首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We provide theoretical tests of a novel experimental technique to determine mechanostability of proteins based on stretching a mechanically protected protein by single‐molecule force spectroscopy. This technique involves stretching a homogeneous or heterogeneous chain of reference proteins (single‐molecule markers) in which one of them acts as host to the guest protein under study. The guest protein is grafted into the host through genetic engineering. It is expected that unraveling of the host precedes the unraveling of the guest removing ambiguities in the reading of the force‐extension patterns of the guest protein. We study examples of such systems within a coarse‐grained structure‐based model. We consider systems with various ratios of mechanostability for the host and guest molecules and compare them to experimental results involving cohesin I as the guest molecule. For a comparison, we also study the force‐displacement patterns in proteins that are linked in a serial fashion. We find that the mechanostability of the guest is similar to that of the isolated or serially linked protein. We also demonstrate that the ideal configuration of this strategy would be one in which the host is much more mechanostable than the single‐molecule markers. We finally show that it is troublesome to use the highly stable cystine knot proteins as a host to graft a guest in stretching studies because this would involve a cleaving procedure. Proteins 2014; 82:717–726. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
  1. Download : Download high-res image (241KB)
  2. Download : Download full-size image
  相似文献   

3.
Anna Alemany  Felix Ritort 《Biopolymers》2014,101(12):1193-1199
The characterization of elastic properties of biopolymers is crucial to understand many molecular reactions determined by conformational bending fluctuations of the polymer. Direct measurement of such elastic properties using single‐molecule methods is usually hindered by the intrinsic tendency of such biopolymers to form high‐order molecular structures. For example, single‐stranded deoxyribonucleic acids (ssDNA) tend to form secondary structures such as local double helices that prevent the direct measurement of the ideal elastic response of the ssDNA. In this work, we show how to extract the ideal elastic response in the entropic regime of short ssDNA molecules by mechanically pulling two‐state DNA hairpins of different contour lengths. This is achieved by measuring the force dependence of the molecular extension and stiffness on mechanically folding and unfolding the DNA hairpin. Both quantities are fit to the worm‐like chain elastic model giving values for the persistence length and the interphosphate distance. This method can be used to unravel the elastic properties of short ssDNA and RNA sequences and, more generally, any biopolymer that can exhibit a cooperative two‐state transition between mechanically folded and unfolded states (such as proteins). © 2014 Wiley Periodicals, Inc. Biopolymers 101: 1193–1199, 2014.  相似文献   

4.
Sikora M  Cieplak M 《Proteins》2011,79(6):1786-1799
We estimate the size of mechanostability for 318 multidomain proteins which are single-chain and contain up to 1021 amino acids. We predict existence of novel types of mechanical clamps in which interdomain contacts play an essential role. Mechanical clamps are structural regions which are the primary source of a protein's resistance to pulling. Among these clamps there is one that opposes tensile stress due to two domains swinging apart. This movement strains and then ruptures the contacts that hold the two domains together. Another clamp also involves tensile stress but it originates from an immobilization of a structural region by a surrounding knot-loop (without involving any disulfide bonds). Still another mechanism involves shear between helical regions belonging to two domains. We also consider the amyloid-prone cystatin C which provides an example of a two-chain 3D domain-swapped protein. We predict that this protein should withstand remarkably large stress, perhaps of order 800 pN, when inducing a shearing strain. The survey is generated through molecular dynamics simulations performed within a structure-based coarse grained model.  相似文献   

5.
Theoretical exploration of fundamental biological processes involving the forced unraveling of multimeric proteins, the sliding motion in protein fibers and the mechanical deformation of biomolecular assemblies under physiological force loads is challenging even for distributed computing systems. Using a Cα‐based coarse‐grained self organized polymer (SOP) model, we implemented the Langevin simulations of proteins on graphics processing units (SOP‐GPU program). We assessed the computational performance of an end‐to‐end application of the program, where all the steps of the algorithm are running on a GPU, by profiling the simulation time and memory usage for a number of test systems. The ~90‐fold computational speedup on a GPU, compared with an optimized central processing unit program, enabled us to follow the dynamics in the centisecond timescale, and to obtain the force‐extension profiles using experimental pulling speeds (vf = 1–10 μm/s) employed in atomic force microscopy and in optical tweezers‐based dynamic force spectroscopy. We found that the mechanical molecular response critically depends on the conditions of force application and that the kinetics and pathways for unfolding change drastically even upon a modest 10‐fold increase in vf. This implies that, to resolve accurately the free energy landscape and to relate the results of single‐molecule experiments in vitro and in silico, molecular simulations should be carried out under the experimentally relevant force loads. This can be accomplished in reasonable wall‐clock time for biomolecules of size as large as 105 residues using the SOP‐GPU package. Proteins 2010; © 2010 Wiley‐Liss, Inc.  相似文献   

