首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
α-actinin, an actin binding protein, plays a key role in cell migration, cross-links actin filaments in the Z-disk, and is a major component of contractile muscle apparatus. The flexibility of the molecule is critical to its function. The flexibility of various regions of the molecule, including the linker connecting central subunits is studied using constant force steered molecular dynamics simulations. The linker, whose structure has been a subject of debate, is predicted to be semi-flexible. The flexibility of the linker is compared to all possible segments of equal length throughout the molecule. The stretching profile of the molecule at different forces suggests that loops and regions adjacent to the loops are much more rigid than the helices in the protein. Amino acid composition analysis of most flexible and most rigid regions of the molecule reveals that the rigid regions are rich in Ser, Val and Ile whereas the flexible regions are rich in Ala, Leu and Glu.  相似文献   

2.
The conformational properties of unbound multi‐Cys2His2 (mC2H2) zinc finger proteins, in which zinc finger domains are connected by flexible linkers, are studied by a multiscale approach. Three methods on different length scales are utilized. First, atomic detail molecular dynamics simulations of one zinc finger and its adjacent flexible linker confirmed that the zinc finger is more rigid than the flexible linker. Second, the end‐to‐end distance distributions of mC2H2 zinc finger proteins are computed using an efficient atomistic pivoting algorithm, which only takes excluded volume interactions into consideration. The end‐to‐end distance distribution gradually changes its profile, from left‐tailed to right‐tailed, as the number of zinc fingers increases. This is explained by using a worm‐like chain model. For proteins of a few zinc fingers, an effective bending constraint favors an extended conformation. Only for proteins containing more than nine zinc fingers, is a somewhat compacted conformation preferred. Third, a mesoscale model is modified to study both the local and the global conformational properties of multi‐C2H2 zinc finger proteins. Simulations of the CCCTC‐binding factor (CTCF), an important mC2H2 zinc finger protein for genome spatial organization, are presented. Proteins 2015; 83:1604–1615. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
Sarco(endo)plasmic reticulum Ca2+‐ATPase transports two Ca2+ per ATP‐hydrolyzed across biological membranes against a large concentration gradient by undergoing large conformational changes. Structural studies with X‐ray crystallography revealed functional roles of coupled motions between the cytoplasmic domains and the transmembrane helices in individual reaction steps. Here, we employed “Motion Tree (MT),” a tree diagram that describes a conformational change between two structures, and applied it to representative Ca2+‐ATPase structures. MT provides information of coupled rigid‐body motions of the ATPase in individual reaction steps. Fourteen rigid structural units, “common rigid domains (CRDs)” are identified from seven MTs throughout the whole enzymatic reaction cycle. CRDs likely act as not only the structural units, but also the functional units. Some of the functional importance has been newly revealed by the analysis. Stability of each CRD is examined on the morphing trajectories that cover seven conformational transitions. We confirmed that the large conformational changes are realized by the motions only in the flexible regions that connect CRDs. The Ca2+‐ATPase efficiently utilizes its intrinsic flexibility and rigidity to response different switches like ligand binding/dissociation or ATP hydrolysis. The analysis detects functional motions without extensive biological knowledge of experts, suggesting its general applicability to domain movements in other membrane proteins to deepen the understanding of protein structure and function. Proteins 2015; 83:746–756. © 2015 Wiley Periodicals, Inc.  相似文献   

4.
Membrane proteins are among the most functionally important proteins in cells. Unlike soluble proteins, they only possess two translational degrees of freedom on cell surfaces, and experience significant constraints on their rotations. As a result, it is currently challenging to characterize the in situ binding of membrane proteins. Using the membrane receptors CD2 and CD58 as a testing system, we developed a multiscale simulation framework to study the differences of protein binding kinetics between 3D and 2D environments. The association and dissociation processes were implemented by a coarse‐grained Monte‐Carlo algorithm, while the dynamic properties of proteins diffusing on lipid bilayer were captured from all‐atom molecular dynamic simulations. Our simulations show that molecular diffusion, linker flexibility and membrane fluctuations are important factors in adjusting binding kinetics. Moreover, by calibrating simulation parameters to the measurements of 3D binding, we derived the 2D binding constant which is quantitatively consistent with the experimental data, indicating that the method is able to capture the difference between 3D and 2D binding environments. Finally, we found that the 2D dissociation between CD2 and CD58 is about 100‐fold slower than the 3D dissociation. In summary, our simulation framework offered a generic approach to study binding mechanisms of membrane proteins.  相似文献   

