首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein structure refinement is the challenging problem of operating on any protein structure prediction to improve its accuracy with respect to the native structure in a blind fashion. Although many approaches have been developed and tested during the last four CASP experiments, a majority of the methods continue to degrade models rather than improve them. Princeton_TIGRESS (Khoury et al., Proteins 2014;82:794–814) was developed previously and utilizes separate sampling and selection stages involving Monte Carlo and molecular dynamics simulations and classification using an SVM predictor. The initial implementation was shown to consistently refine protein structures 76% of the time in our own internal benchmarking on CASP 7‐10 targets. In this work, we improved the sampling and selection stages and tested the method in blind predictions during CASP11. We added a decomposition of physics‐based and hybrid energy functions, as well as a coordinate‐free representation of the protein structure through distance‐binning distances to capture fine‐grained movements. We performed parameter estimation to optimize the adjustable SVM parameters to maximize precision while balancing sensitivity and specificity across all cross‐validated data sets, finding enrichment in our ability to select models from the populations of similar decoys generated for targets in CASPs 7‐10. The MD stage was enhanced such that larger structures could be further refined. Among refinement methods that are currently implemented as web‐servers, Princeton_TIGRESS 2.0 demonstrated the most consistent and most substantial net refinement in blind predictions during CASP11. The enhanced refinement protocol Princeton_TIGRESS 2.0 is freely available as a web server at http://atlas.engr.tamu.edu/refinement/ . Proteins 2017; 85:1078–1098. © 2017 Wiley Periodicals, Inc.  相似文献   

2.
Protein structure refinement is an important but unsolved problem; it must be solved if we are to predict biological function that is very sensitive to structural details. Specifically, critical assessment of techniques for protein structure prediction (CASP) shows that the accuracy of predictions in the comparative modeling category is often worse than that of the template on which the homology model is based. Here we describe a refinement protocol that is able to consistently refine submitted predictions for all categories at CASP7. The protocol uses direct energy minimization of the knowledge‐based potential of mean force that is based on the interaction statistics of 167 atom types (Summa and Levitt, Proc Natl Acad Sci USA 2007; 104:3177–3182). Our protocol is thus computationally very efficient; it only takes a few minutes of CPU time to run typical protein models (300 residues). We observe an average structural improvement of 1% in GDT_TS, for predictions that have low and medium homology to known PDB structures (Global Distance Test score or GDT_TS between 50 and 80%). We also observe a marked improvement in the stereochemistry of the models. The level of improvement varies amongst the various participants at CASP, but we see large improvements (>10% increase in GDT_TS) even for models predicted by the best performing groups at CASP7. In addition, our protocol consistently improved the best predicted models in the refinement category at CASP7 and CASP8. These improvements in structure and stereochemistry prove the usefulness of our computationally inexpensive, powerful and automatic refinement protocol. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
During CASP10 in summer 2012, we tested BCL::Fold for prediction of free modeling (FM) and template‐based modeling (TBM) targets. BCL::Fold assembles the tertiary structure of a protein from predicted secondary structure elements (SSEs) omitting more flexible loop regions early on. This approach enables the sampling of conformational space for larger proteins with more complex topologies. In preparation of CASP11, we analyzed the quality of CASP10 models throughout the prediction pipeline to understand BCL::Fold's ability to sample the native topology, identify native‐like models by scoring and/or clustering approaches, and our ability to add loop regions and side chains to initial SSE‐only models. The standout observation is that BCL::Fold sampled topologies with a GDT_TS score > 33% for 12 of 18 and with a topology score > 0.8 for 11 of 18 test cases de novo. Despite the sampling success of BCL::Fold, significant challenges still exist in clustering and loop generation stages of the pipeline. The clustering approach employed for model selection often failed to identify the most native‐like assembly of SSEs for further refinement and submission. It was also observed that for some β‐strand proteins model refinement failed as β‐strands were not properly aligned to form hydrogen bonds removing otherwise accurate models from the pool. Further, BCL::Fold samples frequently non‐natural topologies that require loop regions to pass through the center of the protein. Proteins 2015; 83:547–563. © 2015 Wiley Periodicals, Inc.  相似文献   

