首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
P2X7 receptors (P2X7R) are extracellular ATP‐gated ion channels expressed in the immune effector cells that carry out critical protective responses during the early phases of microbial infection or acute tissue trauma. P2X7R‐positive cells include monocytes, macrophages, dendritic cells and T cells. Given its presence in all host and pathogen cell types, ATP can be readily released into extracellular compartments at local sites of tissue damage and microbial invasion. Thus, extracellular ATP and its target receptors on host effector cells can be considered as additional elements of the innate immune system. In this regard, stimulation of P2X7R rapidly triggers a key step of the inflammatory response: induction of NLRP3/caspase‐1 inflammasome signalling complexes that drive the proteolytic maturation and secretion of the proinflammatory cytokines interleukin‐1β (IL‐1β) and interleukin‐18 (IL‐18). IL‐1β (and IL‐18) lacks a signal sequence for compartmentation within the Golgi and classical secretory vesicles and the proIL‐1β precursor accumulates within the cytosol following translation on free ribosomes. Thus, ATP‐induced accumulation of the mature IL‐1β cytokine within extracellular compartments requires non‐classical mechanisms of export from the cytosolic compartment. Five proposed mechanisms include: (i) exocytosis of secretory lysosomes that accumulate cytosolic IL‐1β via undefined protein transporters; (ii) release of membrane‐delimited microvesicles derived from plasma membrane blebs formed by evaginationsof the surface membrane that entrap cytosolic IL‐β; (iii) release of membrane‐delimited exosomes secondary to the exocytosis of multivesicular bodies formed by invaginations of recycling endosomes that entrap cytosolic IL‐β; (iv) exocytosis of autophagosomes or autophagolysosomes that accumulate cytosolic IL‐1β via entrapment during formation of the initial autophagic isolation membrane or omegasome and (v) direct release of cytosolic IL‐1β secondary to regulated cell death by pyroptosis or necroptosis. These mechanisms are not mutually exclusive and may represent engagement of parallel or intersecting membrane trafficking responses to P2X7R activation.  相似文献   

3.
The study of the human response to injury has been hampered by the inherent heterogeneity in the models and methods used. By studying a standard injury longitudinally, using individual patient‐level analysis, we endeavoured to better describe its dynamics. We analysed clinical variables, clinical laboratory and plasma cytokines from 20 patients at five time points. Clustering analysis showed two prototype patterns of cytokine behaviour: a concordant type, where cytokines behave the same way for all patients (notably IL‐0 and TNFα), and a variable type, where different patterns of expression are seen for different patients (notably IL‐8, IL‐6 and IL‐1RA). Analysis of the cytokines at the individual patient‐level showed a strong four‐way correlation between IL‐1RA, GCSF, MIP‐1β and MCP‐1. As it holds for most patients and not just on average, this suggests that they form a network which may play a central role in the response to gastro‐intestinal injuries in humans. In conclusion, the longitudinal analysis of cytokines in a standard model allowed the identification of their underlying patterns of expression. We propose that the two prototype patterns shown may reflect the mechanism that separates the common and individual aspects of the injury response.  相似文献   

4.
Microglia rapidly respond to CNS injury yet the mechanisms leading to their activation and inactivation remain poorly defined. In particular, few studies have established how interactions among inflammatory mediators affect the innate immune response of microglia. To begin to understand the hierarchy of cytokine signalling we examined the effects of several cytokines on purified newborn and adult rat microglia in vitro, and we have examined the microglial response to injury in mice deficient in the IL‐1 type 1 receptor (IL‐1R1). Using several indices of activation, we find that IL‐1β, TNF‐α, and IL‐6 are potent microglial activators. By contrast, TGF‐β1 did not activate the cells and when TGFβ1 was administered prior to IL‐1β, it blocked the effects of IL‐1β. However, TGFβ1 was ineffective in antagonizing IL‐6. In null mice lacking the IL‐1R1, microglia inefficiently responded to injury, and IL‐6 induction was severely curtailed. These data establish a model of hierarchical signalling, whereby constitutive expression of TGF‐β1 in the CNS maintains microglia in a resting state. IL‐1, while an important microglial activator, is modifiable, whereas, the downstream cytokine, IL‐6, is a strong stimulus that is unaffected by other modifiers of the innate immune response. Acknowledgements: Supported by NMSS award #RG 3837.  相似文献   