6.
MPT63, a major secreted protein from Mycobacterium tuberculosis, has been shown to have immunogenic properties and has been implicated in virulence. MPT63 is a β‐sandwich protein containing 11 β strands and a very short stretch of 310 helix. The detailed experimental and computational study reported here investigates the equilibrium unfolding transition of MPT63. It is shown that in spite of being a complete β‐sheet protein, MPT63 has a strong propensity toward helix structures in its early intermediates. Far UV‐CD and FTIR spectra clearly suggest that the low‐pH intermediate of MTP63 has enhanced helical content, while fluorescence correlation spectroscopy suggests a significant contraction. Molecular dynamics simulation complements the experimental results indicating that the unfolded state of MPT63 traverses through intermediate forms with increased helical characteristics. It is found that this early intermediate contains exposed hydrophobic surface, and is aggregation prone. Although MPT63 is a complete β‐sheet protein in its native form, the present findings suggest that the secondary structure preferences of the local interactions in early folding pathway may not always follow the native conformation. Furthermore, the Gly25Ala mutant supports the proposed hypothesis by increasing the non‐native helical propensity of the protein structure.  相似文献   

7.
Cieplak M  Hoang TX  Robbins MO 《Proteins》2002,49(1):104-113
Mechanical stretching of secondary structures is studied through molecular dynamics simulations of a Go-like model. Force versus displacement curves are studied as a function of the stiffness and velocity of the pulling device. The succession of stretching events, as measured by the order in which contacts are ruptured, is compared to the sequencing of events during thermal folding and unfolding. Opposite cross-correlations are found for an alpha-helix and a beta-hairpin structure. In a tandem of two alpha-helices, the two constituent helices unravel nearly simultaneously. A simple condition for simultaneous versus sequential unraveling of repeat units is presented.  相似文献   

8.
The specific interaction between human Toll-like receptor 9 (TLR9)-ectodomain (ECD)-fusion protein and immunostimulatory CpG-DNA was measured using force spectroscopy. Flexible tethers were used between receptors and surface as well as between DNA and atomic force microscope tip to make efficient recognition studies possible. The molecular recognition forces detected are in the range of 50 to 150 ± 20 pN at the used force-loading rates, and the molecular interaction probability was much reduced when the receptors were blocked with free CpG-DNA. A linear increase of the unbinding force with the logarithm of the loading rate was found over the range 0.1 to 30 nN/s. This indicates a single potential barrier characterizing the energy landscape and no intermediate state for the unbinding pathway of CpG-DNA from the TLR9-ECD. Two important kinetic parameters for CpG-DNA interaction with TLR9-ECD were determined from the force-loading rate dependency: an off-rate of k(off) = 0.14 ± 0.10 s(-1) and a binding interaction length of x(β) = 0.30 ± 0.03 nm, which are consistent with literature values. Various models for the molecular interaction of this innate immune receptor binding to CpG-DNA are discussed.  相似文献   

9.
Tenascin‐X (TNX) is an extracellular matrix (ECM) protein and interacts with a wide variety of molecules in the ECM as well as on the membrane. Deficiency of TNX causes a recessive form of Ehlers–Danlos syndrome (EDS) characterized by hyperelastic and fragile skin, easy bruising, and hypermobile joints. Three point mutations in TNX gene were found to be associated with hypermobility type EDS and one of such mutations is the V1195M mutation at the 7th fibronectin Type III domain (TNXfn7). To help elucidate the underlying molecular mechanism connecting this mutation to EDS, here we combined homology modeling, chemical denaturation, single molecule atomic force microscopy, and molecular dynamics (MD) simulation techniques to investigate the phenotypic effects of V1195M on TNXfn7. We found that the V1195M mutation does not alter the three‐dimensional structure of TNXfn7 and had only mild destabilization effects on the thermodynamic and mechanical stability of TNXfn7. However, MD simulations revealed that the mutation V1195M significantly alters the flexibility of the C′E loop of TNXfn7. As loops play important roles in protein–protein and protein–ligand interactions, we hypothesize that the decreased loop flexibility by V1195M mutation may affect the binding of TNX to ECM molecules and thus adversely affect collagen deposition and fibrillogenesis. Our results may provide new insights in understanding the molecular basis for the pathogenesis of V1195M‐resulted EDS.  相似文献   

