首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
The armadillo domain is a right‐handed super‐helix of repeating units composed of three α‐helices each. Armadillo repeat proteins (ArmRPs) are frequently involved in protein–protein interactions, and because of their modular recognition of extended peptide regions they can serve as templates for the design of artificial peptide binding scaffolds. On the basis of sequential and structural analyses, different consensus‐designed ArmRPs were synthesized and show high thermodynamic stabilities, compared to naturally occurring ArmRPs. We determined the crystal structures of four full‐consensus ArmRPs with three or four identical internal repeats and two different designs for the N‐ and C‐caps. The crystal structures were refined at resolutions ranging from 1.80 to 2.50 Å for the above mentioned designs. A redesign of our initial caps was required to obtain well diffracting crystals. However, the structures with the redesigned caps caused domain swapping events between the N‐caps. To prevent this domain swap, 9 and 6 point mutations were introduced in the N‐ and C‐caps, respectively. Structural and biophysical analysis showed that this subsequent redesign of the N‐cap prevented domain swapping and improved the thermodynamic stability of the proteins. We systematically investigated the best cap combinations. We conclude that designed ArmRPs with optimized caps are intrinsically stable and well‐expressed monomeric proteins and that the high‐resolution structures provide excellent structural templates for the continuation of the design of sequence‐specific modular peptide recognition units based on armadillo repeats.  相似文献   

2.
    
Designed armadillo repeat proteins (dArmRP) are α‐helical solenoid repeat proteins with an extended peptide binding groove that were engineered to develop a generic modular technology for peptide recognition. In this context, the term “peptide” not only denotes a short unstructured chain of amino acids, but also an unstructured region of a protein, as they occur in termini, loops, or linkers between folded domains. Here we report two crystal structures of dArmRPs, in complex with peptides fused either to the N‐terminus of Green Fluorescent Protein or to the C‐terminus of a phage lambda protein D. These structures demonstrate that dArmRPs bind unfolded peptides in the intended conformation also when they constitute unstructured parts of folded proteins, which greatly expands possible applications of the dArmRP technology. Nonetheless, the structures do not fully reflect the binding behavior in solution, that is, some binding sites remain unoccupied in the crystal and even unexpected peptide residues appear to be bound. We show how these differences can be explained by restrictions of the crystal lattice or the composition of the crystallization solution. This illustrates that crystal structures have to be interpreted with caution when protein–peptide interactions are characterized, and should always be correlated with measurements in solution.  相似文献   

3.
    
Designed armadillo repeat proteins (dArmRPs) were developed to create a modular peptide binding technology where each of the structural repeats binds two residues of the target peptide. An essential prerequisite for such a technology is a dArmRP geometry that matches the peptide bond length. To this end, we determined a large set (n = 27) of dArmRP X-ray structures, of which 12 were previously unpublished, to calculate curvature parameters that define their geometry. Our analysis shows that consensus dArmRPs exhibit curvatures close to the optimal range for modular peptide recognition. Binding of peptide ligands can induce a curvature within the desired range, as confirmed by single-molecule FRET experiments in solution. On the other hand, computationally designed ArmRPs, where side chains have been chosen with the intention to optimally fit into a geometrically optimized backbone, turned out to be more divergent in reality, and thus not suitable for continuous peptide binding. Furthermore, we show that the formation of a crystal lattice can induce small but significant deviations from the curvature adopted in solution, which can interfere with the evaluation of repeat protein scaffolds when high accuracy is required. This study corroborates the suitability of consensus dArmRPs as a scaffold for the development of modular peptide binders.  相似文献   

4.
The study of proteins from extremophilic organisms continues to generate interest in the field of protein folding because paradigms explaining the enhanced stability of these proteins still elude us and such studies have the potential to further our knowledge of the forces stabilizing proteins. We have undertaken such a study with our model protein HPr from a mesophile, Bacillus subtilis, and a thermophile, Bacillus stearothermophilus. We report here the high-resolution structures of the wild-type HPr protein from the thermophile and a variant, F29W. The variant proved to crystallize in two forms: a monomeric form with a structure very similar to the wild-type protein as well as a domain-swapped dimer. Interestingly, the structure of the domain-swapped dimer for HPr is very different from that observed for a homologous protein, Crh, from B.subtilis. The existence of a domain-swapped dimer has implications for amyloid formation and is consistent with recent results showing that the HPr proteins can form amyloid fibrils. We also characterized the conformational stability of the thermophilic HPr proteins using thermal and solvent denaturation methods and have used the high-resolution structures in an attempt to explain the differences in stability between the different HPr proteins. Finally, we present a detailed analysis of the solution properties of the HPr proteins using a variety of biochemical and biophysical methods.  相似文献   