4.
One of the major limitations of computational protein structure prediction is the deviation of predicted models from their experimentally derived true, native structures. The limitations often hinder the possibility of applying computational protein structure prediction methods in biochemical assignment and drug design that are very sensitive to structural details. Refinement of these low‐resolution predicted models to high‐resolution structures close to the native state, however, has proven to be extremely challenging. Thus, protein structure refinement remains a largely unsolved problem. Critical assessment of techniques for protein structure prediction (CASP) specifically indicated that most predictors participating in the refinement category still did not consistently improve model quality. Here, we propose a two‐step refinement protocol, called 3Drefine, to consistently bring the initial model closer to the native structure. The first step is based on optimization of hydrogen bonding (HB) network and the second step applies atomic‐level energy minimization on the optimized model using a composite physics and knowledge‐based force fields. The approach has been evaluated on the CASP benchmark data and it exhibits consistent improvement over the initial structure in both global and local structural quality measures. 3Drefine method is also computationally inexpensive, consuming only few minutes of CPU time to refine a protein of typical length (300 residues). 3Drefine web server is freely available at http://sysbio.rnet.missouri.edu/3Drefine/ . Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
Scoring model structure is an essential component of protein structure prediction that can affect the prediction accuracy tremendously. Users of protein structure prediction results also need to score models to select the best models for their application studies. In Critical Assessment of techniques for protein Structure Prediction (CASP), model accuracy estimation methods have been tested in a blind fashion by providing models submitted by the tertiary structure prediction servers for scoring. In CASP13, model accuracy estimation results were evaluated in terms of both global and local structure accuracy. Global structure accuracy estimation was evaluated by the quality of the models selected by the global structure scores and by the absolute estimates of the global scores. Residue-wise, local structure accuracy estimations were evaluated by three different measures. A new measure introduced in CASP13 evaluates the ability to predict inaccurately modeled regions that may be improved by refinement. An intensive comparative analysis on CASP13 and the previous CASPs revealed that the tertiary structure models generated by the CASP13 servers show very distinct features. Higher consensus toward models of higher global accuracy appeared even for free modeling targets, and many models of high global accuracy were not well optimized at the atomic level. This is related to the new technology in CASP13, deep learning for tertiary contact prediction. The tertiary model structures generated by deep learning pose a new challenge for EMA (estimation of model accuracy) method developers. Model accuracy estimation itself is also an area where deep learning can potentially have an impact, although current EMA methods have not fully explored that direction.  相似文献   

6.
Georg Kuenze  Jens Meiler 《Proteins》2019,87(12):1341-1350
Computational methods that produce accurate protein structure models from limited experimental data, for example, from nuclear magnetic resonance (NMR) spectroscopy, hold great potential for biomedical research. The NMR-assisted modeling challenge in CASP13 provided a blind test to explore the capabilities and limitations of current modeling techniques in leveraging NMR data which had high sparsity, ambiguity, and error rate for protein structure prediction. We describe our approach to predict the structure of these proteins leveraging the Rosetta software suite. Protein structure models were predicted de novo using a two-stage protocol. First, low-resolution models were generated with the Rosetta de novo method guided by nonambiguous nuclear Overhauser effect (NOE) contacts and residual dipolar coupling (RDC) restraints. Second, iterative model hybridization and fragment insertion with the Rosetta comparative modeling method was used to refine and regularize models guided by all ambiguous and nonambiguous NOE contacts and RDCs. Nine out of 16 of the Rosetta de novo models had the correct fold (global distance test total score > 45) and in three cases high-resolution models were achieved (root-mean-square deviation < 3.5 å). We also show that a meta-approach applying iterative Rosetta + NMR refinement on server-predicted models which employed non-NMR-contacts and structural templates leads to substantial improvement in model quality. Integrating these data-assisted refinement strategies with innovative non-data-assisted approaches which became possible in CASP13 such as high precision contact prediction will in the near future enable structure determination for large proteins that are outside of the realm of conventional NMR.  相似文献   

7.
We describe AlphaFold, the protein structure prediction system that was entered by the group A7D in CASP13. Submissions were made by three free-modeling (FM) methods which combine the predictions of three neural networks. All three systems were guided by predictions of distances between pairs of residues produced by a neural network. Two systems assembled fragments produced by a generative neural network, one using scores from a network trained to regress GDT_TS. The third system shows that simple gradient descent on a properly constructed potential is able to perform on par with more expensive traditional search techniques and without requiring domain segmentation. In the CASP13 FM assessors' ranking by summed z-scores, this system scored highest with 68.3 vs 48.2 for the next closest group (an average GDT_TS of 61.4). The system produced high-accuracy structures (with GDT_TS scores of 70 or higher) for 11 out of 43 FM domains. Despite not explicitly using template information, the results in the template category were comparable to the best performing template-based methods.  相似文献   

