共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Evan S. O'Brien A. Joshua Wand Kim A. Sharp 《Protein science : a publication of the Protein Society》2016,25(6):1156-1160
Molecular dynamics (MD) simulations have become a central tool for investigating various biophysical questions with atomistic detail. While many different proxies are used to qualify MD force fields, most are based on largely structural parameters such as the root mean square deviation from experimental coordinates or nuclear magnetic resonance (NMR) chemical shifts and residual dipolar couplings. NMR derived Lipari–Szabo squared generalized order parameter (O2) values of amide N? H bond vectors of the polypeptide chain were also often employed for refinement and validation. However, with a few exceptions, side chain methyl symmetry axis order parameters have not been incorporated into experimental reference sets. Using a test set of five diverse proteins, the performance of several force fields implemented in the NAMDD simulation package was examined. It was found that simulations employing explicit water implemented using the TIP3 model generally performed significantly better than those using implicit water in reproducing experimental methyl symmetry axis O2 values. Overall the CHARMM27 force field performs nominally better than two implementations of the Amber force field. It appeared that recent quantum mechanics modifications to side chain torsional angles of leucine and isoleucine in the Amber force field have significantly hindered proper motional modeling for these residues. There remained significant room for improvement as even the best correlations of experimental and simulated methyl group Lipari–Szabo generalized order parameters fall below an R2 of 0.8. 相似文献
3.
Moorman VR Valentine KG Wand AJ 《Protein science : a publication of the Protein Society》2012,21(7):1066-1073
It has become clear that the binding of small and large ligands to proteins can invoke significant changes in side chain and main chain motion in the fast picosecond to nanosecond timescale. Recently, the use of a \"dynamical proxy\" has indicated that changes in these motions often reflect significant changes in conformational entropy. These entropic contributions are sometimes of the same order as the total entropy of binding. Thus, it is important to understand the connections amongst motion between the manifold of states accessible to the native state of proteins, the corresponding entropy, and how this impacts the overall energetics of protein function. The interaction of proteins with carbohydrate ligands is central to a range of biological functions. Here, we examine a classic carbohydrate interaction with an enzyme: the binding of wild-type hen egg white lysozyme (HEWL) to the natural, competitive inhibitor chitotriose. Using NMR relaxation experiments, backbone amide and side chain methyl axial order parameters were obtained across apo and chitotriose-bound HEWL. Upon binding, changes in the apparent amplitude of picosecond to nanosecond main chain and side chain motions are seen across the protein. Indeed, binding of chitotriose renders a large contiguous fraction of HEWL effectively completely rigid. Changes in methyl flexibility are most pronounced closest to the binding site, but average to only a small overall change in the dynamics across the protein. The corresponding change in conformational entropy is unfavorable and estimated to be a significant fraction of the total binding entropy. 相似文献
4.
A. J. Doig M. J. Sternberg 《Protein science : a publication of the Protein Society》1995,4(11):2247-2251
An important, but often neglected, contribution to the thermodynamics of protein folding is the loss of entropy that results from restricting the number of accessible side-chain conformers in the native structure. Conformational entropy changes can be found by comparing the number of accessible rotamers in the unfolded and folded states, or by estimating fusion entropies. Comparison of several sets of results using different techniques shows that the mean conformational free energy change (T delta S) is 1 kcal.mol-1 per side chain or 0.5 kcal.mol-1 per bond. Changes in vibrational entropy appear to be negligible compared to the entropy change resulting from the loss of accessible rotamers. Side-chain entropies can help rationalize alpha-helix propensities, predict protein/inhibitor complex structures, and account for the distribution of side chains on the protein surface or interior. 相似文献
5.
