula e(ij) = h(i) + h(j), 1 相似文献   

14.
    
The principal bottleneck in protein structure prediction is the refinement of models from lower accuracies to the resolution observed by experiment. We developed a novel constraints‐based refinement method that identifies a high number of accurate input constraints from initial models and rebuilds them using restrained torsion angle dynamics (rTAD). We previously created a Bayesian statistics‐based residue‐specific all‐atom probability discriminatory function (RAPDF) to discriminate native‐like models by measuring the probability of accuracy for atom type distances within a given model. Here, we exploit RAPDF to score (i.e., filter) constraints from initial predictions that may or may not be close to a native‐like state, obtain consensus of top scoring constraints amongst five initial models, and compile sets with no redundant residue pair constraints. We find that this method consistently produces a large and highly accurate set of distance constraints from which to build refinement models. We further optimize the balance between accuracy and coverage of constraints by producing multiple structure sets using different constraint distance cutoffs, and note that the cutoff governs spatially near versus distant effects in model generation. This complete procedure of deriving distance constraints for rTAD simulations improves the quality of initial predictions significantly in all cases evaluated by us. Our procedure represents a significant step in solving the protein structure prediction and refinement problem, by enabling the use of consensus constraints, RAPDF, and rTAD for protein structure modeling and refinement. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
    
Locating sequences compatible with a protein structural fold is the well‐known inverse protein‐folding problem. While significant progress has been made, the success rate of protein design remains low. As a result, a library of designed sequences or profile of sequences is currently employed for guiding experimental screening or directed evolution. Sequence profiles can be computationally predicted by iterative mutations of a random sequence to produce energy‐optimized sequences, or by combining sequences of structurally similar fragments in a template library. The latter approach is computationally more efficient but yields less accurate profiles than the former because of lacking tertiary structural information. Here we present a method called SPIN that predicts Sequence Profiles by Integrated Neural network based on fragment‐derived sequence profiles and structure‐derived energy profiles. SPIN improves over the fragment‐derived profile by 6.7% (from 23.6 to 30.3%) in sequence identity between predicted and wild‐type sequences. The method also reduces the number of residues in low complex regions by 15.7% and has a significantly better balance of hydrophilic and hydrophobic residues at protein surface. The accuracy of sequence profiles obtained is comparable to those generated from the protein design program RosettaDesign 3.5. This highly efficient method for predicting sequence profiles from structures will be useful as a single‐body scoring term for improving scoring functions used in protein design and fold recognition. It also complements protein design programs in guiding experimental design of the sequence library for screening and directed evolution of designed sequences. The SPIN server is available at http://sparks‐lab.org . Proteins 2014; 82:2565–2573. © 2014 Wiley Periodicals, Inc.  相似文献   

16.
    
Huang SY  Zou X 《Proteins》2008,72(2):557-579
Using an efficient iterative method, we have developed a distance-dependent knowledge-based scoring function to predict protein-protein interactions. The function, referred to as ITScore-PP, was derived using the crystal structures of a training set of 851 protein-protein dimeric complexes containing true biological interfaces. The key idea of the iterative method for deriving ITScore-PP is to improve the interatomic pair potentials by iteration, until the pair potentials can distinguish true binding modes from decoy modes for the protein-protein complexes in the training set. The iterative method circumvents the challenging reference state problem in deriving knowledge-based potentials. The derived scoring function was used to evaluate the ligand orientations generated by ZDOCK 2.1 and the native ligand structures on a diverse set of 91 protein-protein complexes. For the bound test cases, ITScore-PP yielded a success rate of 98.9% if the top 10 ranked orientations were considered. For the more realistic unbound test cases, the corresponding success rate was 40.7%. Furthermore, for faster orientational sampling purpose, several residue-level knowledge-based scoring functions were also derived following the similar iterative procedure. Among them, the scoring function that uses the side-chain center of mass (SCM) to represent a residue, referred to as ITScore-PP(SCM), showed the best performance and yielded success rates of 71.4% and 30.8% for the bound and unbound cases, respectively, when the top 10 orientations were considered. ITScore-PP was further tested using two other published protein-protein docking decoy sets, the ZDOCK decoy set and the RosettaDock decoy set. In addition to binding mode prediction, the binding scores predicted by ITScore-PP also correlated well with the experimentally determined binding affinities, yielding a correlation coefficient of R = 0.71 on a test set of 74 protein-protein complexes with known affinities. ITScore-PP is computationally efficient. The average run time for ITScore-PP was about 0.03 second per orientation (including optimization) on a personal computer with 3.2 GHz Pentium IV CPU and 3.0 GB RAM. The computational speed of ITScore-PP(SCM) is about an order of magnitude faster than that of ITScore-PP. ITScore-PP and/or ITScore-PP(SCM) can be combined with efficient protein docking software to study protein-protein recognition.  相似文献   

