首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bisecting N-acetylglucosamine (GlcNAc) structure, formed through catalysis by UDP-N-acetylglucosamine : beta-D-mannoside beta-1,4-N-acetylglucosaminyltansferase III (GnT-III), is responsible for a variety of biological functions. We have previously shown that annexin V, a member of the calcium/phospholipid-binding annexin family of proteins, has binding activity toward the bisecting GlcNAc structure. In this study, we reported on a search for potential target glycoproteins for annexin V in a rat hepatoma cell line, M31. Using a glutathione S-transferase (GST)-annexin V immobilized sepharose 4B affinity column to trap interacting proteins produced by the GnT-III-transfected M31 cells, we isolated a 47 kDa protein. It was identified as Hsp47 by an N-terminal sequence analysis. Immunoprecipitation experiments showed that annexin V interacted with Hsp47. The association of annexin V and Hsp47 was abolished by treatment with N-glycosidase F or preincubation with sugar chains containing bisecting GlcNAc, suggesting that the bisecting GlcNAc plays an important role in the interaction. An oligosaccharide analysis of Hsp47 purified from GnT-III-transfected M31 cells was shown to have the bisecting GlcNAc structure, as detected by erythroagglutinating phytohemagglutinin (E4-PHA) and matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS) analysis. Surface plasmon resonance analysis showed that annexin V was bound to Hsp47, bearing a bisecting GlcNAc with a Kd of 5.5 microM, whereas no significant binding was observed in the case of Hsp47 without a bisecting GlcNAc. In addition, immunofluorescence microscopy revealed the colocalization of annexin V, Hsp47, and a bisecting GlcNAc sugar chain around the Golgi apparatus. Collectively, these results suggest that the binding of annexin V to Hsp47 is mediated by a bisecting GlcNAc oligosaccharide structure and that Hsp47 is an intracellular ligand glycoprotein for annexin V.  相似文献   

2.
3.
We present the results of 2-ns molecular dynamics (MD) simulations of a hexameric bundle of Alm helices in a 1-palmitoyl-2-oleoylphosphatidylcholine bilayer. These simulations explore the dynamic properties of a model of a helix bundle channel in a complete phospholipid bilayer in an aqueous environment. We explore the stability and conformational dynamics of the bundle in a phospholipid bilayer. We also investigate the effect on bundle stability of the ionization state of the ring of Glu18 side chains. If all of the Glu18 side chains are ionised, the bundle is unstable; if none of the Glu18 side chains are ionized, the bundle is stable. pKA calculations suggest that either zero or one ionized Glu18 is present at neutral pH, correlating with the stable form of the helix bundle. The structural and dynamic properties of water in this model channel were examined. As in earlier in vacuo simulations (Breed et al., 1996 .Biophys. J. 70:1643-1661), the dipole moments of water molecules within the pore were aligned antiparallel to the helix dipoles. This contributes to the stability of the helix bundle.  相似文献   

4.
Upon its genesis during apoptosis, ceramide promotes gross reorganization of the plasma membrane structure involving clustering of signalling molecules and an amplification of vesicle formation, fusion and trafficking. The annexins are a family of proteins, which in the presence of Ca(2+), bind to membranes containing negatively charged phospholipids. Here, we show that ceramide increases affinity of annexin A1-membrane interaction. In the physiologically relevant range of Ca(2+) concentrations, this leads to an increase in the Ca(2+)sensitivity of annexin A1-membrane interaction. In fixed cells, using a ceramide-specific antibody, we establish a direct interaction of annexin A1 with areas of the plasma membrane enriched in ceramide (ceramide platforms). In living cells, the intracellular dynamics of annexin A1 match those of plasmalemmal ceramide. Among proteins of the annexin family, the interaction with ceramide platforms is restricted to annexin A1 and is conveyed by its unique N-terminal domain. We demonstrate that intracellular Ca(2+)overload occurring at the conditions of cellular stress induces ceramide production. Using fluorescently tagged annexin A1 as a reporter for ceramide platforms and annexin A6 as a non-selective membrane marker, we visualize ceramide platforms for the first time in living cells and provide evidence for a ceramide-driven segregation and internalization of membrane-associated proteins.  相似文献   