8.
Protein structure docking is the process in which the quaternary structure of a protein complex is predicted from individual tertiary structures of the protein subunits. Protein docking is typically performed in two main steps. The subunits are first docked while keeping them rigid to form the complex, which is then followed by structure refinement. Structure refinement is crucial for a practical use of computational protein docking models, as it is aimed for correcting conformations of interacting residues and atoms at the interface. Here, we benchmarked the performance of eight existing protein structure refinement methods in refinement of protein complex models. We show that the fraction of native contacts between subunits is by far the most straightforward metric to improve. However, backbone dependent metrics, based on the Root Mean Square Deviation proved more difficult to improve via refinement.  相似文献   

9.
Yunqi Li  Yang Zhang 《Proteins》2009,76(3):665-676
Protein structure prediction approaches usually perform modeling simulations based on reduced representation of protein structures. For biological utilizations, it is an important step to construct full atomic models from the reduced structure decoys. Most of the current full atomic model reconstruction procedures have defects which either could not completely remove the steric clashes among backbone atoms or generate final atomic models with worse topology similarity relative to the native structures than the reduced models. In this work, we develop a new protocol, called REMO, to generate full atomic protein models by optimizing the hydrogen‐bonding network with basic fragments matched from a newly constructed backbone isomer library of solved protein structures. The algorithm is benchmarked on 230 nonhomologous proteins with reduced structure decoys generated by I‐TASSER simulations. The results show that REMO has a significant ability to remove steric clashes, and meanwhile retains good topology of the reduced model. The hydrogen‐bonding network of the final models is dramatically improved during the procedure. The REMO algorithm has been exploited in the recent CASP8 experiment which demonstrated significant improvements of the I‐TASSER models in both atomic‐level structural refinement and hydrogen‐bonding network construction. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
Biophysical forcefields have contributed less than originally anticipated to recent progress in protein structure prediction. Here, we have investigated the selectivity of a recently developed all‐atom free‐energy forcefield for protein structure prediction and quality assessment (QA). Using a heuristic method, but excluding homology, we generated decoy‐sets for all targets of the CASP7 protein structure prediction assessment with <150 amino acids. The decoys in each set were then ranked by energy in short relaxation simulations and the best low‐energy cluster was submitted as a prediction. For four of nine template‐free targets, this approach generated high‐ranking predictions within the top 10 models submitted in CASP7 for the respective targets. For these targets, our de‐novo predictions had an average GDT_S score of 42.81, significantly above the average of all groups. The refinement protocol has difficulty for oligomeric targets and when no near‐native decoys are generated in the decoy library. For targets with high‐quality decoy sets the refinement approach was highly selective. Motivated by this observation, we rescored all server submissions up to 200 amino acids using a similar refinement protocol, but using no clustering, in a QA exercise. We found an excellent correlation between the best server models and those with the lowest energy in the forcefield. The free‐energy refinement protocol may thus be an efficient tool for relative QA and protein structure prediction. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
Template-based methods for predicting protein structure provide models for a significant portion of the protein but often contain insertions or chain ends (InsEnds) of indeterminate conformation. The local structure prediction "problem" entails modeling the InsEnds onto the rest of the protein. A well-known limit involves predicting loops of ≤12 residues in crystal structures. However, InsEnds may contain as many as ~50 amino acids, and the template-based model of the protein itself may be imperfect. To address these challenges, we present a free modeling method for predicting the local structure of loops and large InsEnds in both crystal structures and template-based models. The approach uses single amino acid torsional angle "pivot" moves of the protein backbone with a C(β) level representation. Nevertheless, our accuracy for loops is comparable to existing methods. We also apply a more stringent test, the blind structure prediction and refinement categories of the CASP9 tournament, where we improve the quality of several homology based models by modeling InsEnds as long as 45 amino acids, sizes generally inaccessible to existing loop prediction methods. Our approach ranks as one of the best in the CASP9 refinement category that involves improving template-based models so that they can function as molecular replacement models to solve the phase problem for crystallographic structure determination.  相似文献   

12.
Protein model refinement has been an essential part of successful protein structure prediction. Molecular dynamics simulation-based refinement methods have shown consistent improvement of protein models. There had been progress in the extent of refinement for a few years since the idea of ensemble averaging of sampled conformations emerged. There was little progress in CASP12 because conformational sampling was not sufficiently diverse due to harmonic restraints. During CASP13, a new refinement method was tested that achieved significant improvements over CASP12. The new method intended to address previous bottlenecks in the refinement problem by introducing new features. Flat-bottom harmonic restraints replaced harmonic restraints, sampling was performed iteratively, and a new scoring function and selection criteria were used. The new protocol expanded conformational sampling at reduced computational costs. In addition to overall improvements, some models were refined significantly to near-experimental accuracy.  相似文献   