5.
We have previously attempted to simulate domain creation in early protein evolution by recombining polypeptide segments from non-homologous proteins, and we have described the structure of one such de novo protein, 1b11, a segment-swapped tetramer with novel architecture. Here, we have analyzed the thermodynamic stability and folding kinetics of the 1b11 tetramer and its monomeric and dimeric intermediates, and of 1b11 mutants with changes at the domain interface. Denatured 1b11 polypeptides fold into transient, folded monomers with marginal stability (DeltaG<1kcalmol(-1)) which convert rapidly ( approximately 6x10(4)M(-1)s(-1)) into dimers (DeltaG=9.8kcal/mol) and then more slowly ( approximately 3M(-1)s(-1)) into tetramers (DeltaG=28kcalmol(-1)). Segment swapping takes place during dimerization, as suggested by mass spectroscopic analysis of covalently linked peptides derived from proteolysis of a disulfide-linked dimer. Our results confirm that segment swapping and associated oligomerization are both powerful ways of stabilizing proteins, and we suggest that this may have been a feature of early protein evolution.  相似文献   

6.
Zhang Z  Chen L  Gao L  Lin K  Zhu L  Lu Y  Shi X  Gao Y  Zhou J  Xu P  Zhang J  Wu G 《Cell research》2012,22(2):372-386
Adenomatous polyposis coli (APC) regulates cell-cell adhesion and cell migration through activating the APC-stimulated guanine nucleotide-exchange factor (GEF; Asef), which is usually autoinhibited through the binding between its Src homology 3 (SH3) and Dbl homology (DH) domains. The APC-activated Asef stimulates the small GTPase Cdc42, which leads to decreased cell-cell adherence and enhanced cell migration. In colorectal cancers, truncated APC constitutively activates Asef and promotes cancer cell migration and angiogenesis. Here, we report crystal structures of the human APC/Asef complex. We find that the armadillo repeat domain of APC uses a highly conserved surface groove to recognize the APC-binding region (ABR) of Asef, conformation of which changes dramatically upon binding to APC. Key residues on APC and Asef for the complex formation were mutated and their importance was demonstrated by binding and activity assays. Structural superimposition of the APC/Asef complex with autoinhibited Asef suggests that the binding between APC and Asef might create a steric clash between Asef-DH domain and APC, which possibly leads to a conformational change in Asef that stimulates its GEF activity. Our structures thus elucidate the molecular mechanism of Asef recognition by APC, as well as provide a potential target for pharmaceutical intervention against cancers.  相似文献   

7.
NK1 is a splice variant of the polypeptide growth factor HGF/SF that consists of the N terminal (N) and first kringle (K) domains and retains receptor binding and signalling. While NK1 behaves as a monomer in solution, two independent crystallographic structures have previously shown an identical, tightly packed dimer. Here we report a novel orthorhombic crystal form of NK1 at 2.5 A resolution in which four NK1 protomers are packed in two distinct dimers in the asymmetric unit. Although the basic architecture of the new NK1 dimers is similar to the two described earlier, the new crystal form demonstrates extensive hinge movement between the N and K domain that leads to re-orientation of the receptor-binding sites. The hinge bending is evidence of the paucity of strong interactions between domains within the protomer, in contrast to the extensive interactions between protomers in the dimer. These observations are consistent with domain swapping in the dimer, such that the interdomain interactions of the monomer are replaced by equivalent interprotomer interactions in the dimer and offer a route for protein engineering of NK1 variants which may act as receptor antagonists.  相似文献   

