首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The high larvicidal effect of Bacillus sphaericus (Bs), a mosquito control agent, originates from the presence of a binary toxin (Bs Bin) composed of two proteins (BinA and BinB) that work together to lyse gut cells of susceptible larvae. We demonstrate for the first time that the binary toxin and its individual components permeabilize receptor-free large unilamellar phospholipid vesicles (LUVs) and planar lipid bilayers (PLBs) by a mechanism of pore formation. Calcein-release experiments showed that LUV permeabilization was optimally achieved at alkaline pH and in the presence of acidic lipids. BinA was more efficient than BinB, BinB facilitated the BinA effect, and their stoichiometric mixture was more effective than the full Bin toxin. In PLBs, BinA formed voltage-dependent channels of ≈100–200 pS with long open times and a high open probability. Larger channels (≥400 pS) were also observed. BinB, which inserted less easily, formed smaller channels (≤100 pS) with shorter mean open times. Channels observed after sequential addition of the two components, or formed by their 1:1 mixture (w/w), displayed BinA-like activity. Bs Bin toxin was less efficient at forming channels than the BinA/BinB mixture, with channels displaying the BinA channel behavior. Our data support the concept of BinA being principally responsible for pore formation in lipid membranes with BinB, the binding component of the toxin, playing a role in promoting channel activity. Received: 29 March 2001/Revised: 20 July 2001  相似文献   

2.
Bacillus sphaericus produces a mosquitocidal binary toxin composed of two subunits, BinA (42 kDa) and BinB (51 kDa). Both components are required for maximum toxicity against mosquito larvae. BinB has been proposed to provide specificity by binding to the epithelial gut cell membrane, while BinA may be responsible for toxicity. To identify regions in BinB responsible for receptor binding and for interaction to BinA, we used six BinB shorter constructs derived from both the N-terminal and the C-terminal halves of the protein. All constructs expressed as inclusion bodies in Escherichia coli, similarly to the wild-type protein. A marked decrease in larvicidal activity was observed when BinA was used in combination with these BinB constructs, used either individually or in pairs from both N and C-halves of BinB. Nevertheless, immunohistochemistry analyses demonstrate that these constructs are able to bind to the epithelium gut cell membrane, and in vitro protein-protein interaction assays revealed that these constructs can bind to BinA. These results show that fragments corresponding to both halves of BinB are able to bind the receptor and to interact with BinA, but both halves are required by the toxin to exhibit full larvicidal activity.  相似文献   

3.
The binary toxin (Bin) from Bacillus sphaericus consists of two polypeptides, BinA (42 kDa) and BinB (51 kDa) that work together to kill susceptible mosquito larvae. To investigate the functional regions of BinA involved in the interaction with BinB, four BinA truncated fragments, from both N- and C- termini, were constructed and expressed in Escherichia coli. Neither individual nor a mixture of fragments of BinA showed larvicidal activity against Culex quinquefasciatus larvae even using a high dose of toxins. Far-Western dot blot analysis showed strong binding of both C-terminal fragments (17 and 28 kDa) to BinB protein. This is the first report to demonstrate that the C-terminal part of BinA plays an important role for the interaction with BinB.  相似文献   

4.
The operon containing the genes encoding the subunits of the binary crystal toxin of Bacillus sphaericus strain LP1-G, BinA and BinB (41.9 kDa and 51.4 kDa, respectively), was cloned and sequenced. Purified crystals were not toxic to Culex pipiens larvae. Comparison of the amino-acid sequences of this strain (Bin4) with those of the three other known toxin types (Bin1, Bin2 and Bin3) revealed mutations at six positions, including a serine at position 93 of BinA4, whereas all other types of BinA toxin from B. sphaericus had a leucine at this position. Reciprocal site-directed mutagenesis was performed to replace this serine in BinA4 from LP1-G with a leucine and the leucine in the BinA2 protein from strain 1593 with a serine. Native and mutated genes were cloned and overexpressed. Inclusion bodies were tested on C. pipiens larvae. Unlike the native Bin4 toxin, the mutated protein was toxic, and the reciprocal mutation in Bin2 led to a significant loss of toxicity. In vitro receptor-binding studies showed similar binding behaviour for native and mutated toxins. In the absence of any experimental data on the 3D structure of these proteins, sequence analysis and secondary-structure predictions were performed. Amino acid 93 of the BinA polypeptide probably belongs to an alpha helix that is sensitive to amino-acid modifications. Position 93 may be a key element in the formation of the BinA-BinB complex responsible for the toxicity and stability of B. sphaericus Bin toxins.  相似文献   

