首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Defects in telomere maintenance genes cause pathological telomere shortening, and manifest in syndromes which have prominent phenotypes in tissues of high turnover: the skin and bone marrow. Because the gastrointestinal (GI) epithelium is highly proliferative, we sought to determine whether telomere syndromes cause GI disease, and to define its prevalence, spectrum, and natural history. We queried subjects in the Johns Hopkins Telomere Syndrome Registry for evidence of luminal GI disease. In sixteen percent of Registry subjects (6 of 38), there was a history of significant GI pathology, and 43 additional cases were identified in the literature. Esophageal stenosis, enteropathy, and enterocolitis were the recurrent findings. In the intestinal mucosa, there was striking villous atrophy, extensive apoptosis, and anaphase bridging pointing to regenerative defects in the epithelial compartment. GI disease was often the first and most severe manifestation of telomere disease in young children. These findings indicate that telomere dysfunction disrupts the epithelial integrity in the human GI tract manifesting in recognizable disease processes. A high index of suspicion should facilitate diagnosis and management.  相似文献   

2.
C‐terminal domains widely exist in the C‐terminal region of multidomain proteases. As a β‐sandwich domain in multidomain protease, the C‐terminal domain plays an important role in proteolysis including regulation of the secretory process, anchoring and swelling the substrate molecule, presenting as an inhibitor for the preprotease and adapting the protein structural flexibility and stability. In this review, the diversity, structural characteristics and biological function of C‐terminal protease domains are described. Furthermore, the application prospects of C‐terminal domains, including polycystic kidney disease, prepeptidase C‐terminal and collagen‐binding domain, in the area of medicine and biological artificial materials are also discussed.  相似文献   

3.
4.
5.
The adenosine monoposphate‐forming acyl‐CoA synthetase enzymes catalyze a two‐step reaction that involves the initial formation of an acyl adenylate that reacts in a second partial reaction to form a thioester between the acyl substrate and CoA. These enzymes utilize a Domain Alternation catalytic mechanism, whereby a ~110 residue C‐terminal domain rotates by 140° to form distinct catalytic conformations for the two partial reactions. The structure of an acetoacetyl‐CoA synthetase (AacS) is presented that illustrates a novel aspect of this C‐terminal domain. Specifically, several acetyl‐ and acetoacetyl‐CoA synthetases contain a 30‐residue extension on the C‐terminus compared to other members of this family. Whereas residues from this extension are disordered in prior structures, the AacS structure shows that residues from this extension may interact with key catalytic residues from the N‐terminal domain. Proteins 2015; 83:575–581. © 2014 Wiley Periodicals, Inc.  相似文献   

6.
Salmonella enterica serovar Typhimurium can induce both humoral and cell‐mediated responses when establishing itself in the host. These responses are primarily stimulated against the lipopolysaccharide and major outer membrane (OM) proteins. OmpA is one of these major OM proteins. It comprises a N‐terminal eight‐stranded β‐barrel transmembrane domain and a C‐terminal domain (OmpACTD). The OmpACTD and its homologs are believed to bind to peptidoglycan (PG) within the periplasm, maintaining bacterial osmotic homeostasis and modulating the permeability and integrity of the OM. Here we present the first crystal structures of the OmpACTD from two pathogens: S. typhimurium (STOmpACTD) in open and closed forms and causative agent of Lyme Disease Borrelia burgdorferi (BbOmpACTD), in closed form. In the open form of STOmpACTD, an aspartate residue from a long β2‐α3 loop points into the binding pocket, suggesting that an anion group such as a carboxylate group from PG is favored at the binding site. In the closed form of STOmpACTD and in the structure of BbOmpACTD, a sulfate group from the crystallization buffer is tightly bound at the binding site. The differences between the closed and open forms of STOmpACTD, suggest a large conformational change that includes an extension of α3 helix by ordering a part of β2‐α3 loop. We propose that the sulfate anion observed in these structures mimics the carboxylate group of PG when bound to STOmpACTD suggesting PG‐anchoring mechanism. In addition, the binding of PG or a ligand mimic may enhance dimerization of STOmpACTD, or possibly that of full length STOmpA.  相似文献   