8.
We determined the crystal structure to 1.8 Å resolution of the Fab fragment of an affinity-matured human monoclonal antibody (HC84.26.5D) that recognizes the E2 envelope glycoprotein of hepatitis C virus (HCV). Unlike conventional Fabs, which are monovalent monomers, Fab HC84.26.5D assembles into a bivalent domain-swapped dimer in which the two VL/VH modules are separated by ~25 Å. In solution, Fab HC84.26.5D exists predominantly as a dimer (~80%) in equilibrium with the monomeric form of the Fab (~20%). Dimerization is mediated entirely by deletion of a single residue, VHSer113 (Kabat numbering), in the elbow region linking the VH and CH1 domains. In agreement with the crystal structure, dimeric Fab HC84.26.5D is able to bind two HCV E2 molecules in solution. This is only the second example of a domain-swapped Fab dimer from among >3000 Fab crystal structures determined to date. Moreover, the architecture of the doughnut-shaped Fab HC84.26.5D dimer is completely different from that of the previously reported Fab 2G12 dimer. We demonstrate that the highly identifiable shape of dimeric Fab HC84.26.5D makes it useful as a fiducial marker for single-particle cryoEM analysis of HCV E2. Bivalent domain-swapped Fab dimers engineered on the basis of HC84.26.5D may also serve as a means of doubling the effective size of conventional Fab–protein complexes for cryoEM.  相似文献   

9.
    
The structure of Drosophila LC8 pH-induced monomer has been determined by NMR spectroscopy using the program AutoStructure. The structure at pH 3 and 30 degrees C is similar to the individual subunits of mammalian LC8 dimer with the exception that a beta strand, which crosses between monomers to form an intersubunit beta-sheet in the dimer, is a flexible loop with turnlike conformations in the monomer. Increased flexibility in the interface region relative to the rest of the protein is confirmed by dynamic measurements based on (15)N relaxation. Comparison of the monomer and dimer structures indicates that LC8 is not a domain swapped dimer.  相似文献   

10.
    
Caspase recruitment domain (CARD)-only proteins (COPs), regulate apoptosis, inflammation, and innate immunity. They inhibit the assembly of NOD-like receptor complexes such as the inflammasome and NODosome, which are molecular complexes critical for caspase-1 activation. COPs are known to interact with either caspase-1 CARD or RIP2 CARD via a CARD-CARD interaction, and inhibit caspase-1 activation or further downstream signaling. In addition to the human COPs, Pseudo-ICE, INCA, and ICEBERG, several viruses also contain viral COPs that help them escape the host immune system. To elucidate the molecular mechanism of host immunity inhibition by viral COPs, we solved the structure of a viral COP for the first time. Our structure showed that viral COP forms a structural transformation-mediated dimer, which is unique and has not been reported in any structural study of a CARD domain. Based on the current structure, and the previously solved structures of other death domain superfamily members, we propose that structural transformation-mediated dimerization might be a new strategy for dimer assembly in the death domain superfamily.  相似文献   

11.
    
Many protein architectures exhibit evidence of internal rotational symmetry postulated to be the result of gene duplication/fusion events involving a primordial polypeptide motif. A common feature of such structures is a domain‐swapped arrangement at the interface of the N‐ and C‐termini motifs and postulated to provide cooperative interactions that promote folding and stability. De novo designed symmetric protein architectures have demonstrated an ability to accommodate circular permutation of the N‐ and C‐termini in the overall architecture; however, the folding requirement of the primordial motif is poorly understood, and tolerance to circular permutation is essentially unknown. The β‐trefoil protein fold is a threefold‐symmetric architecture where the repeating ~42‐mer “trefoil‐fold” motif assembles via a domain‐swapped arrangement. The trefoil‐fold structure in isolation exposes considerable hydrophobic area that is otherwise buried in the intact β‐trefoil trimeric assembly. The trefoil‐fold sequence is not predicted to adopt the trefoil‐fold architecture in ab initio folding studies; rather, the predicted fold is closely related to a compact “blade” motif from the β‐propeller architecture. Expression of a trefoil‐fold sequence and circular permutants shows that only the wild‐type N‐terminal motif definition yields an intact β‐trefoil trimeric assembly, while permutants yield monomers. The results elucidate the folding requirements of the primordial trefoil‐fold motif, and also suggest that this motif may sample a compact conformation that limits hydrophobic residue exposure, contains key trefoil‐fold structural features, but is more structurally homologous to a β‐propeller blade motif.  相似文献   

12.
    
