首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
    
Native state hydrogen exchange of cold shock protein A (CspA) has been characterized as a function of the denaturant urea and of the stabilizing agent trimethylamine N-oxide (TMAO). The structure of CspA has five strands of beta-sheet. Strands beta1-beta4 have strongly protected amide protons that, based on experiments as a function of urea, exchange through a simple all-or-none global unfolding mechanism. By contrast, the protection of amide protons from strand beta5 is too weak to measure in water. Strand beta5 is hydrogen bonded to strands beta3 and beta4, both of which afford strong protection from solvent exchange. Gaussian network model (GNM) simulations, which assume that the degree of protection depends on tertiary contact density in the native structure, accurately predict the strong protection observed in strands beta1-beta4 but fail to account for the weak protection in strand beta5. The most conspicuous feature of strand beta5 is its low sequence hydrophobicity. In the presence of TMAO, there is an increase in the protection of strands beta1-beta4, and protection extends to amide protons in more hydrophilic segments of the protein, including strand beta5 and the loops connecting the beta-strands. TMAO stabilizes proteins by raising the free energy of the denatured state, due to highly unfavorable interactions between TMAO and the exposed peptide backbone. As such, the stabilizing effects of TMAO are expected to be relatively independent of sequence hydrophobicity. The present results suggest that the magnitude of solvent exchange protection depends more on solvent accessibility in the ensemble of exchange susceptible conformations than on the strength of hydrogen-bonding interactions in the native structure.  相似文献   

2.
    
Using a test set of 13 small, compact proteins, we demonstrate that a remarkably simple protocol can capture native topology from secondary structure information alone, in the absence of long-range interactions. It has been a long-standing open question whether such information is sufficient to determine a protein's fold. Indeed, even the far simpler problem of reconstructing the three-dimensional structure of a protein from its exact backbone torsion angles has remained a difficult challenge owing to the small, but cumulative, deviations from ideality in backbone planarity, which, if ignored, cause large errors in structure. As a familiar example, a small change in an elbow angle causes a large displacement at the end of your arm; the longer the arm, the larger the displacement. Here, correct secondary structure assignments (alpha-helix, beta-strand, beta-turn, polyproline II, coil) were used to constrain polypeptide backbone chains devoid of side chains, and the most stable folded conformations were determined, using Monte Carlo simulation. Just three terms were used to assess stability: molecular compaction, steric exclusion, and hydrogen bonding. For nine of the 13 proteins, this protocol restricts the main chain to a surprisingly small number of energetically favorable topologies, with the native one prominent among them.  相似文献   

3.
We have constructed an extensive database of 13C C and C chemical shifts in proteins of solution, for proteins of which a high-resolution crystal structure exists, and for which the crystal structure has been shown to be essentially identical to the solution structure. There is no systematic effect of temperature, reference compound, or pH on reported shifts, but there appear to be differences in reported shifts arising from referencing differences of up to 4.2 ppm. The major factor affecting chemical shifts is the backbone geometry, which causes differences of ca. 4 ppm between typical - helix and -sheet geometries for C, and of ca. 2 ppm for C. The side-chain dihedral angle 1 has an effect of up to 0.5 ppm on the C shift, particularly for amino acids with branched side-chains at C. Hydrogen bonding to main-chain atoms has an effect of up to 0.9 ppm, which depends on the main- chain conformation. The sequence of the protein and ring-current shifts from aromatic rings have an insignificant effect (except for residues following proline). There are significant differences between different amino acid types in the backbone geometry dependence; the amino acids can be grouped together into five different groups with different , shielding surfaces. The overall fit of individual residues to a single non-residue-specific surface, incorporating the effects of hydrogen bonding and 1 angle, is 0.96 ppm for both C and C. The results from this study are broadly similar to those from ab initio studies, but there are some differences which could merit further attention.  相似文献   

4.
    