5.
6.
Bond PJ  Wee CL  Sansom MS 《Biochemistry》2008,47(43):11321-11331
Experimental and computational studies have indicated that hydrophobicity plays a key role in driving the insertion of transmembrane alpha-helices into lipid bilayers. Molecular dynamics simulations allow exploration of the nature of the interactions of transmembrane alpha-helices with their lipid bilayer environment. In particular, coarse-grained simulations have considerable potential for studying many aspects of membrane proteins, ranging from their self-assembly to the relation between their structure and function. However, there is a need to evaluate the accuracy of coarse-grained estimates of the energetics of transmembrane helix insertion. Here, three levels of complexity of model system have been explored to enable such an evaluation. First, calculated free energies of partitioning of amino acid side chains between water and alkane yielded an excellent correlation with experiment. Second, free energy profiles for transfer of amino acid side chains along the normal to a phosphatidylcholine bilayer were in good agreement with experimental and atomistic simulation studies. Third, estimation of the free energy profile for transfer of an arginine residue, embedded within a hydrophobic alpha-helix, to the center of a lipid bilayer gave a barrier of approximately 15 kT. Hence, there is a substantial barrier to membrane insertion for charged amino acids, but the coarse-grained model still underestimates the corresponding free energy estimate (approximately 29 kT) from atomistic simulations (Dorairaj, S., and Allen, T. W. (2007) Proc. Natl. Acad. Sci. U.S.A. 104, 4943-4948). Coarse-grained simulations were then used to predict the free energy profile for transfer of a simple model transmembrane alpha-helix (WALP23) across a lipid bilayer. The results indicated that a transmembrane orientation was favored by about -70 kT.  相似文献   

7.
The results of full-atom molecular dynamics simulations of the transmembrane domains (TMDs) of both native, and Glu664-mutant (either protonated or unprotonated) Neu in an explicit fully hydrated dimyristoylphosphatidylcholine (DMPC) lipid bilayer are presented. For the native TMD peptide, a 10.05 ns trajectory was collected, while for the mutant TMD peptides 5.05 ns trajectories were collected for each. The peptides in all three simulations display stable predominantly -helical hydrogen bonding throughout the trajectories. The only significant exception occurs near the C-terminal end of the native and unprotonated mutant TMDs just outside the level of the lipid headgroups, where -helical hydrogen bonding develops, introducing a kink in the backbone structure. However, there is no indication of the formation of a bulge within the hydrophobic region of either native or mutant peptides. Over the course of the simulation of the mutant peptide, it is found that a significant number of water molecules penetrate the hydrophobic region of the surrounding lipid molecules, effectively hydrating Glu664. If the energy cost of such water penetration is significant enough, this may be a factor in the enhanced dimerization affinity of Glu664-mutant Neu.  相似文献   

8.
The structure of a fully hydrated mixed (saturated/polyunsaturated) chain lipid bilayer in the biologically relevant liquid crystalline phase has been examined by performing a molecular dynamics study. The model membrane, a 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (SDPC, 18:0/22:6 PC) lipid bilayer, was investigated at constant (room) temperature and (ambient) pressure, and the results obtained in the nanosecond time scale reproduced quite well the available experimental data. Polyunsaturated fatty acids are found in high concentrations in neuronal and retinal tissues and are essential for the development of human brain function. The docosahexaenoic fatty acid, in particular, is fundamental for the proper function of the visual receptor rhodopsin. The lipid bilayer order has been investigated through the orientational order parameters. The water-lipid interface has been explored thoroughly in terms of its dimensions and the organization of the different components. Several types of interactions occurring in the system have been analyzed, specifically, the water-hydrocarbon chain, lipid-lipid and lipid-water interactions. The distribution of dihedral angles along the chains and the molecular conformations of the polyunsaturated chain of the lipids have also been studied. Special attention has been focused on the microscopic (molecular) origin of the effects of polyunsaturations on the different physical properties of membranes.  相似文献   