Measurement of Dipolar Cross-Correlation in Methylene Groups in Uniformly 13C-, 15N-Labeled Proteins 总被引:1,自引:0,他引:1
A CC(CO)NH TOCSY-based 3D pulse scheme is presented for measuring (1)H-(13)C dipole-dipole cross-correlated relaxation at CH(2) positions in uniformly (13)C-, (15)N-labeled proteins. Simulations based on magnetization evolution under relaxation and scalar coupling interactions show that cross-correlation rates between (1)H-(13)C dipoles in CH(2) groups can be simply obtained from the intensities of (13)C triplets. The normalized cross-correlation relaxation rates are related to cross-correlation order parameters for macromolecules undergoing isotropic motion, which reflect the degrees of spatial restriction of CH(2) groups. The study on human intestinal fatty acid binding protein (131 residues) in the presence of oleic acid demonstrates that side chain dynamics at most CH(2) positions can be characterized for proteins less than 15 kDa in size, with the proposed TOCSY-based approach. 相似文献
6.
7.
A. T. Alexandrescu K. Rathgeb-Szabo K. Rumpel W. Jahnke T. Schulthess R. A. Kammerer 《Protein science : a publication of the Protein Society》1998,7(2):389-402
Backbone 15N relaxation parameters (R1, R2, 1H-15N NOE) have been measured for a 22-residue recombinant variant of the S-peptide in its free and S-protein bound forms. NMR relaxation data were analyzed using the \"model-free\" approach (Lipari & Szabo, 1982). Order parameters obtained from \"model-free\" simulations were used to calculate 1H-15N bond vector entropies using a recently described method (Yang & Kay, 1996), in which the form of the probability density function for bond vector fluctuations is derived from a diffusion-in-a-cone motional model. The average change in 1H-15N bond vector entropies for residues T3-S15, which become ordered upon binding of the S-peptide to the S-protein, is -12.6+/-1.4 J/mol.residue.K. 15N relaxation data suggest a gradient of decreasing entropy values moving from the termini toward the center of the free peptide. The difference between the entropies of the terminal and central residues is about -12 J/mol residue K, a value comparable to that of the average entropy change per residue upon complex formation. Similar entropy gradients are evident in NMR relaxation studies of other denatured proteins. Taken together, these observations suggest denatured proteins may contain entropic contributions from non-local interactions. Consequently, calculations that model the entropy of a residue in a denatured protein as that of a residue in a di- or tri-peptide, might over-estimate the magnitude of entropy changes upon folding. 相似文献
8.
Marion Gurrath Alessandro Bisello Katia Bottazzo Chun-Wa Chung Stefano Mammi Evaristo Peggion 《Journal of peptide science》1996,2(3):176-193
Neuropeptide Y (NPY), a peptide amide comprising 36 residue has been shown to act as a potent vasoconstrictor. In order to shed light on the structural requirements for the biological activities with respect to the different prerequisites for affinity to the NPY receptor subtypes Y1 and Y2, in the present study the syntheses and conformational analyses of two C-terminal segments, NPY(18–36) and NPY(13–36), are described. The results obtained by CD measurements, two-dimensional NMR spectros copy and a conformational refinement of the NMR-derived structure by molecular mechanics simulations support the findings of previously published structure –activity relationship studies for biologically active and selective compounds. In particular, the α-helical conformation as well as an appropriate exposure of the side chains of the critical C-terminal dipeptide within NPY(18–36) are in agreement with the prerequisites proposed for Y2 receptor binding of that segment. 相似文献
9.
The dynamics of amino acid side chains of uniformly 13C/15N-enriched ribonuclease T1 (RNase T1) have been investigated. Heteronuclear longitudinal relaxation rates, 1H/13C NOEs, and transverse cross-correlated cross-relaxation rates between the Sx and the SxIz1Iz2 operators (SIIS cross relaxation) [Ernst and Ernst (1994) J. Magn. Reson., A110, 202-213] have been determined in this study. New pulse sequences for measuring the longitudinal relaxation time and the heteronuclear NOE of aliphatic side chain carbon nuclei were developed using the CCONH type of magnetization transfer and 1HN detection. In addition, an improved pulse sequence for the determination of the SIIS cross relaxation is presented. For the analysis of the relaxation rates, the model of restricted rotational diffusion around the 1 dihedral angle has been applied [London and Avitabile (1978) J. Am. Chem. Soc., 100, 7159-7165]. These techniques were used in order to describe the side chain dynamics of the small globular protein RNase T1 (104 amino acids, MW about 11 kDa). Qualitative values of microdynamical parameters were obtained for 73 out of 85 amino acid side chains (glycine and alanine residues excepted) whereas more quantitative values were derived for 67 -CH and -CH2 groups. 相似文献
10.