5.
The binary toxin gene encoding BinA (42 kDa) and BinB (51 kDa) from Bacillus sphaericus strain 2297 was cloned and expressed in E. coli. Low expression level was found when both proteins were expressed from a single operon. High expression was observed when the gene encoding an individual protein was placed downstream of the T7 promoter. The expression level of BinB was not different when expressed alone (non-fusion) or as a fusion form with T7 peptide (T7-BinB). Both forms of BinB were equally stable. Unlike BinB, the non-fusion form of BinA was less stable than T7-BinA. The mosquito larvicidal test showed that BinA or BinB alone was not toxic to mosquito larvae, but high toxicity was found when both BinA and BinB were applied. The results suggest that a short peptide of T7 linked to the N-terminus of either BinA or BinB does not affect their toxicity, but may make the toxin, especially BinA, more stable.  相似文献   

6.
The mosquito-larvicidal binary toxin produced by Bacillus sphaericus is composed of BinB and BinA, which have calculated molecular weights of 51.4 and 41.9 kDa, respectively. NaOH extracts of B. sphaericus spores were analyzed using SDS-PAGE. Stained gels showed bands with molecular weights corresponding to those of BinB and BinA as well as two additional bands at 110 and 125 kDa. The matrix-assisted laser desorption/ionization mass spectrum of the purified 110 and 125 kDa bands showed two peaks at 104,160 and 87,358 Da that are assigned to dimers of BinB and BinA, respectively. Mass spectral analysis of trypsin-digested 110 and 125 kDa bands showed peaks at 51,328, 43,523, 43,130, and 40,832 Da that assigned to undigested BinB, two forms of digested BinB and digested BinA, respectively. Dynamic light scattering studies showed a solution of the purified 110 and 125 kDa bands was comprised almost entirely (99.6% of total mass) of a particle with a hydrodynamic radius of 5.6+/-1.2 nm and a calculated molecular weight of 186+/-38 kDa. These data demonstrate that the binary toxin extracted from B. sphaericus spores can exist in solution as an oligomer containing two copies each of BinB and BinA.  相似文献   

7.
The binary toxin produced from Bacillus sphaericus is highly toxic against larvae of Culex and Anopheles mosquitoes. The two major components of the binary toxin are 42-kDa BinA and 51-kDa BinB, which are produced as crystalline inclusions during sporulation. Currently, there is no detailed knowledge of the molecular mechanism of the binary toxin, mainly due to the lack of structural information. Herein, we describe an expression protocol with modified conditions allowing production of soluble, biologically active BinA and BinB for further structural analysis. The binA and binB genes from B. sphaericus 2297 strain were independently cloned and fused with a polyhistidine tag at their N-termini. Both (His)(6)-tagged BinA and (His)(6)-tagged BinB were expressed as soluble forms at low temperature. Highly pure proteins were obtained after two-step purification by Ni-NTA affinity and size exclusion chromatography. In vitro activation by trypsin digestion generated a resistant fragment, of 40kDa for BinA, and of 45kDa for BinB, and an oligomeric complex of BinA and BinB in solution was observed after proteolytic activation. Their functional and structural properties were confirmed by a biological assay and far-UV circular dichroism, respectively. The mixture of BinA and BinB, either as a protoxin or as a trypsin-activated form, exhibited high mosquito-larvicidal activity against Culex quinquefasciatus larvae with LC(50) of about 10ng/ml, while no toxicity was observed from the single binary toxin component. Results from far-UV circular dichroism of BinA and BinB suggest the presence of mainly β-structure. The expression and purification protocols reported here will be useful for the production of the active and homogeneous binary toxin to allow further detailed structural investigation.  相似文献   