5.
6.
IntroductionThe central C4 and C5 domains (C4C5) of cardiac myosin binding protein C (cMyBPC) contain a flexible interdomain linker and a cardiac-isoform specific loop. However, their importance in the functional regulation of cMyBPC has not been extensively studied.Methods and resultsWe expressed recombinant C4C5 proteins with deleted linker and loop regions and performed biophysical experiments to determine each of their structural and dynamic roles. We show that the linker and C5 loop regions modulate the secondary structure and thermal stability of C4C5. Furthermore, we provide evidence through extended molecular dynamics simulations and principle component analyses that C4C5 can adopt a completely bent or latched conformation. The simulation trajectory and interaction network analyses reveal that the completely bent conformation of C4C5 exhibits a specific pattern of residue-level interactions. Therefore, we propose a “hinge-and-latch” mechanism where the linker allows a great degree of flexibility and bending, while the loop aids in achieving a completely bent and latched conformation. Although this may be one of many bent positions that C4C5 can adopt, we illustrate for the first time in molecular detail that this type of large scale conformational change can occur in the central domains of cMyBPC.ConclusionsOur hinge-and-latch mechanism demonstrates that the linker and loop regions participate in dynamic modulation of cMyBPC’s motion and global conformation. These structural and dynamic features may contribute to muscle isoform-specific regulation of actomyosin activity, and have potential implications regarding its ability to propagate or retract cMyBPC’s regulatory N-terminal domains.  相似文献   

7.
We characterize the conformational dynamics and substrate selectivity of the signal recognition particle (SRP) using a thermodynamic free energy cycle approach and microsecond timescale molecular dynamics simulations. The SRP is a central component of the co-translational protein targeting machinery that binds to the N-terminal signal peptide (SP) of nascent proteins. We determined the shift in relative conformational stability of the SRP upon substrate binding to quantify allosteric coupling between SRP domains. In particular, for dipeptidyl aminopeptidase, an SP that is recognized by the SRP for co-translational targeting, it is found that substrate binding induces substantial changes in the SRP toward configurations associated with targeting of the nascent protein, and it is found that the changes are modestly enhanced by a mutation that increases the hydrophobicity of the SP. However, for alkaline phosphatase, an SP that is recognized for post-translational targeting, substrate binding induces the reverse change in the SRP conformational distribution away from targeting configurations. Microsecond timescale trajectories reveal the intrinsic flexibility of the SRP conformational landscape and provide insight into recent single molecule studies by illustrating that 10-nm lengthscale changes between FRET pairs occur via the rigid-body movement of SRP domains connected by the flexible linker region. In combination, these results provide direct evidence for the hypothesis that substrate-controlled conformational switching in the SRP provides a mechanism for discriminating between different SPs and for connecting substrate binding to downstream steps in the protein targeting pathway.  相似文献   

8.
Ehrlich LP  Nilges M  Wade RC 《Proteins》2005,58(1):126-133
Accounting for protein flexibility in protein-protein docking algorithms is challenging, and most algorithms therefore treat proteins as rigid bodies or permit side-chain motion only. While the consequences are obvious when there are large conformational changes upon binding, the situation is less clear for the modest conformational changes that occur upon formation of most protein-protein complexes. We have therefore studied the impact of local protein flexibility on protein-protein association by means of rigid body and torsion angle dynamics simulation. The binding of barnase and barstar was chosen as a model system for this study, because the complexation of these 2 proteins is well-characterized experimentally, and the conformational changes accompanying binding are modest. On the side-chain level, we show that the orientation of particular residues at the interface (so-called hotspot residues) have a crucial influence on the way contacts are established during docking from short protein separations of approximately 5 A. However, side-chain torsion angle dynamics simulations did not result in satisfactory docking of the proteins when using the unbound protein structures. This can be explained by our observations that, on the backbone level, even small (2 A) local loop deformations affect the dynamics of contact formation upon docking. Complementary shape-based docking calculations confirm this result, which indicates that both side-chain and backbone levels of flexibility influence short-range protein-protein association and should be treated simultaneously for atomic-detail computational docking of proteins.  相似文献   