Protein function often involves changes between different conformations. Central questions are how these conformational changes are coupled to the binding or catalytic processes during which they occur, and how they affect the catalytic rates of enzymes. An important model system is the enzyme dihydrofolate reductase (DHFR) from Escherichia coli, which exhibits characteristic conformational changes of the active‐site loop during the catalytic step and during unbinding of the product. In this article, we present a general kinetic framework that can be used (1) to identify the ordering of events in the coupling of conformational changes, binding, and catalysis and (2) to determine the rates of the substeps of coupled processes from a combined analysis of nuclear magnetic resonance R2 relaxation dispersion experiments and traditional enzyme kinetics measurements. We apply this framework to E. coli DHFR and find that the conformational change during product unbinding follows a conformational‐selection mechanism, that is, the conformational change occurs predominantly prior to unbinding. The conformational change during the catalytic step, in contrast, is an induced change, that is, the change occurs after the chemical reaction. We propose that the reason for these conformational changes, which are absent in human and other vertebrate DHFRs, is robustness of the catalytic rate against large pH variations and changes to substrate/product concentrations in E. coli. Proteins 2012;. © 2012 Wiley Periodicals, Inc. 相似文献
11.
There is continuing and emerging new interest in the development of vitamin D analogs resulting from the recognition that analogs of 1 alpha,25-dihydroxyvitamin D3 [1 alpha,25-(OH)2D3] may be therapeutically useful. Side chain analogs of this steroid hormone are of particular interest because a family of lead structures have recently emerged for possible use in the treatment of certain types of cancers and skin diseases. Because of the chaotic array of side chain structures which exhibit useful therapeutic indices for these purposes, a more systematic approach towards developing intelligible structure-function information needs development. Accordingly, a method has been devised to analyze analogs as to their side chain topology based on identifying specific occupancy volumes through conformational analysis. Dot maps have been constructed as an indication of the volume in space which the side chain of 1 alpha,25-(OH)2-D3 or analogs is permitted to occupy. Volume exclusion analyses based on comparison of structural and biological data for 1 alpha,25-(OH)2-D3 and analogs are anticipated to lead to a more cogent model for drug design. A cautionary note on the limitations of this approach is discussed. 相似文献
12.
Ulyana V. Potapova Sergey I. Feranchuk Vladimir V. Potapov Nina V. Kulakova Ilya G. Kondratov Galina N. Leonova 《Journal of biomolecular structure & dynamics》2013,31(6):638-651
The sequences of the protease domain of the tick-borne encephalitis (TBE) virus NS3 protein have two amino acid substitutions, 16 R→K and 45 S→F, in the highly pathogenic and poorly pathogenic strains of the virus, respectively. Two models of the NS2B-NS3 protease complex for the highly pathogenic and poorly pathogenic strains of the virus were constructed by homology modeling using the crystal structure of West Nile virus NS2B-NS3 protease as a template; 20?ns molecular dynamic simulations were performed for both models, the trajectories of the dynamic simulations were compared, and the averaged distance between the two models was calculated for each residue. Conformational differences between two models were revealed in the identified pocket. The different conformations of the pocket resulted in different orientations of the NS2B segment located near the catalytic triad. In the model of the highly pathogenic TBE virus the identified pocket had a more open conformation compared to the poorly pathogenic model. We propose that conformational changes in the active protease center, caused by two amino acid substitutions, can influence enzyme functioning and the virulence of the virus. 相似文献
13.