10.
Alzheimer's, Parkinson's, and Creutzfeldt-Jakob's neurodegenerative diseases are all linked with the assembly of normally soluble proteins into amyloid fibrils. Because of experimental limitations, structural characterization of the soluble oligomers, which form early in the process of fibrillogenesis and are cytotoxic, remains to be determined. In this article, we study the aggregation paths of seven chains of the shortest amyloid-forming peptide, using an activitated method and a reduced atomic representation. Our simulations show that disordered KFFE monomers ultimately form three distinct topologies of similar energy: amorphous oligomers, incomplete rings with beta-barrel character, and cross-beta-sheet structures with the meridional but not the equatorial X-ray fiber reflections. The simulations also shed light on the pathways from misfolded aggregates to fibrillar-like structures. They also underline the multiplicity of building blocks that can lead to the formation of the critical nucleus from which rapid growth of the fibril occurs.  相似文献   

11.
Increasing knowledge on the understanding interactions of aptamer with misfolded proteins (including monomer, oligomer, and amyloid fibril) is crucial for development of aggregation inhibitors and diagnosis of amyloid diseases. Herein, the interactions of lysozyme monomer–, oligomer‐, and amyloid fibril–aptamer were investigated using single‐molecule force spectroscopy. The results revealed that the aptamer screened against lysozyme monomer could also bind to oligomer and amyloid fibril, in spite of the recognition at a lower binding probability. It may be attributed to the inherent structural differences of misfolded proteins and the flexible conformation of aptamer. In addition, dynamic force spectra showed that there were similar dissociation paths in the dissociation process of lysozyme monomer–, oligomer‐, and amyloid fibril–aptamer complexes. It showed that the dissociation only passed 1 energy barrier from the binding state to the detachment. However, the dynamic parameters suggested that the oligomer‐ and amyloid fibril–aptamer were more stable than lysozyme monomer–aptamer. The phenomena may result from the exposure of aptamer‐recognized sequences on the surface and the electrostatic interactions. This work demonstrated that single‐molecule force spectroscopy could be a powerful tool to study the binding behavior of the aptamer with misfolded proteins at single‐molecule level, providing abundant information for researches and comprehensive applications of aptamer probes in diagnosis of amyloid diseases.  相似文献   

12.
13.
Combining single molecule atomic force microscopy (AFM) and protein engineering techniques, here we demonstrate that we can use recombination-based techniques to engineer novel elastomeric proteins by recombining protein fragments from structurally homologous parent proteins. Using I27 and I32 domains from the muscle protein titin as parent template proteins, we systematically shuffled the secondary structural elements of the two parent proteins and engineered 13 hybrid daughter proteins. Although I27 and I32 are highly homologous, and homology modeling predicted that the hybrid daughter proteins fold into structures that are similar to that of parent protein, we found that only eight of the 13 daughter proteins showed beta-sheet dominated structures that are similar to parent proteins, and the other five recombined proteins showed signatures of the formation of significant alpha-helical or random coil-like structure. Single molecule AFM revealed that six recombined daughter proteins are mechanically stable and exhibit mechanical properties that are different from the parent proteins. In contrast, another four of the hybrid proteins were found to be mechanically labile and unfold at forces that are lower than the approximately 20 pN, as we could not detect any unfolding force peaks. The last three hybrid proteins showed interesting duality in their mechanical unfolding behaviors. These results demonstrate the great potential of using recombination-based approaches to engineer novel elastomeric protein domains of diverse mechanical properties. Moreover, our results also revealed the challenges and complexity of developing a recombination-based approach into a laboratory-based directed evolution approach to engineer novel elastomeric proteins.  相似文献   