17.
RNA molecules play integral roles in gene regulation, and understanding their structures gives us important insights into their biological functions. Despite recent developments in template-based and parameterized energy functions, the structure of RNA--in particular the nonhelical regions--is still difficult to predict. Knowledge-based potentials have proven efficient in protein structure prediction. In this work, we describe two differentiable knowledge-based potentials derived from a curated data set of RNA structures, with all-atom or coarse-grained representation, respectively. We focus on one aspect of the prediction problem: the identification of native-like RNA conformations from a set of near-native models. Using a variety of near-native RNA models generated from three independent methods, we show that our potential is able to distinguish the native structure and identify native-like conformations, even at the coarse-grained level. The all-atom version of our knowledge-based potential performs better and appears to be more effective at discriminating near-native RNA conformations than one of the most highly regarded parameterized potential. The fully differentiable form of our potentials will additionally likely be useful for structure refinement and/or molecular dynamics simulations.  相似文献   

18.
    
Kuhn M  Meiler J  Baker D 《Proteins》2004,54(2):282-288
Beta-sheet proteins have been particularly challenging for de novo structure prediction methods, which tend to pair adjacent beta-strands into beta-hairpins and produce overly local topologies. To remedy this problem and facilitate de novo prediction of beta-sheet protein structures, we have developed a neural network that classifies strand-loop-strand motifs by local hairpins and nonlocal diverging turns by using the amino acid sequence as input. The neural network is trained with a representative subset of the Protein Data Bank and achieves a prediction accuracy of 75.9 +/- 4.4% compared to a baseline prediction rate of 59.1%. Hairpins are predicted with an accuracy of 77.3 +/- 6.1%, diverging turns with an accuracy of 73.9 +/- 6.0%. Incorporation of the beta-hairpin/diverging turn classification into the ROSETTA de novo structure prediction method led to higher contact order models and somewhat improved tertiary structure predictions for a test set of 11 all-beta-proteins and 3 alphabeta-proteins. The beta-hairpin/diverging turn classification from amino acid sequences is available online for academic use (Meiler and Kuhn, 2003; www.jens-meiler.de/turnpred.html).  相似文献   

19.
20.
    
The ATLAS (Altered TCR Ligand Affinities and Structures) database ( https://zlab.umassmed.edu/atlas/web /) is a manually curated repository containing the binding affinities for wild‐type and mutant T cell receptors (TCRs) and their antigens, peptides presented by the major histocompatibility complex (pMHC). The database links experimentally measured binding affinities with the corresponding three dimensional (3D) structures for TCR‐pMHC complexes. The user can browse and search affinities, structures, and experimental details for TCRs, peptides, and MHCs of interest. We expect this database to facilitate the development of next‐generation protein design algorithms targeting TCR‐pMHC interactions. ATLAS can be easily parsed using modeling software that builds protein structures for training and testing. As an example, we provide structural models for all mutant TCRs in ATLAS, built using the Rosetta program. Utilizing these structures, we report a correlation of 0.63 between experimentally measured changes in binding energies and our predicted changes. Proteins 2017; 85:908–916. © 2016 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号