We describe an algorithm which enables us to search the conformational space of the side chains of a protein to identify the global minimum energy combination of side chain conformations as well as all other conformations within a specified energy cutoff of the global energy minimum. The program is used to explore the side chain conformational energy surface of a number of proteins, to investigate how this surface varies with the energy model used to describe the interactions within the system and the rotamer library. Enumeration of the rotamer combinations enables us to directly evaluate the partition function, and thus calculate the side chain contribution to the conformational entropy of the folded protein. An investigation of these conformations and the relationships between them shows that most of the conformations near to the global energy minimum arise from changes in side chain conformations that are essentially independent; very few result from a concerted change in conformation of two or more residues. Some of the limitations of the approach are discussed. Proteins 33:227–239, 1998. © 1998 Wiley-Liss, Inc. 相似文献
14.
Joanne V. Allen David C. Horwell Julia A.H. Lainton Jacqueline A. O'Neill Giles S. Ratcliffe 《International journal of peptide research and therapeutics》1998,5(2-3):133-137
Summary The design and synthesis of a structural motif which can mimic protein-protein interactions is described. These moieties,
termed asdendroids (Greekdendron, a tree), are low-molecular-weight structures which are based on self-organising dendritic polymers. 相似文献
15.
Joanne V. Allen David C. Horwell Julia A.H. Lainton Jacqueline A. O'Neill Giles S. Ratcliffe 《Letters in Peptide Science》1998,5(2-3):133-137
The design and synthesis of a structural motif which can mimic protein–protein interactions is described. These moieties, termed as dendroids (Greek dendron, a tree), are low–molecular–weight structures which are based on self-organising dendritic polymers. 相似文献
16.
Summary A generally applicable method for the automated classification of 2D NMR peaks has been developed, based on a Bayesian approach coupled to a multivariate linear discriminant analysis of the data. The method can separate true NMR signals from noise signals, solvent stripes and artefact signals. The analysis relies on the assumption that the different signal classes have different distributions of specific properties such as line shapes, line widths and intensities. As to be expected, the correlation network of the distributions of the selected properties affects the choice of the discriminant function and the final selection of signal properties. The classification rule for the signal classes was deduced from Bayes's theorem. The method was successfully tested on a NOESY spectrum of HPr protein from Staphylococcus aureus. The calculated probabilities for the different signal class memberships are realistic and reliable, with a high efficiency of discrimination between peaks that are true NOE signals and those that are not. 相似文献
17.
Goehlert VA Krupinska E Regan L Stone MJ 《Protein science : a publication of the Protein Society》2004,13(12):3322-3330
\"Host-guest\" studies of the B1 domain from Streptococcal protein G have been used previously to establish a thermodynamic scale for the beta-sheet-forming propensities of the 20 common amino acids. To investigate the contribution of side chain conformational entropy to the relative stabilities of B1 domain mutants, we have determined the dynamics of side chain methyl groups in 10 of the 20 mutants used in a previous study. Deuterium relaxation rates were measured using two-dimensional NMR techniques for 13CH2D groups. Analysis of the relaxation data using the Lipari-Szabo model-free formalism showed that mutations introduced at the guest position caused small but statistically significant changes in the methyl group dynamics. In addition, there was a low level of covariation of the Lipari-Szabo order parameters among the 10 mutants. The variations in conformational free energy estimated from the order parameters were comparable in magnitude to the variations in global stability of the 10 mutants but did not correlate with the global stability of the domain or with the structural properties of the guest amino acids. The data support the view that conformational entropy in the folded state is one of many factors that can influence the folding thermodynamics of proteins. 相似文献
18.