Protein solvation is the key determinant for isothermal, concentration-dependent effects on protein equilibria, such as folding. The required solvation information can be extracted from experimental thermodynamic data using Kirkwood-Buff theory. Here we derive and discuss general properties of proteins and osmolytes that are pertinent to their biochemical behavior. We find that hydration depends very little on osmolyte concentration and type. Strong dependencies on both osmolyte concentration and type are found for osmolyte self-solvation and protein-osmolyte solvation changes upon unfolding. However, solvation in osmolyte solutions does not involve complex concentration dependencies as found in organic molecules that are not used as osmolytes in nature. It is argued that the simple solvation behavior of naturally occurring osmolytes is a prerequisite for their usefulness in osmotic regulation in vivo.  相似文献   

5.
    
One of the major limitations of computational protein structure prediction is the deviation of predicted models from their experimentally derived true, native structures. The limitations often hinder the possibility of applying computational protein structure prediction methods in biochemical assignment and drug design that are very sensitive to structural details. Refinement of these low‐resolution predicted models to high‐resolution structures close to the native state, however, has proven to be extremely challenging. Thus, protein structure refinement remains a largely unsolved problem. Critical assessment of techniques for protein structure prediction (CASP) specifically indicated that most predictors participating in the refinement category still did not consistently improve model quality. Here, we propose a two‐step refinement protocol, called 3Drefine, to consistently bring the initial model closer to the native structure. The first step is based on optimization of hydrogen bonding (HB) network and the second step applies atomic‐level energy minimization on the optimized model using a composite physics and knowledge‐based force fields. The approach has been evaluated on the CASP benchmark data and it exhibits consistent improvement over the initial structure in both global and local structural quality measures. 3Drefine method is also computationally inexpensive, consuming only few minutes of CPU time to refine a protein of typical length (300 residues). 3Drefine web server is freely available at http://sysbio.rnet.missouri.edu/3Drefine/ . Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
HERA--a program to draw schematic diagrams of protein secondary structures   总被引:4,自引:0,他引:4  
A program is described which generates hydrogen bonding diagrams of protein structures and optionally helical wheels and helical nets. The program can also beta-strands beta-strands and to automatically extract simple structural motifs such as hairpins or Greek keys. The program greatly reduces the effort required to produce these diagrams and offers considerable flexibility in the information which can be represented. The usefulness of the program is illustrated by several examples including comparing homologous families, correlating protein structure with attributes of individual residues, and extracting all examples of the psi-loop motif from the Brookhaven Data Bank.  相似文献   

7.
Amyloid proteins are converted from their native‐fold to long β‐sheet‐rich fibrils in a typical sigmoidal time‐dependent protein aggregation curve. This reaction process from monomer or dimer to oligomer to nuclei and then to fibrils is the subject of intense study. The main results of this work are based on the use of a well‐studied model amyloid protein, insulin, which has been used in vitro by others. Nine osmolyte molecules, added during the protein aggregation process for the production of amyloid fibrils, slow‐down or speed up the process depending on the molecular structure of each osmolyte. Of these, all stabilizing osmolytes (sugars) slow down the aggregation process in the following order: tri > di > monosaccharides, whereas destabilizing osmolytes (urea, guanidium hydrochloride) speed up the aggregation process in a predictable way that fits the trend of all osmolytes. With respect to kinetics, we illustrate, by adapting our earlier reaction model to the insulin system, that the intermediates (trimers, tetramers, pentamers, etc.) are at very low concentrations and that nucleation is orders of magnitude slower than fibril growth. The results are then collated into a cogent explanation using the preferential exclusion and accumulation of osmolytes away from and at the protein surface during nucleation, respectively. Both the heat of solution and the neutral molecular surface area of the osmolytes correlate linearly with two fitting parameters of the kinetic rate model, that is, the lag time and the nucleation rate prior to fibril formation. These kinetic and thermodynamic results support the preferential exclusion model and the existence of oligomers including nuclei and larger structures that could induce toxicity. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