7.
Human small C‐terminal domain phosphatase 1 (Scp1) modulates the phosphorylation state of the C‐terminal domain (CTD) of eukaryotic RNA polymerase II (RNAP II), with preference for phosphorylated Ser5 in the tandem heptad repeats of the CTD. Additionally, Scp1 was identified as a conserved regulator of neuronal stem cell development. Scp1 is a member of haloacid dehalogenase (HAD) superfamily, whose catalysis depends on a Mg2+ ion and a DXDX(T/V) motif. The first Asp of the motif is identified as the nucleophile that is subject to phosphorylation leading to a phosphoryl‐aspartate intermediate. This high‐energy mixed anhydride intermediate is subsequently hydrolyzed to regenerate the enzyme. In the present study, we successfully captured the phosphoryl‐aspartate intermediate in the crystal structure of a Scp1D206A mutant soaked with para‐nitrophenyl phosphate (pNPP), providing strong evidence for the proposed mechanism. Furthermore, steady‐state kinetic analysis of a variety of Scp1 mutants revealed the importance of Asp206 in Mg2+ coordination mediated by a water molecule. Overall, we captured the snapshots of the phosphoryl transfer reaction at each stage of Scp1‐mediated catalysis. Through structural‐based sequence alignment, we show that the spatial position of the D206 side chain is strictly conserved throughout HAD family. Our results strongly suggest that Asp206 and its equivalent residues in other HAD family members play important structural and possible mechanistic roles.  相似文献   

8.
Eps15 homology (EH)‐domain containing proteins are regulators of endocytic membrane trafficking. EH‐domain binding to proteins containing the tripeptide NPF has been well characterized, but recent studies have shown that EH‐domains are also able to interact with ligands containing DPF or GPF motifs. We demonstrate that the three motifs interact in a similar way with the EH‐domain of EHD1, with the NPF motif having the highest affinity due to the presence of an intermolecular hydrogen bond. The weaker affinity for the DPF and GPF motifs suggests that if complex formation occurs in vivo, they may require high ligand concentrations, the presence of successive motifs and/or specific flanking residues.  相似文献   

9.
10.
Annexin A1 has been shown to cause membrane aggregation and fusion, yet the mechanism of these activities is not clearly understood. In this work, molecular dynamics simulations were performed on monomeric annexin A1 positioned between two negatively charged monolayers using AMBER's all atom force field to gain insight into the mechanism of fusion. Each phospolipid monolayer was made up of 180 DOPC molecules and 45 DOPG molecules to achieve a 4:1 ratio. The space between the two monolayers was explicitly solvated using TIP3P waters in a rectilinear box. The constructed setup contained up to 0.14 million atoms. Application of periodic boundary conditions to the simulation setup gave the desired effect of two continuous membrane bilayers. Nonbonded interactions were calculated between the N‐terminal residues and the bottom layer of phospholipids, which displayed a strong attraction of K26 and K29 to the lipid head‐groups. The side‐chains of these two residues were observed to orient themselves in close proximity (~3.5 Å) with the polar head‐groups of the phospholipids. Proteins 2014; 82:2936–2942. © 2014 Wiley Periodicals, Inc.  相似文献   

11.
Toll‐like receptors (TLRs) play a key role in the innate immune system. The TLR7, 8, and 9 compose a family of intracellularly localized TLRs that signal in response to pathogen‐derived nucleic acids. So far, there are no crystallographic structures for TLR7, 8, and 9. For this reason, their ligand‐binding mechanisms are poorly understood. To enable first predictions of the receptor–ligand interaction sites, we developed three‐dimensional structures for the leucine‐rich repeat ectodomains of human TLR7, 8, and 9 based on homology modeling. To achieve a high sequence similarity between targets and templates, structural segments from all known TLR ectodomain structures (human TLR1/2/3/4 and mouse TLR3/4) were used as candidate templates for the modeling. The resulting models support previously reported essential ligand‐binding residues. They also provide a basis to identify three potential receptor dimerization mechanisms. Additionally, potential ligand‐binding residues are identified using combined procedures. We suggest further investigations of these residues through mutation experiments. Our modeling approach can be extended to other members of the TLR family or other repetitive proteins.  相似文献   