9.
Phospholipid bilayers have been intensively studied by molecular dynamics (MD) simulation in recent years. The properties of bilayer edges are important in determining the structure and stability of pores formed in vesicles and biomembranes. In this work, we use molecular dynamics simulation to investigate the structure, dynamics, and line tension of the edges of bilayer ribbons composed of pure dimyristoylphosphatidylcholine (DMPC) or palmitoyl-oleoylphosphatidylethanolamine (POPE). As expected, we observe a significant reorganization of lipids at and near the edges. The treatment of electrostatic effects is shown to have a qualitative impact on the structure and stability of the edge, and significant differences are observed in the dynamics and structure of edges formed by DMPC and palmitoyl-oleoylphosphatidylethanolamine. From the pressure anisotropy in the simulation box, we calculate a line tension of approximately 10-30 pN for the DMPC edge, in qualitative agreement with experimental estimates for similar lipids.  相似文献   

10.
The distribution of 1H-pyrrolo[3,2-h]quinoline (PQ), 11H-dipyrido[2,3-a]carbazole (PC) and 7-azaindole (7AI) at a water/membrane interface has been investigated by molecular dynamics (MD) simulations. The MD study focused on favorable binding sites of the azaaromatic probes across a dipalmitoylphosphatidylcholine (DPPC) bilayer. Our simulations show that PQ and PC are preferably accommodated at the hydrocarbon core of the bilayer below the glycerol moiety. In addition, it is found that the hydrophobic aromatic parts of the probes are located inside a more ordered region of DPPC, consisting of hydrophobic lipid chains. In contrast to PQ and PC, 7AI is characterized by a broad distribution between a DPPC interface and water, so that the three preferable binding sites are found across a water/membrane interface. It is found that in the sequence 7AI-PQ-PC, due to the increase of the number of aromatic rings and, hence, the hydrophobic character of the probes, the depth of the probe localization is gradually shifted deeper inside the hydrocarbon core of the bilayer. We found that the probe-lipid hydrogen-bonding contributes weakly to the favorable localizations of the azaaromatic probes inside the DPPC bilayer, so that the probe localization is mainly driven by electrostatic dipole-dipole and van der Waals interactions.  相似文献   

11.
Pantano S  Carafoli E 《Proteins》2007,66(4):930-940
Phospholamban (PLB) is a small membrane protein that regulates the activity of the calcium ATP-ase in the cardiac, slow-twitch, and smooth muscle sarcoplasmic reticulum through the reversible phosphorylation of Ser16. We present here a comparative molecular dynamics study of unmodified and phosphorylated PLB immersed in a phospholipid membrane. The study has been performed under different ionic strength conditions, using the NMR structures of two PLB variants determined in mixed organic solvent and dodecylphosphocholine micelles. The simulations indicate that all PLB forms studied display a highly dynamic behavior of the N-terminal cytoplasmic moiety, with a decrease of its helical content in the phosphorylated forms. The cytoplasmic domain undergoes large collective motions sampling conformations parallel as well as perpendicular to the membrane surface in all the simulations. The transmembrane domain retains a tightly folded helical conformation with a small tilt with respect to the membrane plane probably induced by the presence of Asn30 and Asn34 within the hydrophobic environment. Furthermore, the phosphoric group on Ser16 establishes transient electrostatic interactions with the phospholipid heads. We propose a model in which phosphorylation diminishes the probability of interactions of PLB with residues near Lys400 in the SERCA pump, thus relieving its inhibition.  相似文献   

12.
This work aims to explore theoretically the molecular mechanisms of ligand binding to proteins through the use of molecular dynamics simulations. The binding of sodium dodecyl sulfate (SDS) to cobra cardio toxin A3 (CTX A3) and thiourea (TOU) to lysozyme have been chosen as the two model systems. Data acquisitions were made by Gromacs software. To begin with, the collisions of ligand molecules with every residue of CTX A3 and lysozyme were evaluated. With this information in hand, the average numbers of collisions with each residue was defined and then assessed. Next, a measure of the affinity of a residue, Pi, referred to as conformational factor, toward a ligand molecule was established. Based on the results provided, all site-making residues for CTX A3 and lysozyme were identified. The results are in good agreement with the experimental data. Finally, based on this method, all site-making residues of bovine carbonic anhydrase (BCA) toward the SDS ligand were predicted.  相似文献   