8.
Peters  David  Peters  Jane 《Molecular Engineering》1999,8(4):345-356
We report quantum mechanical computations and experimental evidence which suggest that the backbone conformation of globular proteins depends generally on the conservation of that part of the hydrogen bond network or ribbon which is joined, in general, directly to the backbone and is largely independent of the remainder of this whole network of hydrogen bonds. The familiar hydrogen bonds of the helix and the sheet form about one-half of this ribbon of hydrogen bonds. Both water molecules and hydrogen bonding side chain groups are involved in the formation of the ribbon.This view of the three-dimensional structure of globular proteins in terms of the `molecule' allows us to deal with the non-secondary structure as well as with the familiar secondary structure. It also suggests that the ribbon contains approximately the same number of hydrogen bonds within all three structures – the helix, the sheet and the coil – and that this is the reason for the ease of interconversion of these three structures.The quantum mechanical computations on hydrogen bonding suggest that delocalised water molecules which have substantial mobility are an essential part of the ribbon. This situation arises because the hydrogen bonding groups of the protein molecule are not free to move to optimise the hydrogen bonding geometries as are the oxygen atoms in the waters and ices. Such delocalised water molecules either have high B values or are invisible in the X-ray data and yet are able to form a structure which is as strong as a normal hydrogen bond.The experimental data on the point mutations of the THRI57 residue of the T4 phage lysome provides an initial test of this model. Both the local backbone conformation and the ribbon of hydrogen bonds are conserved throughout all the mutations of residue 157,providing that the delocalised water molecules are accepted as a genuine part of the structure. These mutations include the introduction of hydrocarbon side chains at position 157 when water molecules or other side chain groups take over the formation of the hydrogen bonds.We suggest that, provided steric effects are not important, many point mutations succeed because they leave the ribbon of hydrogen bonds (and so the backbone conformation) largely unchanged.  相似文献   

9.
    
Bush J  Makhatadze GI 《Proteins》2011,79(7):2027-2032
It is well known that nonpolar residues are largely buried in the interior of proteins, whereas polar and ionizable residues tend to be more localized on the protein surface where they are solvent exposed. Such a distribution of residues between surface and interior is well understood from a thermodynamic point: nonpolar side chains are excluded from the contact with the solvent water, whereas polar and ionizable groups have favorable interactions with the water and thus are preferred at the protein surface. However, there is an increasing amount of information suggesting that polar and ionizable residues do occur in the protein core, including at positions that have no known functional importance. This is inconsistent with the observations that dehydration of polar and in particular ionizable groups is very energetically unfavorable. To resolve this, we performed a detailed analysis of the distribution of fractional burial of polar and ionizable residues using a large set of ?2600 nonhomologous protein structures. We show that when ionizable residues are fully buried, the vast majority of them form hydrogen bonds and/or salt bridges with other polar/ionizable groups. This observation resolves an apparent contradiction: the energetic penalty of dehydration of polar/ionizable groups is paid off by favorable energy of hydrogen bonding and/or salt bridge formation in the protein interior. Our conclusion agrees well with the previous findings based on the continuum models for electrostatic interactions in proteins. Proteins 2011; © 2011 Wiley‐Liss, Inc.  相似文献   

10.
11.
Hydrogen bonds involving sulfur atoms in proteins.   总被引:11,自引:0,他引:11  
Intrachain hydrogen bonds are a hallmark of globular proteins. Traditionally, these involve oxygen and nitrogen atoms. The electronic structure of sulfur is compatible with hydrogen bond formation as well. We surveyed a set of 85 high-resolution protein structures in order to evaluate the prevalence and geometry of sulfur-containing hydrogen bonds. This information should be of interest to experimentalists and theoreticians interested in protein structure and protein engineering.  相似文献   

12.
  总被引:1,自引:0,他引:1  
Xu D  Zhang Y 《Proteins》2012,80(7):1715-1735
Ab initio protein folding is one of the major unsolved problems in computational biology owing to the difficulties in force field design and conformational search. We developed a novel program, QUARK, for template-free protein structure prediction. Query sequences are first broken into fragments of 1-20 residues where multiple fragment structures are retrieved at each position from unrelated experimental structures. Full-length structure models are then assembled from fragments using replica-exchange Monte Carlo simulations, which are guided by a composite knowledge-based force field. A number of novel energy terms and Monte Carlo movements are introduced and the particular contributions to enhancing the efficiency of both force field and search engine are analyzed in detail. QUARK prediction procedure is depicted and tested on the structure modeling of 145 nonhomologous proteins. Although no global templates are used and all fragments from experimental structures with template modeling score >0.5 are excluded, QUARK can successfully construct 3D models of correct folds in one-third cases of short proteins up to 100 residues. In the ninth community-wide Critical Assessment of protein Structure Prediction experiment, QUARK server outperformed the second and third best servers by 18 and 47% based on the cumulative Z-score of global distance test-total scores in the FM category. Although ab initio protein folding remains a significant challenge, these data demonstrate new progress toward the solution of the most important problem in the field.  相似文献   

13.
    