14.
Tobi D  Bahar I 《Proteins》2006,62(4):970-981
Protein-protein docking is a challenging computational problem in functional genomics, particularly when one or both proteins undergo conformational change(s) upon binding. The major challenge is to define scoring function soft enough to tolerate these changes and specific enough to distinguish between near-native and "misdocked" conformations. Using a linear programming technique, we derived protein docking potentials (PDPs) that comply with this requirement. We considered a set of 63 nonredundant complexes to this aim, and generated 400,000 putative docked complexes (decoys) based on shape complementarity criterion for each complex. The PDPs were required to yield for the native (correctly docked) structure a potential energy lower than those of all the nonnative (misdocked) structures. The energy constraints applied to all complexes led to ca. 25 million inequalities, the simultaneous solution of which yielded an optimal set of PDPs that discriminated the correctly docked (up to 4.0 A root-mean-square deviation from known complex structure) structure among the 85 top-ranking (0.02%) decoys in 59/63 examined bound-bound cases. The high performance of the potentials was further verified in jackknife tests and by ranking putative docked conformation submitted to CAPRI. In addition to their utility in identifying correctly folded complexes, the PDPs reveal biologically meaningful features that distinguish docking potentials from folding potentials.  相似文献   

15.
Ganguly D  Chen J 《Proteins》2011,79(4):1251-1266
Coupled binding and folding is frequently involved in specific recognition of so-called intrinsically disordered proteins (IDPs), a newly recognized class of proteins that rely on a lack of stable tertiary fold for function. Here, we exploit topology-based Gō-like modeling as an effective tool for the mechanism of IDP recognition within the theoretical framework of minimally frustrated energy landscape. Importantly, substantial differences exist between IDPs and globular proteins in both amino acid sequence and binding interface characteristics. We demonstrate that established Gō-like models designed for folded proteins tend to over-estimate the level of residual structures in unbound IDPs, whereas under-estimating the strength of intermolecular interactions. Such systematic biases have important consequences in the predicted mechanism of interaction. A strategy is proposed to recalibrate topology-derived models to balance intrinsic folding propensities and intermolecular interactions, based on experimental knowledge of the overall residual structure level and binding affinity. Applied to pKID/KIX, the calibrated Gō-like model predicts a dominant multistep sequential pathway for binding-induced folding of pKID that is initiated by KIX binding via the C-terminus in disordered conformations, followed by binding and folding of the rest of C-terminal helix and finally the N-terminal helix. This novel mechanism is consistent with key observations derived from a recent NMR titration and relaxation dispersion study and provides a molecular-level interpretation of kinetic rates derived from dispersion curve analysis. These case studies provide important insight into the applicability and potential pitfalls of topology-based modeling for studying IDP folding and interaction in general.  相似文献   