12.
WBSCR16 (Williams‐Beuren Syndrome Chromosomal Region 16) gene is located in a large deletion region of Williams‐Beuren syndrome (WBS), which is a neurodevelopmental disorder. Although the relationship between WBSCR16 and WBS remains unclear, it has been reported that WBSCR16 is a member of a functional module that regulates mitochondrial 16S rRNA abundance and intra‐mitochondrial translation. WBSCR16 has RCC1 (Regulator of Chromosome Condensation 1)‐like amino acid sequence repeats but the function of WBSCR16 appears to be different from that of other RCC1 superfamily members. Here, we demonstrate that WBSCR16 localizes to mitochondria in HeLa cells, and report the crystal structure of WBSCR16 determined to 2.0 Å resolution using multi‐wavelength anomalous diffraction. WBSCR16 adopts the seven‐bladed β‐propeller fold characteristic of RCC1‐like proteins. A comparison of the WBSCR16 structure with that of RCC1 and other RCC1‐like proteins reveals that, although many of the residues buried in the core of the β‐propeller are highly conserved, the surface residues are poorly conserved and conformationally divergent.  相似文献   

13.
14.
The present study describes modification of asparagine–glycine–arginine (NGR) peptide at N‐terminally and C‐terminally by introduction of a tridentate chelating scaffold via click chemistry reaction. The N‐terminal and C‐terminal modified peptides were radiometalated with [99mTc(CO)3]+ precursor. The influence of these moieties at the two termini on the targeting properties of NGR peptide was determined by in vitro cell uptake studies and in vivo biodistribution studies. The two radiolabeled constructs did not exhibit any significant variation in uptake in murine melanoma B16F10 cells during in vitro studies. In vivo studies revealed nearly similar tumor uptake of N‐terminally modified peptide construct 5 and C‐terminally construct 6 at 2 h p.i. (1.9 ± 0.1 vs 2.4 ± 0.2% ID/g, respectively). The tumor‐to‐blood (T/B) and tumor‐to‐liver (T/L) ratios of the two radiometalated peptides were also quite similar. The two constructs cleared from all the major organs (heart, lungs, spleen, stomach, and blood) at 4 h p.i. (<1% ID/g). Blocking studies carried out by coinjection of cCNGRC peptide led to approximately 50% reduction in the tumor uptake at 2 h p.i. This work thus illustrates the possibility of convenient modification/radiometalation of NGR peptide at either N‐ or C‐terminus without hampering tumor targeting and pharmacokinetics.  相似文献   

15.
Down syndrome is a common disorder associated with intellectual disability in humans. Among a variety of severe health problems, patients with Down syndrome exhibit disrupted sleep and abnormal 24‐h rest/activity patterns. The transchromosomic mouse model of Down syndrome, Tc1, is a trans‐species mouse model for Down syndrome, carrying most of human chromosome 21 in addition to the normal complement of mouse chromosomes and expresses many of the phenotypes characteristic of Down syndrome. To date, however, sleep and circadian rhythms have not been characterized in Tc1 mice. Using both circadian wheel‐running analysis and video‐based sleep scoring, we showed that these mice exhibited fragmented patterns of sleep‐like behaviour during the light phase of a 12:12‐h light/dark (LD) cycle with an extended period of continuous wakefulness at the beginning of the dark phase. Moreover, an acute light pulse during night‐time was less effective in inducing sleep‐like behaviour in Tc1 animals than in wild‐type controls. In wheel‐running analysis, free running in constant light (LL) or constant darkness (DD) showed no changes in the circadian period of Tc1 animals although they did express subtle behavioural differences including a reduction in total distance travelled on the wheel and differences in the acrophase of activity in LD and in DD. Our data confirm that Tc1 mice express sleep‐related phenotypes that are comparable with those seen in Down syndrome patients with moderate disruptions in rest/activity patterns and hyperactive episodes, while circadian period under constant lighting conditions is essentially unaffected.  相似文献   