Elisabetta Schievano Stefano Mammi Alessandro Bisello Michael Rosenblatt Michael Chorev Evaristo Peggion 《Journal of peptide science》1999,5(7):330-337
The N‐terminal 1–34 segments of both parathyroid hormone (PTH) and parathyroid hormone‐related protein (PTHrP) bind and activate the same membrane receptor in spite of major differences in their amino acid sequence. The hypothesis was made that they share the same bioactive conformation when bound to the receptor. A common structural motif in all bioactive fragments of the hormone in water/trifluoroethanol mixtures or in aqueous solution containing detergent micelles is the presence of two helical segments at the N‐ and C‐termini of the sequence. In order to stabilize the helical structures, we have recently synthesized and studied the PTHrP(1–34) analog [(Lys13–As p17, Lys26–As p30)]PTHrP(1–34)NH2, which contains lactam‐constrained Lys‐Asp side chains at positions i, i+4. This very potent agonist exhibits enhanced helix stability with respect to the corresponding linear peptide and also two flexible sites at positions 12 and 19 in 1:1 trifluoroethanol/water. These structural elements have been suggested to play a critical role in bioactivity. In the present work we have extended our conformational studies on the bicyclic lactam‐constrained analog to aqueous solution. By CD, 2D‐NMR and structure calculations we have shown that in water two helical segments are present in the region of the lactam bridges (13–18, and 26–31) with high flexibility around Gly12 and Arg19. Thus, the essential structural features observed in the aqueous‐organic medium are maintained in water even if, in this solvent, the overall structure is more flexible. Our findings confirm the stabilizing effect of side‐chain lactam constraints on the α‐helical structure. Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd. 相似文献
19.
Kresten Lindorff‐Larsen Stefano Piana Kim Palmo Paul Maragakis John L. Klepeis Ron O. Dror David E. Shaw 《Proteins》2010,78(8):1950-1958
Recent advances in hardware and software have enabled increasingly long molecular dynamics (MD) simulations of biomolecules, exposing certain limitations in the accuracy of the force fields used for such simulations and spurring efforts to refine these force fields. Recent modifications to the Amber and CHARMM protein force fields, for example, have improved the backbone torsion potentials, remedying deficiencies in earlier versions. Here, we further advance simulation accuracy by improving the amino acid side‐chain torsion potentials of the Amber ff99SB force field. First, we used simulations of model alpha‐helical systems to identify the four residue types whose rotamer distribution differed the most from expectations based on Protein Data Bank statistics. Second, we optimized the side‐chain torsion potentials of these residues to match new, high‐level quantum‐mechanical calculations. Finally, we used microsecond‐timescale MD simulations in explicit solvent to validate the resulting force field against a large set of experimental NMR measurements that directly probe side‐chain conformations. The new force field, which we have termed Amber ff99SB‐ILDN, exhibits considerably better agreement with the NMR data. Proteins 2010. © 2010 Wiley‐Liss, Inc. 相似文献
20.
McDermott A Polenova T Bockmann A Zilm KW Paulson EK Martin RW Montelione GT Paulsen EK 《Journal of biomolecular NMR》2000,16(3):209-219
We demonstrate that high-resolution multidimensional solid state NMR methods can be used to correlate many backbone and side chain chemical shifts for hydrated micro-crystalline U-13C,15N Basic Pancreatic Trypsin Inhibitor (BPTI), using a field strength of 800 MHz for protons, magic angle sample spinning rates of 20 kHz and proton decoupling field strengths of 140 kHz. Results from two homonuclear transfer methods, radio frequency driven dipolar recoupling and spin diffusion, were compared. Typical 13C peak line widths are 0.5 ppm, resulting in C-C and C-CO regions that exhibit many resolved peaks. Two-dimensional carbon–carbon correlation spectra of BPTI have sufficient resolution to identify and correlate many of the spin systems associated with the amino acids. As a result, we have been able to assign a large number of the spin systems in this protein. The agreement between shifts measured in the solid state and those in solution is typically very good, although some shifts near the ion binding sites differ by at least 1.5 ppm. These studies were conducted with approximately 0.2 to 0.4 mol of enriched material; the sensitivity of this method is apparently adequate for other biological systems as well. 相似文献