9.
Revealing the processes of ligand–protein associations deepens our understanding of molecular recognition and binding kinetics. Hydrogen bonds (H‐bonds) play a crucial role in optimizing ligand–protein interactions and ligand specificity. In addition to the formation of stable H‐bonds in the final bound state, the formation of transient H‐bonds during binding processes contributes binding kinetics that define a ligand as a fast or slow binder, which also affects drug action. However, the effect of forming the transient H‐bonds on the kinetic properties is little understood. Guided by results from coarse‐grained Brownian dynamics simulations, we used classical molecular dynamics simulations in an implicit solvent model and accelerated molecular dynamics simulations in explicit waters to show that the position and distribution of the H‐bond donor or acceptor of a drug result in switching intermolecular and intramolecular H‐bond pairs during ligand recognition processes. We studied two major types of HIV‐1 protease ligands: a fast binder, xk263, and a slow binder, ritonavir. The slow association rate in ritonavir can be attributed to increased flexibility of ritonavir, which yields multistep transitions and stepwise entering patterns and the formation and breaking of complex H‐bond pairs during the binding process. This model suggests the importance of conversions of spatiotemporal H‐bonds during the association of ligands and proteins, which helps in designing inhibitors with preferred binding kinetics. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Proteins are dynamic molecules and often undergo conformational change upon ligand binding. It is widely accepted that flexible loop regions have a critical functional role in enzymes. Lack of consideration of binding site flexibility has led to failures in predicting protein functions and in successfully docking ligands with protein receptors. Here we address the question: which sequence and structural features distinguish the structurally flexible and rigid binding sites? We analyze high-resolution crystal structures of ligand bound (holo) and free (apo) forms of 41 proteins where no conformational change takes place upon ligand binding, 35 examples with moderate conformational change, and 22 cases where a large conformational change has been observed. We find that the number of residue-residue contacts observed per-residue (contact density) does not distinguish flexible and rigid binding sites, suggesting a role for specific interactions and amino acids in modulating the conformational changes. Examination of hydrogen bonding and hydrophobic interactions reveals that cases that do not undergo conformational change have high polar interactions constituting the binding pockets. Intriguingly, the large, aromatic amino acid tryptophan has a high propensity to occur at the binding sites of examples where a large conformational change has been noted. Further, in large conformational change examples, hydrophobic-hydrophobic, aromatic-aromatic, and hydrophobic-polar residue pair interactions are dominant. Further analysis of the Ramachandran dihedral angles (phi, psi) reveals that the residues adopting disallowed conformations are found in both rigid and flexible cases. More importantly, the binding site residues adopting disallowed conformations clustered narrowly into two specific regions of the L-Ala Ramachandran map. Examination of the dihedral angles changes upon ligand binding shows that the magnitude of phi, psi changes are in general minimal, although some large changes particularly between right-handed alpha-helical and extended conformations are seen. Our work further provides an account of conformational changes in the dihedral angles space. The findings reported here are expected to assist in providing a framework for predicting protein-ligand complexes and for template-based prediction of protein function.  相似文献   

11.
The CRISPR‐associated protein Cas9 is widely used for genome editing because it cleaves target DNA through the assistance of a single‐guide RNA (sgRNA). Structural studies have revealed the multi‐domain architecture of Cas9 and suggested sequential domain movements of Cas9 upon binding to the sgRNA and the target DNA. These studies also hinted at the flexibility between domains; however, it remains unclear whether these flexible movements occur in solution. Here, we directly observed dynamic fluctuations of multiple Cas9 domains, using single‐molecule FRET. We found that the flexible domain movements allow Cas9 to adopt transient conformations beyond those captured in the crystal structures. Importantly, the HNH nuclease domain only accessed the DNA cleavage position during such flexible movements, suggesting the importance of this flexibility in the DNA cleavage process. Our FRET data also revealed the conformational flexibility of apo‐Cas9, which may play a role in the assembly with the sgRNA. Collectively, our results highlight the potential role of domain fluctuations in driving Cas9‐catalyzed DNA cleavage.  相似文献   