16.
Wenjun Zheng 《Proteins》2014,82(7):1376-1386
The SNARE complex, consisting of three proteins (VAMP2, syntaxin, and SNAP‐25), is thought to drive membrane fusion by assembling into a four‐helix bundle through a zippering process. In support of the above zippering model, a recent single‐molecule optical tweezers experiment by Gao et al. revealed a sequential unzipping of SNARE along VAMP2 in the order of the linker domain → the C‐terminal domain → the N‐terminal domain. To offer detailed structural insights to this unzipping process, we have performed all‐atom and coarse‐grained steered molecular dynamics (sMD) simulations of the forced unfolding pathways of SNARE using different models and force fields. Our findings are summarized as follows: First, the sMD simulations based on either an all‐atom force field (with an implicit solvent model) or a coarse‐grained Go model were unable to capture the forced unfolding pathway of SNARE as observed by Gao et al., which may be attributed to insufficient simulation time and inaccurate force fields. Second, the sMD simulations based on a reparameterized coarse‐grained model (i.e., modified elastic network model) were able to predict a sequential unzipping of SNARE in good agreement with the findings by Gao et al. The key to this success is to reparameterize the intrahelix and interhelix nonbonded force constants against the pair‐wise residue–residue distance fluctuations collected from all‐atom MD simulations of SNARE. Therefore, our finding supports the importance of accurately describing the inherent dynamics/flexibility of SNARE (in the absence of force), in order to correctly simulate its unfolding behaviors under force. This study has established a useful computational framework for future studies of the zippering function of SNARE and its perturbations by point mutations with amino‐acid level of details, and more generally the forced unfolding pathways of other helix bundle proteins. Proteins 2014; 82:1376–1386. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
The immobilization strategy of cell‐specific aptamers is of great importance for studying the interaction between a cell and its aptamer. However, because of the difficulty of studying living cell, there have not been any systematic reports about the effect of immobilization strategies on the binding ability of an immobilized aptamer to its target cell. Because atomic force spectroscopy (AFM) could not only be suitable for the investigation of living cell under physiological conditions but also obtains information reflecting the intrinsic properties of individuals, the effect of immobilization strategies on the interaction of aptamer/human hepatocarcinoma cell Bel‐7404 was successively evaluated using AFM here. Two different immobilization methods, including polyethylene glycol immobilization method and glutaraldehyde immobilization method were used, and the factors, such as aptamer orientation, oligodeoxythymidine spacers and dodecyl spacers, were investigated. Binding events measured by AFM showed that a similar unbinding force was obtained regardless of the change of the aptamer orientation, the immobilization method, and spacers, implying that the biophysical characteristics of the aptamer at the molecular level remain undisturbed. However, it showed that the immobilization orientation, immobilization method, and spacers could alter the binding probability of aptamer/Bel‐7404 cell. Presumably, these factors may affect the accessibility of the aptamer toward its target cell. These results may provide valuable information for aptamer sensor platforms including ultrasensitive biosensor design. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Bacteriophage T4 gene 32 protein (gp32) is a well-studied representative of the large family of single-stranded DNA (ssDNA) binding proteins, which are essential for DNA replication, recombination and repair. Surprisingly, gp32 has not previously been observed to melt natural dsDNA. At the same time, *I, a truncated version of gp32 lacking its C-terminal domain (CTD), was shown to decrease the melting temperature of natural DNA by about 50 deg. C. This profound difference in the duplex destabilizing ability of gp32 and *I is especially puzzling given that the previously measured binding of both proteins to ssDNA was similar. Here, we resolve this apparent contradiction by studying the effect of gp32 and *I on the thermodynamics and kinetics of duplex DNA melting. We use a previously developed single molecule technique for measuring the non-cooperative association constants (K(ds)) to double-stranded DNA to determine K(ds) as a function of salt concentration for gp32 and *I. We then develop a new single molecule method for measuring K(ss), the association constant of these proteins to ssDNA. Comparing our measured binding constants to ssDNA for gp32 and *I we see that while they are very similar in high salt, they strongly diverge at [Na+] < 0.2 M. These results suggest that intact protein must undergo a conformational rearrangement involving the CTD that is in pre-equilibrium to its non-cooperative binding to both dsDNA and ssDNA. This lowers the effective concentration of protein available for binding, which in turn lowers the rate at which it can destabilize dsDNA. For the first time, we quantify the free energy of this CTD unfolding, and show it to be strongly salt dependent and associated with sodium counter-ion condensation on the CTD.  相似文献   

19.
One of the multitasking proteins, transactive response DNA-binding protein 43 (tdp43) plays a key role in RNA regulation and the two pathogenic mutations such as D169G and K263E, located at the RNA Recognition Motif (RRM) of tdp43, are reported to cause neurological disorders such as Amyotrophic Lateral Sclerosis and FrontoTemporal Lobar Degeneration. As the exploration of the proteinopathy demands both structural and functional characterizations of mutants, a comparative analysis on the wild type and mutant tdp43 (D169G and K263E) and their complexes with RNA has been performed using computational approaches. Molecular dynamics simulations revealed comparatively stable mutant structures compared to wild type tdp43. Both mutants show lesser binding affinity toward RNA molecule when compared to the wild type tdp43. Some of the observed features, including the increased solvent-accessible surface area, conformational flexibility as well as unfolding of tdp43, and the altered RNA conformation in tp43-RNA complex, reveal the susceptibility of these mutants to induce conformational changes in tdp43 for a possible aggregation in the cytoplasm. Particularly, the enhanced aggregation propensity of both mutants also evidences the higher probability of cytoplasmic aggregation of tdp43 mutants. Hence, the present analysis highlighting the structural and functional aspects of wild and mutant tdp43 will form the basis to gain insight into the proteinopathy of tdp43 and the related structure-based drug discovery. Thus, tdp43 can be used as target to develop novel therapeutic approaches or drug designing.  相似文献   

20.
Maisuradze GG  Leitner DM 《Proteins》2007,67(3):569-578
Dihedral principal component analysis (dPCA) has recently been developed and shown to display complex features of the free energy landscape of a biomolecule that may be absent in the free energy landscape plotted in principal component space due to mixing of internal and overall rotational motion that can occur in principal component analysis (PCA) [Mu et al., Proteins: Struct Funct Bioinfo 2005;58:45-52]. Another difficulty in the implementation of PCA is sampling convergence, which we address here for both dPCA and PCA using a tetrapeptide as an example. We find that for both methods the sampling convergence can be reached over a similar time. Minima in the free energy landscape in the space of the two largest dihedral principal components often correspond to unique structures, though we also find some distinct minima to correspond to the same structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号