13.
Liposomal formulation of curcumin is an important therapeutic agent for the treatment of various cancers. Despite extensive studies on the biological effects of this formulation in cancer treatment, much remains unknown about curcumin–liposome interactions. Understanding how different lipid bilayers respond to curcumin molecule may help us to design more effective liposomal curcumin. Here, we used molecular dynamics simulation method to investigate the behavior of curcumin in two lipid bilayers commonly used in preparation of liposomal curcumin, namely dipalmitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidylglycerol (DMPG). First, the free energy barriers for translocation of one curcumin molecule from water to the lipid bilayer were determined by using the potential of mean force (PMF). The computed free energy profile exhibits a global minimum at the solvent–headgroup interface (LH region) for both lipid membranes. We also evaluated the free energy difference between the equilibrium position of curcumin in the lipid bilayer and bulk water as the excess chemical potential. Our results show that curcumin has the higher affinity in DMPG compared to DPPC lipid bilayer (?8.39 vs. ?1.69 kBT) and this is related to more hydrogen bond possibility for curcumin in DMPG lipid membrane. Next, using an unconstrained molecular dynamic simulation with curcumin initially positioned at the center of lipid bilayer, we studied various properties of each lipid bilayer system in the presence of curcumin molecule that was in full agreement with PMF and experimental data. The results of these simulation studies suggest that membrane composition could have a large effect on interaction of curcumin–lipid bilayer.  相似文献   

14.
Recently it was shown that annexin V is the most prominent member of the annexin family in the adult heart [1]. Amongst others, annexin V has been suggested to play a role in developmental processes. The aim of the present study was to explore whether in the heart annexin V content and localization change during maturational and hypertrophic growth, in order to obtain indications that annexin V is involved in cardiac growth processes. First, in the intact rat heart annexin V content and localization were studied during perinatal development. It was clearly demonstrated that annexin V content in total heart transiently increased in the first week after birth, from 0.79 ± 0.06 µg/mg protein at l day before birth to a peak value of 1.24 ± 0.08 µg/mg protein 6 days after birth, whereafter annexin V protein levels declined to a value of 0.70 ± 0.06 µg/mg protein at 84 days after birth (p < 0.05). Differences in annexin V content were also observed between myocytes isolated from neonatal and adult hearts [0.81 ± 0.09 and 0.17 ± 0.08 µg/mg protein, respectively (p < 0.05)]. Moreover, during cardiac maturational growth the subcellular localization of annexin V might change from a cytoplasmic to a more prominent sarcolemmal localization. Second, in vivo hypertrophy induced by aortic coarctation resulted in a marked degree of hypertrophy (22% increase in ventricular weight), but was not associated with a change in annexin V localization or content. The quantitative results obtained with intact hypertrophic rat hearts are supported by findings in neonatal ventricular myocytes, in which hypertrophy was induced by phenylephrine (10-5 M). In the latter model no changes in annexin V content could be observed either. In conclusion, the marked alterations in annexin V content during the maturational growth in the heart suggest a possible involvement of this protein in this process. In contrast, the absence of changes in annexin V content and localization in hypertrophied hearts compared to age matched control hearts suggests that annexin V does not play a crucial role in the maintenance of the hypertrophic phenotype of the cardiac muscle cell. This notion is supported by observations in phenylephrine-induced hypertrophied neonatal cardiomyocytes.  相似文献   

15.
Major histocompatibility complex (MHC) II proteins bind peptide fragments derived from pathogen antigens and present them at the cell surface for recognition by T cells. MHC proteins are divided into Class I and Class II. Human MHC Class II alleles are grouped into three loci: HLA-DP, HLA-DQ, and HLA-DR. They are involved in many autoimmune diseases. In contrast to HLA-DR and HLA-DQ proteins, the X-ray structure of the HLA-DP2 protein has been solved quite recently. In this study, we have used structure-based molecular dynamics simulation to derive a tool for rapid and accurate virtual screening for the prediction of HLA-DP2-peptide binding. A combinatorial library of 247 peptides was built using the "single amino acid substitution" approach and docked into the HLA-DP2 binding site. The complexes were simulated for 1 ns and the short range interaction energies (Lennard-Jones and Coulumb) were used as binding scores after normalization. The normalized values were collected into quantitative matrices (QMs) and their predictive abilities were validated on a large external test set. The validation shows that the best performing QM consisted of Lennard-Jones energies normalized over all positions for anchor residues only plus cross terms between anchor-residues.  相似文献   