13.
Substantial progresses in protein structure prediction have been made by utilizing deep-learning and residue-residue distance prediction since CASP13. Inspired by the advances, we improve our CASP14 MULTICOM protein structure prediction system by incorporating three new components: (a) a new deep learning-based protein inter-residue distance predictor to improve template-free (ab initio) tertiary structure prediction, (b) an enhanced template-based tertiary structure prediction method, and (c) distance-based model quality assessment methods empowered by deep learning. In the 2020 CASP14 experiment, MULTICOM predictor was ranked seventh out of 146 predictors in tertiary structure prediction and ranked third out of 136 predictors in inter-domain structure prediction. The results demonstrate that the template-free modeling based on deep learning and residue-residue distance prediction can predict the correct topology for almost all template-based modeling targets and a majority of hard targets (template-free targets or targets whose templates cannot be recognized), which is a significant improvement over the CASP13 MULTICOM predictor. Moreover, the template-free modeling performs better than the template-based modeling on not only hard targets but also the targets that have homologous templates. The performance of the template-free modeling largely depends on the accuracy of distance prediction closely related to the quality of multiple sequence alignments. The structural model quality assessment works well on targets for which enough good models can be predicted, but it may perform poorly when only a few good models are predicted for a hard target and the distribution of model quality scores is highly skewed. MULTICOM is available at https://github.com/jianlin-cheng/MULTICOM_Human_CASP14/tree/CASP14_DeepRank3 and https://github.com/multicom-toolbox/multicom/tree/multicom_v2.0 .  相似文献   

14.
Protein structure refinement refers to the process of improving the qualities of protein structures during structure modeling processes to bring them closer to their native states. Structure refinement has been drawing increasing attention in the community-wide Critical Assessment of techniques for Protein Structure prediction (CASP) experiments since its addition in 8th CASP experiment. During the 9th and recently concluded 10th CASP experiments, a consistent growth in number of refinement targets and participating groups has been witnessed. Yet, protein structure refinement still remains a largely unsolved problem with majority of participating groups in CASP refinement category failed to consistently improve the quality of structures issued for refinement. In order to alleviate this need, we developed a completely automated and computationally efficient protein 3D structure refinement method, i3Drefine, based on an iterative and highly convergent energy minimization algorithm with a powerful all-atom composite physics and knowledge-based force fields and hydrogen bonding (HB) network optimization technique. In the recent community-wide blind experiment, CASP10, i3Drefine (as ‘MULTICOM-CONSTRUCT’) was ranked as the best method in the server section as per the official assessment of CASP10 experiment. Here we provide the community with free access to i3Drefine software and systematically analyse the performance of i3Drefine in strict blind mode on the refinement targets issued in CASP10 refinement category and compare with other state-of-the-art refinement methods participating in CASP10. Our analysis demonstrates that i3Drefine is only fully-automated server participating in CASP10 exhibiting consistent improvement over the initial structures in both global and local structural quality metrics. Executable version of i3Drefine is freely available at http://protein.rnet.missouri.edu/i3drefine/.  相似文献   

15.
16.
Raval A  Piana S  Eastwood MP  Dror RO  Shaw DE 《Proteins》2012,80(8):2071-2079
Accurate computational prediction of protein structure represents a longstanding challenge in molecular biology and structure-based drug design. Although homology modeling techniques are widely used to produce low-resolution models, refining these models to high resolution has proven difficult. With long enough simulations and sufficiently accurate force fields, molecular dynamics (MD) simulations should in principle allow such refinement, but efforts to refine homology models using MD have for the most part yielded disappointing results. It has thus far been unclear whether MD-based refinement is limited primarily by accessible simulation timescales, force field accuracy, or both. Here, we examine MD as a technique for homology model refinement using all-atom simulations, each at least 100 μs long-more than 100 times longer than previous refinement simulations-and a physics-based force field that was recently shown to successfully fold a structurally diverse set of fast-folding proteins. In MD simulations of 24 proteins chosen from the refinement category of recent Critical Assessment of Structure Prediction (CASP) experiments, we find that in most cases, simulations initiated from homology models drift away from the native structure. Comparison with simulations initiated from the native structure suggests that force field accuracy is the primary factor limiting MD-based refinement. This problem can be mitigated to some extent by restricting sampling to the neighborhood of the initial model, leading to structural improvement that, while limited, is roughly comparable to the leading alternative methods.  相似文献   