Gene duplication and fusion events in protein evolution are postulated to be responsible for the common protein folds exhibiting internal rotational symmetry. Such evolutionary processes can also potentially yield regions of repetitive primary structure. Repetitive primary structure offers the potential for alternative definitions of critical regions, such as the folding nucleus (FN). In principle, more than one instance of the FN potentially enables an alternative folding pathway in the face of a subsequent deleterious mutation. We describe the targeted mutation of the carboxyl‐terminal region of the (internally located) FN of the de novo designed purely‐symmetric β‐trefoil protein Symfoil‐4P. This mutation involves wholesale replacement of a repeating trefoil‐fold motif with a “blade” motif from a β‐propeller protein, and postulated to trap that region of the Symfoil‐4P FN in a nonproductive folding intermediate. The resulting protein (termed “Bladefoil”) is shown to be cooperatively folding, but as a trimeric oligomer. The results illustrate how symmetric protein architectures have potentially diverse folding alternatives available to them, including oligomerization, when preferred pathways are perturbed.  相似文献   

13.
柴立民  张园  车永哲  杨荣存 《生物磁学》2011,(11):2014-2017
目的:分析小鼠富亮氨酸重复结构蛋白家族成员Lrig2的基因与蛋白的结构,明确其组织分布和定位,并对其功能进行初步预测。方法:利用生物信息学分析技术对小鼠Ln萨基因的染色体定位、蛋白结构进行分析预测;通过RT-PCR、mRNA原位杂交技术检测Lrig2基因在小鼠不同组织中的表达定位;通过系统进化树分析“薛与其他Lrrs蛋白家族成员的同源性。结果:生物信息学分析显示,H薛是一种跨膜蛋白受体,是Lrrs蛋白超家族成员之一,胞外区含有15个m模序、3个免疫球蛋白样结构域,存在单一的跨膜结构域;Lrig2在小鼠的多个组织中表达,其中在胸腺、脾脏等组织中表达较强;系统树分析显示,Lrigs蛋白是sLrPs超家族成员,是一种跨膜蛋白受体。结论:Lrig2在免疫组织中表达较强,推测其可能在肿瘤免疫应答进程中发挥重要的效能。  相似文献   

14.
    
Glycinamide ribonucleotide formyltransferases (GARTs) are part of the de novo purine biosynthetic pathway, catalyzing the direct transfer of a formyl group from the tetrahydrofolate cofactor to the glycinamide ribonucleotide substrate. Despite the low amino acid-sequence identity between the GARTs from Escherichia coli and human, their tertiary structures are superimposable. As part of our functional studies of these enzymes, we have investigated the interchangeability of individual protein fragments or modules between the two enzymes and the functional properties of the resulting hybrids. The modular nature of GART facilitated the creation of combinatorial libraries of chimeras between the Escherichia coli and human enzymes, which were functionally selected through complementation of an auxotrophic Escherichia coli strain. From a pool of several dozen sequence distinct hybrids, six in vivo-functional fusion genes were selected, overexpressed, and purified to homogeneity. The kinetic analysis of these constructs and the comparison of their k(cat) and K(M) values to the parental enzymes suggest that the characteristic kinetic properties from the two parents are \"modular encoded\" and can be exchanged by domain swapping. The chimeras in general, however, are subject to temperature instability and misfolding; thus, they serve primarily as useful candidates for further rounds of optimization.  相似文献   

15.
    
  相似文献   

16.
    
It is generally accepted that naturally existing functional domains can serve as building blocks for complex protein structures, and that novel functions can arise from assembly of different combinations of these functional domains. To inform our understanding of protein evolution and explore the modular nature of protein structure, two model enzymes were chosen for study, purT‐encoded glycinamide ribonucleotide formyltransferase (PurT) and purK‐encoded N5‐carboxylaminoimidazole ribonucleotide synthetase (PurK). Both enzymes are found in the de novo purine biosynthetic pathway of Escherichia coli. In spite of their low sequence identity, PurT and PurK share significant similarity in terms of tertiary structure, active site organization, and reaction mechanism. Their characteristic three domain structures categorize both PurT and PurK as members of the ATP‐grasp protein superfamily. In this study, we investigate the exchangeability of individual protein domains between these two enzymes and the in vivo and in vitro functional properties of the resulting hybrids. Six domain‐swapped hybrids were unable to catalyze full wild‐type reactions, but each hybrid protein could catalyze partial reactions. Notably, an additional loop replacement in one of the domain‐swapped hybrid proteins was able to restore near wild‐type PurK activity. Therefore, in this model system, domain‐swapped proteins retained the ability to catalyze partial reactions, but further modifications were required to efficiently couple the reaction intermediates and achieve catalysis of the full reaction. Implications for understanding the role of domain swapping in protein evolution are discussed.  相似文献   

17.
    