16.
17.
Based on molecular dynamics simulations, an analysis of structure and dynamics is performed on interfacial water at a liquid crystalline dipalmitoylphosphatidycholine/water system. Water properties relevant for understanding NMR relaxation are emphasized. The first and second rank orientational order parameters of the water O-H bonds were calculated, where the second rank order parameter is in agreement with experimental determined quadrupolar splittings. Also, two different interfacial water regions (bound water regions) are revealed with respect to different signs of the second rank order parameter. The water reorientation correlation function reveals a mixture of fast and slow decaying parts. The fast (ps) part of the correlation function is due to local anisotropic water reorientation whereas the much slower part is due to more complicated processes including lateral diffusion along the interface and chemical exchange between free and bound water molecules. The 100-ns-long molecular dynamics simulation at constant pressure (1 atm) and at a temperature of 50 degrees C of 64 lipid molecules and 64 x 23 water molecules lack a slow water reorientation correlation component in the ns time scale. The (2)H(2)O powder spectrum of the dipalmitoylphosphatidycholine/water system is narrow and consequently, the NMR relaxation time T(2) is too short compared to experimental results.  相似文献   

18.
In order to investigate structural and dynamical properties of local anesthetic articaine in a model lipid bilayer, a series of molecular dynamics simulations have been performed. Simulations were carried out for neutral and charged (protonated) forms of articaine inserted in fully hydrated dimyristoylphosphatidylcholine (DMPC) lipid bilayer. For comparison purpose, a fully hydrated DMPC bilayer without articaine was also simulated. The length of each simulation was 200 ns. Various properties of the lipid bilayer systems in the presence of both charged and uncharged forms of articaine taken at two different concentrations have been examined: membrane area per lipid, mass density distributions, order parameters, radial distribution functions, head group tilt, diffusion coefficients, electrostatic potential, etc, and compared with results of previous simulations of DMPC bilayer in the presence of lidocaine. It was shown that addition of both charged and neutral forms of articaine causes increase of the dipole electrostatic potential in the membrane interior.  相似文献   

19.
Annexin A1 has been shown to cause membrane aggregation and fusion, yet the mechanism of these activities is not clearly understood. In this work, molecular dynamics simulations were performed on monomeric annexin A1 positioned between two negatively charged monolayers using AMBER's all atom force field to gain insight into the mechanism of fusion. Each phospolipid monolayer was made up of 180 DOPC molecules and 45 DOPG molecules to achieve a 4:1 ratio. The space between the two monolayers was explicitly solvated using TIP3P waters in a rectilinear box. The constructed setup contained up to 0.14 million atoms. Application of periodic boundary conditions to the simulation setup gave the desired effect of two continuous membrane bilayers. Nonbonded interactions were calculated between the N‐terminal residues and the bottom layer of phospholipids, which displayed a strong attraction of K26 and K29 to the lipid head‐groups. The side‐chains of these two residues were observed to orient themselves in close proximity (~3.5 Å) with the polar head‐groups of the phospholipids. Proteins 2014; 82:2936–2942. © 2014 Wiley Periodicals, Inc.  相似文献   

20.
Annexin V is a member of a family of structurally homologous proteins sharing the ability to bind to negatively charged phospholipid membranes in a Ca(2+)-dependent manner. The structure of the soluble form of annexin V has been solved by X-ray crystallography, while electron crystallography of two-dimensional (2D) crystals has been used to reveal the structure of its membrane-bound form. Two 2D crystal forms of annexin V have been reported to date, with either p6 or p3 symmetry. Atomic force microscopy has previously been used to investigate the growth and the topography of the p6 crystal form on supported phospholipid bilayers (Reviakine et al., 1998). The surface structure of the second crystal form, p3, is presented in this study, along with an improved topographic map of the p6 crystal form. The observed topography is correlated with the structure determined by X-ray crystallography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号