5.
Interleukin (IL)‐27 is a member of IL‐6/IL‐12 family cytokines produced by antigen‐presenting cells in immune responses. IL‐27 can drive the commitment of naive T cells to a T helper type 1 (Th1) phenotype and inhibit inflammation in later phases of infection. Human bronchial epithelial cells have been shown to express IL‐27 receptor complex. In this study, we investigated the in vitro effects of IL‐27, alone or in combination with inflammatory cytokine tumor necrosis factor (TNF)‐α on the pro‐inflammatory activation of human primary bronchial epithelial cells and the underlying intracellular signaling mechanisms. IL‐27 was found to enhance intercellular adhesion molecule 1 (ICAM‐1) expression on the surface of human bronchial epithelial cells, and a synergistic effect was observed in the combined treatment of IL‐27 and TNF‐α on the expression of ICAM‐1. Although IL‐27 did not alter the basal IL‐6 secretion from bronchial epithelial cells, it could significantly augment TNF‐α‐induced IL‐6 release. These synergistic effects on the up‐regulation of ICAM‐1 and IL‐6 were partially due to the elevated expression of TNF‐α receptor (p55TNFR) induced by IL‐27. Further investigations showed that the elevation of ICAM‐1 and IL‐6 in human bronchial epithelial cells stimulated by IL‐27 and TNF‐α was differentially regulated by phosphatidylinositol 3‐OH kinase (PI3K)‐Akt, p38 mitogen‐activated protein kinase, and nuclear factor‐κB pathways. Our results therefore provide a new insight into the molecular mechanisms involved in airway inflammation. J. Cell. Physiol. 223:788–797, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
hUCB‐MSC (human umbilical cord blood‐derived mesenchymal stem cells) offer an attractive alternative to bone marrow‐derived MSC for cell‐based therapy by being less invasive a source of biological material. We have evaluated the effect of hUCB‐MSC on the proliferation of K562 (an erythromyeloblastoid cell line) and the cytokine secretion pattern of hUCB‐MSC. Co‐culturing of hUCB‐MSC and K562 resulted in inhibition of proliferation of K562 in a dose‐dependent manner. However, the anti‐proliferative effect was reduced in transwells, suggesting the importance of direct cell‐to‐cell contact. hUCB‐MSC inhibited proliferation of K562, arresting them in the G0/G1 phase. NO (nitric oxide) was not involved in the hUCB‐MSC‐mediated tumour suppression. The presence of IL‐6 (interleukin 6) and IL‐8 were obvious in the hUCB‐MSC conditioned media, but no significant increase was found in 29 other cytokines. Th1 cytokines, IFNα (interferon α), Th2 cytokine IL‐4 and Th17 cytokine, IL‐17 were not secreted by hUCB‐MSC. There was an increase in the number of hUCB‐MSC expressing the latent membrane‐bound form of TGFβ1 co‐cultured with K562. The anti‐proliferative effect of hUCB‐MSC was due to arrest of the growth of K562 in the G0/G1 phase. The mechanisms underlying increased IL‐6 and IL‐8 secretion and LAP (latency‐associated peptide; TGFβ1) by hUCB‐MSC remains unknown.  相似文献   