12.
13.
Cdc25 phosphatases involved in cell cycle checkpoints are now active targets for the development of anti‐cancer therapies. Rational drug design would certainly benefit from detailed structural information for Cdc25s. However, only apo‐ or sulfate‐bound crystal structures of the Cdc25 catalytic domain have been described so far. Together with previously available crystalographic data, results from molecular dynamics simulations, bioinformatic analysis, and computer‐generated conformational ensembles shown here indicate that the last 30–40 residues in the C‐terminus of Cdc25B are partially unfolded or disordered in solution. The effect of C‐terminal flexibility upon binding of two potent small molecule inhibitors to Cdc25B is then analyzed by using three structural models with variable levels of flexibility, including an equilibrium distributed ensemble of Cdc25B backbone conformations. The three Cdc25B structural models are used in combination with flexible docking, clustering, and calculation of binding free energies by the linear interaction energy approximation to construct and validate Cdc25B‐inhibitor complexes. Two binding sites are identified on top and beside the Cdc25B active site. The diversity of interaction modes found increases with receptor flexibility. Backbone flexibility allows the formation of transient cavities or compact hydrophobic units on the surface of the stable, folded protein core that are unexposed or unavailable for ligand binding in rigid and densely packed crystal structures. The present results may help to speculate on the mechanisms of small molecule complexation to partially unfolded or locally disordered proteins. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
Periplasmic binding proteins are the initial receptors for the transport of various substrates over the inner membrane of gram-negative bacteria. The binding proteins are composed of two domains, and the substrate is entrapped between these domains. For several of the binding proteins it has been established that a closed-up conformation exists even without substrate present, suggesting a highly flexible apo-structure which would compete with the ligand-bound protein for the transporter interaction. For the leucine binding protein (LBP), structures of both open and closed conformations are known, but no closed-up structure without substrate has been reported. Here we present molecular dynamics simulations exploring the conformational flexibility of LBP. Coarse grained models based on the MARTINI force field are used to access the microsecond timescale. We show that a standard MARTINI model cannot maintain the structural stability of the protein whereas the ELNEDIN extension to MARTINI enables simulations showing a stable protein structure and nanosecond dynamics comparable to atomistic simulations, but does not allow the simulation of conformational flexibility. A modification to the MARTINI-ELNEDIN setup, referred to as domELNEDIN, is therefore presented. The domELNEDIN setup allows the protein domains to move independently and thus allows for the simulation of conformational changes. Microsecond domELNEDIN simulations starting from either the open or the closed conformations consistently show that also for LBP, the apo-structure is flexible and can exist in a closed form.
Figure
Closed and open conformations of the Leucine Binding Protein. Thin gray lines show the elastic network maintaining tertiary structure in coarse grained (CG) simulations. Red lines show elastic network bonds present in the ELNEDIN CG model, but removed in the domELNEDIN CG model, to allow for free protein domain motion  相似文献   

15.
Eunsung Park  Julian Lee 《Proteins》2015,83(6):1054-1067
Many proteins undergo large‐scale motions where relatively rigid domains move against each other. The identification of rigid domains, as well as the hinge residues important for their relative movements, is important for various applications including flexible docking simulations. In this work, we develop a method for protein rigid domain identification based on an exhaustive enumeration of maximal rigid domains, the rigid domains not fully contained within other domains. The computation is performed by mapping the problem to that of finding maximal cliques in a graph. A minimal set of rigid domains are then selected, which cover most of the protein with minimal overlap. In contrast to the results of existing methods that partition a protein into non‐overlapping domains using approximate algorithms, the rigid domains obtained from exact enumeration naturally contain overlapping regions, which correspond to the hinges of the inter‐domain bending motion. The performance of the algorithm is demonstrated on several proteins. Proteins 2015; 83:1054–1067. © 2015 Wiley Periodicals, Inc.  相似文献   

16.
Jerome Ma  Philip C. Biggin 《Proteins》2013,81(9):1653-1668
By far the most studied multidrug resistance protein is P‐glycoprotein. Despite recent structural data, key questions about its function remain. P‐glycoprotein (P‐gp) is flexible and undergoes large conformational changes as part of its function and in this respect, details not only of the export cycle, but also the recognition stage are currently lacking. Given the flexibility, molecular dynamics (MD) simulations provide an ideal tool to examine this aspect in detail. We have performed MD simulations to examine the behaviour of P‐gp. In agreement with previous reports, we found that P‐gp undergoes large conformational changes which tended to result in the nucleotide‐binding domains coming closer together. In all simulations, the approach of the NBDs was asymmetrical in agreement with previous observations for other ABC transporter proteins. To validate the simulations, we make extensive comparison to previous cross‐linking data. Our results show very good agreement with the available data. We then went on to compare the influence of inhibitor compounds bound with simulations of a substrate (daunorubicin) bound. Our results suggest that inhibitors may work by keeping the NBDs apart, thus preventing ATP‐hydrolysis. On the other hand, repeat simulations of daunorubicin (substrate) in one particular binding pose suggest that the approach of the NBDs is not impaired and that the structure would be still be competent to perform ATP hydrolysis, thus providing a model for inhibition or substrate transport. Finally we compare the latter to earlier QSAR data to provide a model for the first part of substrate transport within P‐gp. Proteins 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
In cullin-RING E3 ubiquitin ligases, substrate binding proteins, such as VHL-box, SOCS-box or the F-box proteins, recruit substrates for ubiquitination, accurately positioning and orienting the substrates for ubiquitin transfer. Yet, how the E3 machinery precisely positions the substrate is unknown. Here, we simulated nine substrate binding proteins: Skp2, Fbw7, β-TrCP1, Cdc4, Fbs1, TIR1, pVHL, SOCS2, and SOCS4, in the unbound form and bound to Skp1, ASK1 or Elongin C. All nine proteins have two domains: one binds to the substrate; the other to E3 ligase modules Skp1/ASK1/Elongin C. We discovered that in all cases the flexible inter-domain linker serves as a hinge, rotating the substrate binding domain, optimally and accurately positioning it for ubiquitin transfer. We observed a conserved proline in the linker of all nine proteins. In all cases, the prolines pucker substantially and the pucker is associated with the backbone rotation toward the E2/ubiquitin. We further observed that the linker flexibility could be regulated allosterically by binding events associated with either domain. We conclude that the flexible linker in the substrate binding proteins orients the substrate for the ubiquitin transfer. Our findings provide a mechanism for ubiquitination and polyubiquitination, illustrating that these processes are under conformational control.  相似文献   