8.
The two components (BinA and BinB) of Lysinibacillus sphaericus binary toxin together are highly toxic to Culex and Anopheles mosquito larvae, and have been employed world-wide to control mosquito borne diseases. Upon binding to the membrane receptor an oligomeric form (BinA2.BinB2) of the binary toxin is expected to play role in pore formation. It is not clear if these two proteins interact in solution as well, in the absence of receptor. The interactions between active forms of BinA and BinB polypeptides were probed in solution using size-exclusion chromatography, pull-down assay, surface plasmon resonance, circular dichroism, and by chemically crosslinking BinA and BinB components. We demonstrate that the two proteins interact weakly with first association and dissociation rate constants of 4.5 × 103 M?1 s?1 and 0.8 s?1, resulting in conformational change, most likely, in toxic BinA protein that could kinetically favor membrane translocation of the active oligomer. The weak interactions between the two toxin components could be stabilized by glutaraldehyde crosslinking. The cross-linked complex, interestingly, showed maximal Culex larvicidal activity (LC50 value of 1.59 ng mL?1) reported so far for combination of BinA/BinB components, and thus is an attractive option for development of new bio-pesticides for control of mosquito borne vector diseases.  相似文献   

9.
We show herein that interaction in aqueous solution of the two components of binary toxin from Bacillus sphaericus, BinA and BinB, leads to a dramatic conformational change, from beta turns or random coil, to beta structure. Also, either BinA or BinB separately or their equimolar mixture, interact with lipid bilayers resulting in further conformational changes. Upon membrane association, the change in conformation observed for BinA or BinB separately is different from that observed when the proteins are combined, indicating that proper folding depends on the presence of the complementary subunit. We also show, in contrast to previous reports, that BinB, but not BinA, is able to insert in model neutral lipid monolayers.  相似文献   

10.
The mosquito larvicidal binary toxin produced by Bacillus sphaericus is composed of 2 proteins called BinA and BinB. While BinB acts as specificity determinant, BinA is expected to bind to BinB, translocates into cytosol, and exerts its activity via an unknown mechanism. To study the role of cysteine in BinA, 3 cysteine residues were substituted by alanine and serine. Substitution at Cys195 significantly reduced the toxin activity, whereas substitution at Cys31 and Cys47 abolished its toxicity. Intrinsic fluorescent analysis suggested that all mutant proteins should have similar tertiary structure to that of the wild type. Analysis of the mutant protein on sodium dodecyl sulfate–polyacrylamide gel electrophoresis with and without a reducing agent indicated that all 3 cysteine residues were not involved in disulfide bond formation within the BinA molecule. This is the first report to demonstrate that cysteine residues at 3 positions in BinA are required for full toxicity of the binary toxin. They may play a critical role during oligomerization or interaction between BinA and BinB to form the active complex.  相似文献   

11.
Bacillus sphaericus produces mosquito-larvicidal binary toxin composed of BinA and BinB. While BinB is expected to bind to a specific receptor on the cell membrane, BinA interacts to BinB or BinB receptor complex and translocates into the cytosol to exert its activity via unknown mechanism. To investigate functional roles of aromatic cluster in BinA, amino acids at positions Y213, Y214, Y215, W222 and W226 were substituted by leucine. All mutant proteins were highly produced and their secondary structures were not affected by these substitutions. All mutants are able to insert into lipid monolayers as observed by Langmuir-Blodgett trough and could permeabilize the liposomes in a similar manner as the wild type. However, mosquito-larvicidal activity was abolished for W222L and W226L mutants suggesting that tryptophan residues at both positions play an important role in the toxicity of BinA, possibly involved in the cytopathological process after toxin entry into the cells.  相似文献   

12.
Various aerolysin‐like pore‐forming proteins have been identified from bacteria to vertebrates. However, the mechanism of receptor recognition and/or pore formation of the eukaryotic members remains unknown. Here, we present the first crystal and electron microscopy structures of a vertebrate aerolysin‐like protein from Danio rerio, termed Dln1, before and after pore formation. Each subunit of Dln1 dimer comprises a β‐prism lectin module followed by an aerolysin module. Specific binding of the lectin module toward high‐mannose glycans triggers drastic conformational changes of the aerolysin module in a pH‐dependent manner, ultimately resulting in the formation of a membrane‐bound octameric pore. Structural analyses combined with computational simulations and biochemical assays suggest a pore‐forming process with an activation mechanism distinct from the previously characterized bacterial members. Moreover, Dln1 and its homologs are ubiquitously distributed in bony fishes and lamprey, suggesting a novel fish‐specific defense molecule.  相似文献   