7.
Polycystic ovary syndrome (PCOS) is the most common hormonal imbalance disease in reproductive‐aged women. Its basic characteristics are ovulatory dysfunction and ovarian overproduction of androgens that lead to severe symptoms such as insulin resistance, hirsutism, infertility, and acne. Notwithstanding the disease burden, its underlying mechanisms remain unknown, and no causal therapeutic exists. In recent years, further studies showed that inflammation processes are involved in ovulation and play a key role in ovarian follicular dynamics. Visceral adipose tissue can cause inflammatory response and maintenance of the inflammation state in adipocytes by augmented production of inflammatory cytokines, monocyte chemoattractant proteins, and recruitment of the immune cell. Therefore, the PCOS can be related to a low‐grade inflammation state and inflammatory markers. Investigating the inflammatory processes and mediators that contribute to the commencement and development of PCOS can be a critical step for better understanding the pathophysiology of the disease and its treatment through inhibition or control of related pathways. In the present review, we discuss the pathophysiological roles of chronic low‐grade inflammation mediators including inflammasome‐related cytokines, interleukin‐1β (IL‐1β), and IL‐18 in PCOS development.  相似文献   

8.
Withangulatin A (WA), an active component isolated from Physalis angulata L., has been reported to possess anti‐tumor and trypanocidal activities in model systems via multiple biochemical mechanisms. The aim of this study is to investigate its anti‐inflammatory potential and the possible underlying mechanisms. In the current study, WA significantly suppressed mice T lymphocytes proliferation stimulated with LPS in a dose‐ and time‐dependent manner and inhibited pro‐inflammation cytokines (IL‐2, IFN‐γ, and IL‐6) dramatically. Moreover, WA targeted inhibited COX‐2 expression mediated by MAPKs and NF‐κB nuclear translocation pathways in mice T lymphocytes, and this result was further confirmed by the COX‐1/2 luciferase reporter assay. Intriguingly, administration of WA inhibited the extent of mice ear swelling and decreased pro‐inflammatory cytokines production in mice blood serum. Based on these evidences, WA influences the mice T lymphocytes function through targeted inhibiting COX‐2 expression via MAPKs and NF‐κB nuclear translocation signaling pathways, and this would make WA a strong candidate for further study as an anti‐inflammatory agent. J. Cell. Biochem. 109: 532–541, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
An alarming global rise in the prevalence of obesity and its contribution to the development of chronic diseases is a serious health concern. Recently, obesity has been described as a chronic low‐grade inflammatory condition, influenced by both adipose tissue and immune cells suggesting proinflammatory cytokines may play a role in its etiology. Here we examined the effects of interleukin‐15 (IL‐15) on adipose tissue and its association with obesity. Over expression of IL‐15 (IL‐15tg) was associated with lean body condition whereas lack of IL‐15 (IL‐15?/?) results in significant increase in weight gain without altering appetite. Interestingly, there were no differences in proinflammatory cytokines such as IL‐6 and tumor necrosis factor‐α (TNF‐α) in serum between the three strains of mice. In addition, there were significant numbers of natural killer (NK) cells in fat tissues from IL‐15tg and B6 compared to IL‐15?/? mice. IL‐15 treatment results in significant weight loss in IL‐15?/? knockout and diet‐induced obese mice independent of food intake. Fat pad cross‐sections show decreased pad size with over expression of IL‐15 is due to adipocyte shrinkage. IL‐15 induces weight loss without altering food consumption by affecting lipid deposition in adipocytes. Treatment of differentiated human adipocytes with recombinant human IL‐15 protein resulted in decreased lipid deposition. In addition, obese patients had significantly lower serum IL‐15 levels when compared to normal weight individuals. These results clearly suggest that IL‐15 may be involved in adipose tissue regulation and linked to obesity.  相似文献   