17.
Park H  Ko J  Joo K  Lee J  Seok C  Lee J 《Proteins》2011,79(9):2725-2734
The rapid increase in the number of experimentally determined protein structures in recent years enables us to obtain more reliable protein tertiary structure models than ever by template-based modeling. However, refinement of template-based models beyond the limit available from the best templates is still needed for understanding protein function in atomic detail. In this work, we develop a new method for protein terminus modeling that can be applied to refinement of models with unreliable terminus structures. The energy function for terminus modeling consists of both physics-based and knowledge-based potential terms with carefully optimized relative weights. Effective sampling of both the framework and terminus is performed using the conformational space annealing technique. This method has been tested on a set of termini derived from a nonredundant structure database and two sets of termini from the CASP8 targets. The performance of the terminus modeling method is significantly improved over our previous method that does not employ terminus refinement. It is also comparable or superior to the best server methods tested in CASP8. The success of the current approach suggests that similar strategy may be applied to other types of refinement problems such as loop modeling or secondary structure rearrangement.  相似文献   

18.
Many proteins need to form oligomers to be functional, so oligomer structures provide important clues to biological roles of proteins. Prediction of oligomer structures therefore can be a useful tool in the absence of experimentally resolved structures. In this article, we describe the server and human methods that we used to predict oligomer structures in the CASP13 experiment. Performances of the methods on the 42 CASP13 oligomer targets consisting of 30 homo-oligomers and 12 hetero-oligomers are discussed. Our server method, Seok-assembly, generated models with interface contact similarity measure greater than 0.2 as model 1 for 11 homo-oligomer targets when proper templates existed in the database. Model refinement methods such as loop modeling and molecular dynamics (MD)-based overall refinement failed to improve model qualities when target proteins have domains not covered by templates or when chains have very small interfaces. In human predictions, additional experimental data such as low-resolution electron microscopy (EM) map were utilized. EM data could assist oligomer structure prediction by providing a global shape of the complex structure.  相似文献   

19.
Misura KM  Baker D 《Proteins》2005,59(1):15-29
Achieving atomic level accuracy in de novo structure prediction presents a formidable challenge even in the context of protein models with correct topologies. High-resolution refinement is a fundamental test of force field accuracy and sampling methodology, and its limited success in both comparative modeling and de novo prediction contexts highlights the limitations of current approaches. We constructed four tests to identify bottlenecks in our current approach and to guide progress in this challenging area. The first three tests showed that idealized native structures are stable under our refinement simulation conditions and that the refinement protocol can significantly decrease the root mean square deviation (RMSD) of perturbed native structures. In the fourth test we applied the refinement protocol to de novo models and showed that accurate models could be identified based on their energies, and in several cases many of the buried side chains adopted native-like conformations. We also showed that the differences in backbone and side-chain conformations between the refined de novo models and the native structures are largely localized to loop regions and regions where the native structure has unusual features such as rare rotamers or atypical hydrogen bonding between beta-strands. The refined de novo models typically have higher energies than refined idealized native structures, indicating that sampling of local backbone conformations and side-chain packing arrangements in a condensed state is a primary obstacle.  相似文献   

20.
M. F. Thorpe  S. Banu Ozkan 《Proteins》2015,83(12):2279-2292
The most successful protein structure prediction methods to date have been template‐based modeling (TBM) or homology modeling, which predicts protein structure based on experimental structures. These high accuracy predictions sometimes retain structural errors due to incorrect templates or a lack of accurate templates in the case of low sequence similarity, making these structures inadequate in drug‐design studies or molecular dynamics simulations. We have developed a new physics based approach to the protein refinement problem by mimicking the mechanism of chaperons that rehabilitate misfolded proteins. The template structure is unfolded by selectively (targeted) pulling on different portions of the protein using the geometric based technique FRODA, and then refolded using hierarchically restrained replica exchange molecular dynamics simulations (hr‐REMD). FRODA unfolding is used to create a diverse set of topologies for surveying near native‐like structures from a template and to provide a set of persistent contacts to be employed during re‐folding. We have tested our approach on 13 previous CASP targets and observed that this method of folding an ensemble of partially unfolded structures, through the hierarchical addition of contact restraints (that is, first local and then nonlocal interactions), leads to a refolding of the structure along with refinement in most cases (12/13). Although this approach yields refined models through advancement in sampling, the task of blind selection of the best refined models still needs to be solved. Overall, the method can be useful for improved sampling for low resolution models where certain of the portions of the structure are incorrectly modeled. Proteins 2015; 83:2279–2292. © 2015 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号