Catenin‐β‐like protein 1 (CTNNBL1) is a highly conserved protein with multiple functions, one of which is to act as an interaction partner of the antibody‐diversification enzyme activation‐induced cytidine deaminase (AID) for its nuclear import and subnuclear trafficking. Here, the crystal structure of full‐length human CTNNBL1 is reported. The protein contains six armadillo (ARM) repeats that pack into a superhelical ARM domain. This ARM domain is unique within the ARM protein family owing to the presence of several unusual structural features. Moreover, CTNNBL1 contains significant and novel non‐ARM structures flanking both ends of the central ARM domain. A strong continuous hydrophobic core runs through the whole structure, indicating that the ARM and non‐ARM structures fold together to form an integral structure. This structure defines a highly restrictive and discriminatory protein‐binding groove that is not observed in other ARM proteins. The presence of a cluster of histidine residues in the groove implies a pH‐sensitive histidine‐mediated mechanism that may regulate protein binding activity. The many unique structural features of CTNNBL1 establish it as a distinct member of the ARM protein family. The structure provides critical insights into the molecular interactions between CTNNBL1 and its protein partners, especially AID.  相似文献   

18.
    
Cytochrome c (cyt c) is an electron‐transfer protein in the respiratory chain of mitochondria. It is known to form polymers, but its polymerization mechanism is still unknown. Dimeric and trimeric cyt c from horse were successfully crystallized by the sitting‐drop vapour‐diffusion method using polyethylene glycol as a precipitating reagent. The crystal of dimeric cyt c belonged to space group P1, with unit‐cell parameters a = 41.8, b = 56.3, c = 60.8 Å, α = 66.3, β = 89.9, γ = 73.7°, whereas that of trimeric cyt c belonged to space group P212121, with unit‐cell parameters a = 57.2, b = 95.7, c = 130.9 Å. Initial structure models showed that the crystals of dimeric and trimeric cyt c contained two dimers and two trimers, respectively, in the asymmetric unit.  相似文献   

19.
目的:分析小鼠富亮氨酸重复结构蛋白家族成员Lrig2的基因与蛋白的结构,明确其组织分布和定位,并对其功能进行初步预测。方法:利用生物信息学分析技术对小鼠Lrig2基因的染色体定位、蛋白结构进行分析预测;通过RT-PCR、mRNA原位杂交技术检测Lrig2基因在小鼠不同组织中的表达定位;通过系统进化树分析Lrig2与其他Lrrs蛋白家族成员的同源性。结果:生物信息学分析显示,Lrig2是一种跨膜蛋白受体,是Lrrs蛋白超家族成员之一,胞外区含有15个Lrr模序、3个免疫球蛋白样结构域,存在单一的跨膜结构域;Lrig2在小鼠的多个组织中表达,其中在胸腺、脾脏等组织中表达较强;系统树分析显示,Lrigs蛋白是sLrPs超家族成员,是一种跨膜蛋白受体。结论:Lrig2在免疫组织中表达较强,推测其可能在肿瘤免疫应答进程中发挥重要的效能。  相似文献   

20.
Domain swapping has been shown to be an important mechanism controlling multiprotein assembly and has been suggested recently as a possible mechanism underlying protein aggregation. Understanding oligomerization via domain swapping is therefore of theoretical and practical importance. By using a symmetrized structure-based (Gō) model, we demonstrate that in the free-energy landscape of domain swapping, a large free-energy barrier separates monomeric and domain-swapped dimeric configurations. We investigate the effect of finite monomer concentration, by implementing a new semi-analytical method, which involves computing the second virial coefficient, a thermodynamic indicator of inter-molecular interactions. This method, together with the symmetrized structure-based (Gō) model, minimizes the need for expensive many-protein simulations, providing a convenient framework to investigate concentration effect. Finally, we perform direct simulations of domain-swapped trimer formation, showing that this modeling approach can be used for higher-order oligomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号