13.
Photorhabdus luminescens Tc toxins consist of the cell‐binding component TcA, the linker component TcB, and the enzyme component TcC. TccC3, a specific isoform of TcC, ADP‐ribosylates actin and causes redistribution of the actin cytoskeleton. TccC5, another isoform of TcC, ADP‐ribosylates and activates Rho proteins. Here, we report that the proteasome inhibitor MG132 blocks the intoxication of cells by Tc toxin. The inhibitory effect of MG132 was not observed, when the ADP‐ribosyltransferase domain of the TcC component was introduced into target cells by protective antigen, which is the binding and delivery component of anthrax toxin. Additionally, MG132 affected neither pore formation by TcA in artificial membranes nor binding of the toxin to cells. Furthermore, the in vitro ADP‐ribosylation of actin by the enzyme domain of TccC3 was not affected by MG132. Similar to MG132, several calpain inhibitors blocked the action of the Tc toxin. Proteolytic cleavage of the binding component TcA induced by P. luminescens protease PrtA1 or by collagenase largely increased the toxicity of the Tc toxin. MG132 exhibited no inhibitory effect on the cleaved TcA component. Moreover, binding of TcA to target cells was largely increased after cleavage. The data indicate that Tc toxin is activated by proteolytic processing of the TcA component, resulting in increased receptor binding. Toxin processing is probably inhibited by MG132.  相似文献   

14.
The mosquito-larvicidal binary toxin from Bacillus sphaericus is composed of two polypeptides called BinA and BinB with molecular masses of approximately 42 and 51 kDa. Both components are required for full activity, with BinB acting as a specificity determinant and BinA being responsible for toxic action. To investigate the role of the selected charged residues in BinA, four mutants were generated by replacing charged amino acids with alanine (R97A, E98A, R101A, and E114A). All mutant proteins were produced at high levels and formed inclusion bodies similar to that of the wild type. Mosquito-larvicidal assays against Culex quinquefasciatus larvae revealed that the mutant R97A completely lost its activity and mutants E98A, R101A, and E114A showed significantly reduced toxicity. Intrinsic fluorescence spectroscopy analysis indicated that alanine substitutions at these positions did not alter the overall structure of the toxin. Binding of the mutants to BinB was not different from that of the wild type, suggesting that these mutations did not affect BinA-BinB interaction. Results demonstrated that R97, E98, R101, and E114 neither play a direct role in maintenance of BinA structure nor are involved in BinA-BinB interaction. Since these residues are required for full activity, they may play an important role during toxin internalization and/or toxic action of BinA inside the target cells.  相似文献   

15.
Certain strains of Bacillus sphaericus produce a highly toxic mosquito-larvicidal binary toxin during sporulation. The binary toxin is composed of toxic BinA (41.9 kDa) and receptor binding BinB (51.4 kDa) polypeptides and is active against vectors of filariasis, encephalitis and malaria. The toxin has been tested with limited use for the control of vector mosquitoes for more than two decades. The binA gene from a local ISPC-8 strain of B. sphaericus that is highly toxic to Culex and Anopheles mosquito species was cloned into pET16b and expressed in Escherichia coli. The purified BinA protein differs by one amino acid (R197 M) from BinA of the highest toxicity strains 1593/2362/C3-41. Majority of the expressed protein was observed in inclusion bodies. BinA inclusions alone from E. coli did not show toxic activity, like reported previously. However, the active form of BinA could be purified to homogeneity from the soluble fraction of E. coli cell lysate, grown at reduced temperature after isopropyl β-d-thiogalactopyranoside induction. The purified BinA protein with and without poly-histidine tag showed LC50 dose of 82.3 and 66.9 ng ml−1, respectively, at 48 h against Culex quinquefasciatus larvae. The secondary structure of BinA is expected to be mainly β strands as estimated using far-UV circular dichroism. The estimates matched well with the secondary structure predictions using amino acid sequence. This is the first report of large-scale purification and accurate toxicity estimation of soluble B. sphaericus BinA. This can help in design and synthesis of improved bacterial insecticide.  相似文献   

16.
Heterodimeric binary (Bin) toxin, the major insecticidal protein from Bacillus sphaericus, acts on Culex quinquefasciatus larvae through specific binding to the midgut receptor Cqm1, a role mediated by its 448-amino-acid-long BinB subunit. The molecular basis for receptor recognition is not well understood and this study attempted to identify protein segments and amino acid motifs within BinB that are required for this event. First, N- and C-terminally truncated constructs were evaluated for their capacity to bind to native Cqm1 through pull-down assays. These showed that residues N33 to L158 of the subunit are required for Cqm1 binding. Nine different full-length mutants were then generated in which selected blocks of three amino acids were replaced by alanines. In new pull-down assays, two mutants, in which residues (85) IRF(87) and (147) FQF(149) were targeted, failed to bind the receptor. Competition binding assays confirmed the requirements for the N-terminal 158 residues, and the (147) FQF(149) epitope, for the mutant proteins to compete with native Bin toxin when binding to membrane fractions from the insect midgut. The data from this work rule out the involvement of C-terminal segments in receptor binding, highlighting the need for multiple elements within the protein's N-terminal third for it to occur.  相似文献   