18.
Cyclin-dependent kinase 2 (CDK2) is the most thoroughly studied of the cyclin-dependent kinases that regulate essential cellular processes, including the cell cycle, and it has become a model for studies of regulatory mechanisms at the molecular level. This contribution identifies flexible and rigid regions of CDK2 based on temperature B-factors acquired from both X-ray data and molecular dynamics simulations. In addition, the biological relevance of the identified flexible regions and their motions is explored using information from the essential dynamics analysis related to conformational changes of CDK2 and knowledge of its biological function(s). The conserved regions of CMGC protein kinases' primary sequences are located in the most rigid regions identified in our analyses, with the sole exception of the absolutely conserved G13 in the tip of the glycine-rich loop. The conserved rigid regions are important for nucleotide binding, catalysis, and substrate recognition. In contrast, the most flexible regions correlate with those where large conformational changes occur during CDK2 regulation processes. The rigid regions flank and form a rigid skeleton for the flexible regions, which appear to provide the plasticity required for CDK2 regulation. Unlike the rigid regions (which as mentioned are highly conserved) no evidence of evolutionary conservation was found for the flexible regions.  相似文献   

19.
The Wiggle series are support vector machine-based predictors that identify regions of functional flexibility using only protein sequence information. Functionally flexible regions are defined as regions that can adopt different conformational states and are assumed to be necessary for bioactivity. Many advances have been made in understanding the relationship between protein sequence and structure. This work contributes to those efforts by making strides to understand the relationship between protein sequence and flexibility. A coarse-grained protein dynamic modeling approach was used to generate the dataset required for support vector machine training. We define our regions of interest based on the participation of residues in correlated large-scale fluctuations. Even with this structure-based approach to computationally define regions of functional flexibility, predictors successfully extract sequence-flexibility relationships that have been experimentally confirmed to be functionally important. Thus, a sequence-based tool to identify flexible regions important for protein function has been created. The ability to identify functional flexibility using a sequence based approach complements structure-based definitions and will be especially useful for the large majority of proteins with unknown structures. The methodology offers promise to identify structural genomics targets amenable to crystallization and the possibility to engineer more flexible or rigid regions within proteins to modify their bioactivity.  相似文献   

20.
Fusion strategy has been widely used to construct artificial multifunction proteins. The flexibility or rigidity of linkers between two fused partners is an important parameter that affects the function of fusion proteins. By combining the flexible unit GGGGS (F) and rigid unit EAAAK (R), ten linkers consisting of five elementary units that cover the fully rigid RRRRR linker to the fully flexible FFFFF linker were used to construct acid phosphatase-green fluorescence protein fusion protein (PhoC-GFP). By varying the linker flexibility in PhoC-GFPs, the relative specific activity of phosphotransferase and phosphatase varied from ∼19.0% to 100% and ∼9.35% to 100%, respectively. There exists an optimal linker capable of achieving the highest phosphotransferase/phosphatase activity and GFP fluorescence intensity. We found that the highest activities were achieved neither with the rigid RRRRR linker nor with the flexible FFFFF linker, but with the FFFRR linker. Linker flexibility could adjust the activity ratio between phosphotransferase and phosphatase and varied between ∼30% to 100%. PhoC-GFP with FRRRR linker achieved the highest relative specific phosphotransferase activity/relative specific phosphatase activity (T/P) value. Our results show that applying a linker library with controllable flexibility to the fusion proteins will be an efficient way to adjust the function of fusion enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号