Yunqi Li  Yang Zhang 《Proteins》2009,76(3):665-676
Protein structure prediction approaches usually perform modeling simulations based on reduced representation of protein structures. For biological utilizations, it is an important step to construct full atomic models from the reduced structure decoys. Most of the current full atomic model reconstruction procedures have defects which either could not completely remove the steric clashes among backbone atoms or generate final atomic models with worse topology similarity relative to the native structures than the reduced models. In this work, we develop a new protocol, called REMO, to generate full atomic protein models by optimizing the hydrogen‐bonding network with basic fragments matched from a newly constructed backbone isomer library of solved protein structures. The algorithm is benchmarked on 230 nonhomologous proteins with reduced structure decoys generated by I‐TASSER simulations. The results show that REMO has a significant ability to remove steric clashes, and meanwhile retains good topology of the reduced model. The hydrogen‐bonding network of the final models is dramatically improved during the procedure. The REMO algorithm has been exploited in the recent CASP8 experiment which demonstrated significant improvements of the I‐TASSER models in both atomic‐level structural refinement and hydrogen‐bonding network construction. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
Vaccine manufacturing has conventionally been performed by the developed world using traditional unit operations like filtration and chromatography. There is currently a shift in the manufacturing of vaccines to the less developed world, requiring unit operations that reduce costs, increase recovery, and are amenable to continuous manufacturing. This work demonstrates that mannitol can be used as a flocculant for an enveloped and nonenveloped virus and can purify the virus from protein contaminants after microfiltration. The recovery of the virus ranges from 58 to 96% depending on virus, the filter pore size, and the starting concentration of the virus. Protein removal of 80% was achieved for the small nonenveloped virus using a 0.1 µm filter because proteins were not flocculated with the virus and flowed through the filter. It is hypothesized that mannitol dehydrates the viral surface by controlling the water structure surrounding the virus. Without the ability to become compact, as occurs with proteins, the virus aggregates in the presence of osmolytes and proteins do not. Osmolyte flocculation is a scalable process using high flux microfilters. It has been applied to both an enveloped and nonenveloped virus, making this process friendly to a variety of vaccine and gene therapy products. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1027–1035, 2018  相似文献   

15.
We have used differential scanning calorimetry to determine the effect of low concentrations (C = 0-2 M) of the osmolyte sarcosine on the Gibbs energy changes (deltaG) for the unfolding of hen-egg-white lysozyme, ribonuclease A, and ubiquitin, under the same buffer and pH conditions. We have also computed this effect on the basis of the additivity assumption and using published values of the transfer Gibbs energies for the amino acid side chains and the peptide backbone unit. The values thus predicted for the slope delta deltaG/deltaC agree with the experimental ones, but only if the unfolded state is assumed to be compact (that is, if the accessibility to solvent of the unfolded state is modeled using segments excised from native structures). The additivity-based calculations predict similar delta deltaG/deltaC values for the three proteins studied. We point out that, to the extent that this approximate constancy of delta deltaG/deltaC holds, osmolyte-induced increases in denaturation temperature will be larger for proteins with low unfolding enthalpy (small proteins that bury a large proportion of apolar surface). The experimental results reported here are consistent with this hypothesis.  相似文献   

16.
    