10.
SUMMARY Evolutionary studies on different classes of vertebrates could help clarify the role of cytokines in acceptance of the embryo by the maternal tissues. This review focuses on the cytokine interleukin‐1 (IL‐1) and reports on its presence in the female reproductive tract of species with different reproductive strategies, that is, viviparity, oviparity, and ovuliparity. Unlike oviparity and viviparity, ovuliparity does not involve any contact between paternal‐derived fetal antigens and maternal tissues, because eggs are released unfertilized in the external environment. Therefore, we consider ovuliparity a natural negative control for mechanisms of materno‐fetal immunotolerance. The goal of this review is to discuss the role of the IL‐1 system in the acquisition of the ability to retain the embryo in the female genital tract during the transition from ovuliparity to viviparity.  相似文献   

11.
This study was to explore a potential role of epithelium‐derived cytokines in Th17 differentiation. Th17 induction was evaluated by murine CD4+ T cells treated with different combinations of five inducing cytokines, or conditioned media of human corneal epithelial cells (HCECs) exposed to a variety of stimuli. Th17 differentiation was determined by measuring Th17 associated molecules, IL‐17A, IL‐17F, IL‐22, CCL‐20, and STAT3 at mRNA and protein levels, and numbers of IL‐17‐producing T cells by real‐time PCR, and cytokine immunobead and ELISPOT assays, respectively. IL‐23 was the strongest inducer for expanding Th17 cells in the presence of TGF‐β1 + IL‐6; and IL‐1β was the strongest Th17 amplifier in the presence of TGF‐β1 + IL‐6 + IL‐23. These inducing cytokines were found to be significantly stimulated in HCECs challenged by hyperosmotic media (450 mOsM), microbial components (polyI:C, flagellin, R837, and other TLR ligands) and TNF‐α. Interestingly, when incubated with conditioned media of HCECs irritated by polyI:C or TNF‐α, CD4+ T cells displayed increased mRNA levels of IL‐17A, IL‐17F, IL‐22, CCL‐20, and STAT3, increased IL‐17 protein in the supernatant, and increased numbers of IL‐17‐producing T cells (Th17 cells). These findings demonstrate for the first time that Th17 differentiation can be promoted by cytokines produced by corneal epithelium that are exposed to hyperosmotic, microbial, and inflammatory stimuli. J. Cell. Physiol. 222:95–102, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
Following myocardial infarction, tissue repair is mediated by the recruitment of monocytes and their subsequent differentiation into macrophages. Recent findings have revealed the dynamic changes in the presence of polarized macrophages with pro‐inflammatory (M1) and anti‐inflammatory (M2) properties during the early (acute) and late (chronic) stages of cardiac ischemia. Mesenchymal stem cells (MSCs) delivered into the injured myocardium as reparative cells are subjected to the effects of polarized macrophages and the inflammatory milieu. The present study investigated how cytokines and polarized macrophages associated with pro‐inflammatory (M1) and anti‐inflammatory (M2) responses affect the survival of MSCs. Human MSCs were studied using an in vitro platform with individual and combined M1 and M2 cytokines: IL‐1β, IL‐6, TNF‐α, and IFN‐γ (for M1), and IL‐10, TGF‐β1, TGF‐β3, and VEGF (for M2). In addition, polarization molecules (M1: LPS and IFN‐γ; M2: IL‐4 and IL‐13) and common chemokines (SDF‐1 and MCP‐1) found during inflammation were also studied. Indirect and direct co‐cultures were conducted using M1 and M2 polarized human THP‐1 monocytes. M2 macrophages and their associated cytokines supported the growth of hMSCs, while M1 macrophages and their associated cytokines inhibited the growth of hMSCs in vitro under certain conditions. These data imply that an anti‐inflammatory (M2) environment is more accommodating to the therapeutic hMSCs than a pro‐inflammatory (M1) environment at specific concentrations. J. Cell. Biochem. 114: 220–229, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
X‐linked adrenoleukodystrophy (X‐ALD) is an inherited disease characterized by progressive inflammatory demyelization in the brain, adrenal insufficiency, and an abnormal accumulation of very long chain fatty acids (VLCFA) in tissue and body fluids. Considering that inflammation might be involved in pathophysiology of X‐ALD, we aimed to investigate pro‐ and anti‐inflammatory cytokines in plasma from three different male phenotypes (CCER, AMN, and asymptomatic individuals). Our results showed that asymptomatic patients presented increased levels of pro‐inflammatory cytokines IL‐1β, IL‐2, IL‐8, and TNF‐α and the last one was also higher in AMN phenotype. Besides, asymptomatic patients presented higher levels of anti‐inflammatory cytokines IL‐4 and IL‐10. AMN patients presented higher levels of IL‐2, IL‐5, and IL‐4. We might hypothesize that inflammation in X‐ALD is related to plasmatic VLCFA concentration, since there were positive correlations between C26:0 plasmatic levels and pro‐inflammatory cytokines in asymptomatic and AMN patients and negative correlation between anti‐inflammatory cytokine and C24:0/C22:0 ratio in AMN patients. The present work yields experimental evidence that there is an inflammatory imbalance associated Th1, (IL‐2, IL‐6, and IFN‐γ), Th2 (IL‐4 and IL‐10), and macrophages response (TNF‐α and IL‐1β) in the periphery of asymptomatic and AMN patients, and there is correlation between VLCFA plasmatic levels and inflammatory mediators in X‐ALD. Furthermore, we might also speculate that the increase of plasmatic cytokines in asymptomatic patients could be considered an early biomarker of brain damage and maybe also a predictor of disease progression.  相似文献   