16.
17.
In this study, a porcine reproductive and respiratory syndrome virus (PRRSV) that was isolated from a 9‐week‐old diseased pig on a farm in Japan with a high mortality rate during 2007–2008 was characterized. This unique isolate, designated as Jpn5‐37, did not have a high nucleotide identity in open reading frame 5 against any Japanese isolates. Among all available type 2 PRRSV complete genome sequences, Jpn5‐37 shared the highest nucleotide identity (93.6%) with virulent strain MN184A. The genomic characteristics of Jpn5‐37 were highly conserved with respect to the virulent MN184A, including a continuous eight amino acid deletion in the nonstructural protein 2 region. Moreover, virus distribution, viremia and the gross and microscopic characteristics of lesions were investigated in pigs 10 days post‐inoculation to elucidate the pathogenicity of the isolate. Intranasal inoculation was found to rapidly result in viremia and dissemination of the Jpn5‐37 isolate to several tissues in a similar manner to EDRD1; however, the amounts of Jpn5‐37 RNA in serum were significantly greater. Similarly, the quantities of Jpn5‐37 viral RNA in all organs tested tended to be higher than with EDRD1 infection. Mean rectal temperatures were significantly higher in the Jpn5‐37‐inoculated than in the control group at 4 and 6 days post infection (dpi) and in the EDRD1‐inoculated group at 6 and 8 dpi. These results suggest that the Jpn5‐37 strain replicates and is more efficiently distributed to the organs than is EDRD1 under the same conditions.  相似文献   

18.
19.
Multiple MD simulations were performed for the full‐length wild‐type A1, the full length A1 mutations S27E and S27A, as well as the N‐terminal peptide (AMVSEFLKQAWFIDNEEQEYIKTVKG S 27 KGGPGSAVSPYPTFN) of wild‐type A1 and mutations S27E and S27A. The MD simulation trajectories of about 350 ns were generated and analyzed to examine the changes of core domain calcium binding affinity, core domain and N‐terminal domain structures, and N‐terminal domain orientation. Our results indicated that S27A and S27E mutations caused little changes on the calcium‐binding affinity of the core domain of A1. However, the S27A mutation made the N‐terminal domain of A1 less helical, and made the N‐terminal domain migrate faster toward the core domain; these impacts on A1 are beneficial to the membrane aggregation process. On the contrary, the S27E mutation made the N‐terminal domain of A1 more stable, and hindered the migration to the core domain; these changes on A1 are antagonistic for the membrane aggregation process. Our results using MD simulations provide an atomistic explanation for experimental observations that the S27E mutant showed a higher calcium concentration requirement and lower maximal extent of aggregation, while the wild‐type and two mutants S27E and S27A required identical calcium concentrations for liposome binding. Proteins 2014; 82:3327–3334. © 2014 Wiley Periodicals, Inc.  相似文献   

20.
Glucagon‐like peptide‐1 (GLP‐1)‐based therapies are currently available for the treatment of type 2 diabetes, based on their actions on pancreatic β cells. GLP‐1 is also known to exert neuroprotective actions. To determine its mechanism of action, we developed a neuron‐rich cell culture system by differentiating human neuroprogenitor cells in the presence of a combination of neurotrophins and retinoic acid. The neuronal nature of these cells was characterized by neurogenesis pathway‐specific array. GLP‐1 receptor expression was seen mainly in the neuronal population. Culture of neurons in the presence of Aβ oligomers resulted in the induction of apoptosis as shown by the activation of caspase‐3 and caspase‐6. Exendin‐4, a long‐acting analog of GLP‐1, protected the neurons from apoptosis induced by Aβ oligomers. Exendin‐4 stimulated cyclic AMP response element binding protein phosphorylation, a regulatory step in its activation. A transient transfection assay showed induction of a reporter linked to CRE site‐containing human brain‐derived neurotrophic factor promoter IV, by the growth factor through multiple signaling pathways. The anti‐apoptotic action of exendin‐4 was lost following down‐regulation of cAMP response element binding protein. Withdrawal of neurotrophins resulted in the loss of neuronal phenotype of differentiated neuroprogenitor cells, which was prevented by incubation in the presence of exendin‐4. Diabetes is a risk factor in the pathogenesis of Alzheimer's disease. Our findings suggest that GLP‐1‐based therapies can decrease the incidence of Alzheimer's disease among aging diabetic population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号