We analyze the distributions of interplanar angles between interacting side chains with well-defined planar regions, to see whether these distributions correspond to random packing or alternatively show orientational preferences. We use a non-homologous set of 79 high-resolution protein chain structures to show that the observed distributions are significantly different from the sinusoidal one expected for random packing. Overall, we see a relative excess of small angles and a paucity of large interplanar angles; the difference between the expected and observed distributions can be described as a shift of 5% of the interplanar angles from large (≥60°) to small (<30°) values. By grouping the residue pairs into categories based on chemical similarity, we find that some categories have very non-sinusoidal interplanar angle distributions, whereas other categories have distributions that are close to sinusoidal. For a few categories, observed deviations from a sinusoidal distribution can be explained by the electrostatic anisotropy of the isolated pair potential energy. In other cases, the observed distributions reflect the longer range effects of different possible interaction geometries. In particular, geometries that disrupt external hydrogen bonding are disfavored. Proteins 29:370–380, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
    
In the present study, effects of salinity stress were evaluated in the leaves and roots of two pistachio cultivars (Badami-Rize-Zarand (BZ) and Badami-e-Sefid (BS)). In overall, salinity negatively affects growth of both cultivars with more pronounced effects on BS. The physiological reason of the reduction could be attributed to some extent to more depletion of photosynthetic pigment in BS. In both cultivars, salinity increased proline content. Moderate and high salinities increased the soluble sugar contents in BZ. In both cultivars, Na+ content increased in plant organs with increasing Na+ in the media. Salinity treatment decreased the Fe and Pi contents in BS cultivar, while they remained unchanged in BZ. These results show that BZ cultivar exhibits more tolerance to salinity stress than BS cultivar possibly by better growth performance, accumulating more osmolytes, lesser accumulation of toxic sodium ion and lower Na+/K+ in the shoots as well as maintaining nutrient contents.  相似文献   

18.
    
Contrary to the widespread view that hydrogen bonding and its entropy effect play a dominant role in protein folding, folding into helical and hairpin-like structures is observed in molecular dynamics (MD) simulations without hydrogen bonding in the peptide-solvent system. In the widely used point charge model, hydrogen bonding is calculated as part of the interaction between atomic partial charges. It is removed from these simulations by setting atomic charges of the peptide and water to zero. Because of the structural difference between the peptide and water, van der Waals (VDW) interactions favor peptide intramolecular interactions and are a major contributing factor to the structural compactness. These compact structures are amino acid sequence dependent and closely resemble standard secondary structures, as a consequence of VDW interactions and covalent bonding constraints. Hydrogen bonding is a short range interaction and it locks the approximate structure into the specific secondary structure when it is included in the simulation. In contrast to standard molecular simulations where the total energy is dominated by charge-charge interactions, these simulation results will give us a new view of the folding mechanism.  相似文献   

19.
    
We have analyzed the interstitial water (ISW) structures in 1500 protein crystal structures deposited in the Protein Data Bank that have greater than 1.5 Å resolution with less than 90% sequence similarity with each other. We observed varieties of polygonal water structures composed of three to eight water molecules. These polygons may represent the time‐ and space‐averaged structures of “stable” water oligomers present in liquid water, and their presence as well as relative population may be relevant in understanding physical properties of liquid water at a given temperature. On an average, 13% of ISWs are localized enough to be visible by X‐ray diffraction. Of those, averages of 78% are water molecules in the first water layer on the protein surface. Of the localized ISWs beyond the first layer, almost half of them form water polygons such as trigons, tetragons, as well as expected pentagons, hexagons, higher polygons, partial dodecahedrons, and disordered networks. Most of the octagons and nanogons are formed by fusion of smaller polygons. The trigons are most commonly observed. We suggest that our observation provides an experimental basis for including these water polygon structures in correlating and predicting various water properties in liquid state.  相似文献   

20.
    
There is continued interest in predicting the structure of proteins either at the simplest level of identifying their fold class or persevering all the way to an atomic resolution structure. Protein folding methods have become very sophisticated and many successes have been recorded with claims to have solved the native structure of the protein. But for any given protein, there may be more than one solution. Many proteins can exist in one of the other two (or more) different forms and some populate multiple metastable states. Here, the two-state case is considered and the key structural changes that take place when the protein switches from one state to the other are identified. Analysis of these results show that hydrogen bonding patterns and hydrophobic contacts vary considerably between different conformers. Contrary to what has often been assumed previously, these two types of interaction operate essentially independently of one another. Core packing is critical for proper protein structure and function and it is shown that there are considerable changes in internal cavity volumes in many cases. The way in which these switches are made is fold dependent. Considerations such as these need to be taken into account in protein structure prediction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号