14.
A better understanding of cytokine biology over the last two decades has allowed the successful development of cytokine inhibitors against tumour necrosis factor and interleukin (IL)-1 and IL-6. The introduction of these therapies should be considered a breakthrough in the management of several rheumatic diseases. However, many patients will exhibit no or only partial response to these therapies, thus emphasising the importance of exploring other therapeutic strategies. In this article, we review the most recent information on novel cytokines that are often members of previously described cytokine families such as the IL-1 superfamily (IL-18 and IL-33), the IL-12 superfamily (IL-27 and IL-35), the IL-2 superfamily (IL-15 and IL-21), and IL-17. Several data derived from experimental models and clinical samples indicate that some of these cytokines contribute to the pathophysiology of arthritis and other inflammatory diseases. Targeting of some of these cytokines has already been tested in clinical trials with interesting results.  相似文献   

15.
16.
Encephalopathy and brain edema are serious complications of acute liver failure (ALF). The precise pathophysiologic mechanisms responsible have not been fully elucidated but it has been recently proposed that microglia‐derived proinflammatory cytokines are involved. In the present study we evaluated the role of microglial activation and the protective effect of the anti‐inflammatory drug minocycline in the pathogenesis of hepatic encephalopathy and brain edema in rats with ALF resulting from hepatic devascularisation. ALF rats were killed 6 h after hepatic artery ligation before the onset of neurological symptoms and at coma stages of encephalopathy along with their appropriate sham‐operated controls and in parallel with minocycline‐treated ALF rats. Increased OX‐42 and OX‐6 immunoreactivities confirming microglial activation were accompanied by increased expression of interleukins (IL‐1β, IL‐6) and tumor necrosis factor‐alpha (TNF‐α) in the frontal cortex at coma stage of encephalopathy in ALF rats compared with sham‐operated controls. Minocycline treatment prevented both microglial activation as well as the up‐regulation of IL‐1β, ΙL‐6 and TNF‐α mRNA and protein expression with a concomitant attenuation of the progression of encephalopathy and brain edema. These results offer the first direct evidence for central proinflammatory mechanisms in the pathogenesis of brain edema and its complications in ALF and suggest that anti‐inflammatory agents may be beneficial in these patients.  相似文献   