17.
Anamorsin is a recently identified molecule that inhibits apoptosis during hematopoiesis. It contains an N‐terminal methyltransferase‐like domain and a C‐terminal Fe‐S cluster motif. Not much is known about the function of the protein. To better understand the function of anamorsin, we have solved the crystal structure of the N‐terminal domain at 1.8 Å resolution. Although the overall structure resembles a typical S‐adenosylmethionine (SAM) dependent methyltransferase fold, it lacks one α‐helix and one β‐strand. As a result, the N‐terminal domain as well as the full‐length anamorsin did not show S‐adenosyl‐l ‐methionine (AdoMet) dependent methyltransferase activity. Structural comparisons with known AdoMet dependent methyltransferases reveals subtle differences in the SAM binding pocket that preclude the N‐terminal domain from binding to AdoMet. The N‐terminal methyltransferase‐like domain of anamorsin probably functions as a structural scaffold to inhibit methyl transfers by out‐competing other AdoMet dependant methyltransferases or acts as bait for protein–protein interactions.Proteins 2014; 82:1066–1071. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
Clostridium perfringens epsilon toxin (Etx) is a pore‐forming toxin responsible for a severe and rapidly fatal enterotoxemia of ruminants. The toxin is classified as a category B bioterrorism agent by the U.S. Government Centres for Disease Control and Prevention (CDC), making work with recombinant toxin difficult. To reduce the hazard posed by work with recombinant Etx, we have used a variant of Etx that contains a H149A mutation (Etx‐H149A), previously reported to have reduced, but not abolished, toxicity. The three‐dimensional structure of H149A prototoxin shows that the H149A mutation in domain III does not affect organisation of the putative receptor binding loops in domain I of the toxin. Surface exposed tyrosine residues in domain I of Etx‐H149A (Y16, Y20, Y29, Y30, Y36 and Y196) were mutated to alanine and mutants Y30A and Y196A showed significantly reduced binding to MDCK.2 cells relative to Etx‐H149A that correlated with their reduced cytotoxic activity. Thus, our study confirms the role of surface exposed tyrosine residues in domain I of Etx in binding to MDCK cells and the suitability of Etx‐H149A for further receptor binding studies. In contrast, binding of all of the tyrosine mutants to ACHN cells was similar to that of Etx‐H149A, suggesting that Etx can recognise different cell surface receptors. In support of this, the crystal structure of Etx‐H149A identified a glycan (β‐octyl‐glucoside) binding site in domain III of Etx‐H149A, which may be a second receptor binding site. These findings have important implications for developing strategies designed to neutralise toxin activity.  相似文献   

19.
20.
Proteins of the Omp85 family chaperone the membrane insertion of β‐barrel‐shaped outer membrane proteins in bacteria, mitochondria, and probably chloroplasts and facilitate the transfer of nuclear‐encoded cytosolically synthesized preproteins across the outer envelope of chloroplasts. This protein family is characterized by N‐terminal polypeptide transport‐associated (POTRA) domains and a C‐terminal membrane‐embedded β‐barrel. We have investigated a recently identified Omp85 family member of Arabidopsis thaliana annotated as P39. We show by in vitro and in vivo experiments that P39 is localized in chloroplasts. The electrophysiological properties of P39 are consistent with those of other Omp85 family members confirming the sequence based assignment of P39 to this family. Bioinformatic analysis showed that P39 lacks any POTRA domain, while a complete 16 stranded β‐barrel including the highly conserved L6 loop is proposed. The electrophysiological properties are most comparable to Toc75‐V, which is consistent with the phylogenetic clustering of P39 in the Toc75‐V rather than the Toc75‐III branch of the Omp85 family tree. Taken together P39 forms a pore with Omp85 family protein characteristics. The bioinformatic comparison of the pore region of Toc75‐III, Toc75‐V, and P39 shows distinctions of the barrel region most likely related to function. Proteins 2017; 85:1391–1401. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号