17.
18.
Interleukin‐17 family cytokines, consisting of six members, participate in immune response in infections and autoimmune and inflammatory diseases. The prototype cytokine of the family, IL‐17A, was originally identified from CD4+ T cells which are now termed Th17 cells. Later, IL‐17A‐producing cells were expanded to include various hematopoietic cells, namely CD8+ T cells (Tc17), invariant NKT cells, γδ T cells, non‐T non‐B lymphocytes (termed type 3 innate lymphoid cells) and neutrophils. Some IL‐17 family cytokines other than IL‐17A are also expressed by CD4+ T cells: IL‐17E by Th2 cells and IL‐17F by Th17 cells. IL‐17A and IL‐17F induce expression of pro‐inflammatory cytokines to induce inflammation and anti‐microbial peptides to kill pathogens, whereas IL‐17E induces allergic inflammation. However, the functions of other IL‐17 family cytokines have been unclear. Recent studies have shown that IL‐17B and IL‐17C are expressed by epithelial rather than hematopoietic cells. Interestingly, expression of IL‐17E and IL‐17F by epithelial cells has also been reported and epithelial cell‐derived IL‐17 family cytokines shown to play important roles in immune responses to infections at epithelial sites. In this review, we summarize current information on hematopoietic cell‐derived IL‐17A and non‐hematopoietic cell‐derived IL‐17B, IL‐17C, IL‐17D, IL‐17E and IL‐17F in infections and propose functional differences between these two categories of IL‐17 family cytokines.  相似文献   

19.
Interleukin 17 (IL‐17) is an important inducer of tissue inflammation and is involved in numerous autoimmune diseases. However, how its signal transduction is regulated is not well understood. Here, we report that nuclear Dbf2‐related kinase 1 (NDR1) functions as a positive regulator of IL‐17 signal transduction and IL‐17‐induced inflammation. NDR1 deficiency or knockdown inhibits the IL‐17‐induced phosphorylation of p38, ERK1/2, and p65 and the expression of chemokines and cytokines, whereas the overexpression of NDR1 promotes IL‐17‐induced signaling independent of its kinase activity. Mechanistically, NDR1 interacts with TRAF3 and prevents its binding to IL‐17R, which promotes the formation of an IL‐17R‐Act1‐TRAF6 complex and downstream signaling. Consistent with this, IL‐17‐induced inflammation is significantly reduced in NDR1‐deficient mice, and NDR1 deficiency significantly protects mice from MOG‐induced experimental autoimmune encephalomyelitis (EAE) and 2,4,6‐trinitrobenzenesulfonic acid (TNBS)‐induced colitis likely by its inhibition of IL‐17‐mediated signaling pathway. NDR1 expression is increased in the colons of ulcerative colitis (UC) patients. Taken together, these findings suggest that NDR1 is involved in the development of autoimmune diseases.  相似文献   

20.
When activated, CD4+ T cells differentiate into two major sub‐populations differing in their profiles of secreted cytokines. Type One, or TH1, cells secrete IL‐2, IFNγ, and TNFβ and mediate a cellular immune response. Type Two, or TH2, cells secrete IL‐4, IL‐5, IL‐6, IL‐10, and IL‐13 and potentiate a humoral response. The nature of any specific immune response depends on the interaction of antigen‐presenting cells and T cells. The role of antigen‐presenting cells is to respond to the nature of the immune challenge and signal differentiation of CD4+ T cells. A number of factors are involved in the effector phenotype of T cells—nature and affinity of antigen, co‐receptors signals, and cytokine environment. T‐cell differentiation is a complex process comprising four defined developmental stages: activation of particular cytokine genes, commitment of the cells, silencing of the opposing cytokine genes, and stabilization of the phenotype. In each of these stages, the cells respond to the products of many signaling cascades from many membrane‐bound receptors. The stages in development are mediated by different molecular mechanisms, involving control of gene expression and chromatin remodeling. This review centers on the factors, cellular interactions, and molecular mechanisms involved in the maturation of naïve CD4+ T lymphocytes into fully effector cells. © 2003 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号