首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The effects of thyroid hormones on prolactin (PRL) and growth hormone (GH) synthesis by the rat anterior pituitary gland were assessed in vitro. A marked reduction (84-87%) in the rate of H3-leucine incorporation into GH was evident 2-4 weeks after thyroidectomy, while incorporation into PRL was 52-71% less than that measured in glands from intact rats. A single injection of T4 (200 mug/kg) administered to thyroidectomized (THX) rats 48 hr before sacrifice significantly increased incorporation into both pituitary hormones, although the stimulation of GH synthesis was much more dramatic. Perphenazine, alpha-methyltyrosine and estrogen enhanced the rate of PRL synthesis in intact rats. Thyroid ablation did not affect the response to perphenazine, but significantly increased the response to alpha-methyltyrosine and estrogen. On the other hand, administration of T4 to THX rats receiving perphenazine, alpha-methyltyrosine or estrogen diminished the stimulatory influence of these treatments on PRL synthesis. Perphenazine, alpha-methyltyrosine and estrogen had no effect on the rate of GH synthesis in THX rats, nor did they alter the ability of T4 to restore GH synthesis in these animals. These results indicate that GH synthesis in the rat is dependent upon thyroid hormones and support the concept that these hormones exert their stimulatory effect directly on pituitary somatotrophs. Pituitary lactotrophs, however, appear to retain much of their capacity to synthesize PRL under conditions of thyroid deficiency. The changes in pituitary PRL levels and synthesis rate induced by thyroid ablation might reflect differences in the number rather than the activity of these cells.  相似文献   

2.
The main systemic disorders resulting from prolonged sleep deprivation in laboratory animals are a negative energy balance, low circulating thyroid hormones, and host defense impairments. Low thyroid hormones previously have been found caused by altered regulation at the level of the hypothalamus with possible pituitary involvement. The present studies investigated the effects of sleep deprivation on other major anabolic hormonal systems. Plasma growth hormone (GH) concentrations and major secretory bursts were characterized. Insulin-like growth factor I (IGF-I) was evaluated as an integrative marker of peripheral GH effector activity. Prolactin (PRL) was assessed by basal concentrations and by stimulating the pituitary with exogenous thyrotropin-releasing hormone. Leptin was studied for its linkage to metabolic signs of sleep loss and its correspondence to altered neuroendocrine regulation in other disease states. Last, plasma corticosterone was measured to investigate the degree of hypothalamic-pituitary-adrenal activation. Sleep deprivation was produced by the disk-over-water method, a well-established means of selective deprivation of sleep and noninterference with normal waking behaviors. Hormone concentrations were determined in sham comparisons and at intervals during baseline and experimental periods lasting at least 15 days in partially and totally sleep-deprived rats. The results indicate that high-amplitude pulses of GH were nearly abolished and that concentrations of GH, IGF-I, PRL, and leptin all were suppressed by sleep deprivation. Corticosterone concentration was relatively unaffected. Features of these results, such as low GH and low IGF-I, indicate failed negative feedback and point to hypothalamic mechanisms as containing the foci responsible for peripheral signs.  相似文献   

3.
Prolactin and growth hormone in the regulation of the immune system   总被引:12,自引:0,他引:12  
Evidence implicating prolactin (PRL) and growth hormone (GH) in the regulation of the immune system has been reviewed. Hypophysectomized animals have deficiencies in both cell-mediated and humoral immunological functions and either PRL or GH corrects these deficiencies. Animals administered bromocryptine, a drug that specifically blocks PRL release, have impaired immune responses similar to hypophysectomized animals, and again both PRL and GH correct these deficiencies. Genetically dwarf animals, which lack both PRL and GH, are also immunocompromised, and once again PRL and GH can correct the deficiencies. In dwarf animals, however, fewer studies have examined PRL actions. In growth-deficient children, immune function is not dramatically altered and basal secretion of GH has been reported. Very few clinical studies have examined whether PRL secretion is also deficient, and this may explain why a clear loss in immune function is not evident in growth-deficient children. In a number of species, including man, both PRL and GH stimulate thymic function and increase the secretion of thymulin, a thymic hormone. No studies, however, have reported on the effects of PRL and GH on other thymic hormones. A number of studies have reported in vitro effects of PRL and GH on cells involved with immunity, and the presence of high-affinity PRL and GH receptors have been observed on a number of these cells. The action of GH on the proliferative response of cells involved with immunity in vitro appears to be mediated by the production of insulin-like growth factor I. The effect of PRL on insulin-like growth factor I production by these cells has not been examined. One of the most consistent findings from in vitro studies is that prolactin antisera blocked a number of immune reactions. This led to the discovery that cells involved with immunity appear capable of producing PRL and GH, but the physiological significance of these observations have not been explored. There is a great need to identify the cell types responding to PRL and GH and this should be a goal of future investigations. There is also a need for investigators to be aware that both PRL and GH are involved in the regulation of the immune system and to design experiments to elucidate where each functions in the maturation cascade of cells involved with immunity. From the evidence available, it is apparent that PRL and GH have an important function in the immune system and future investigations should be directed toward elucidating their site(s) of action.  相似文献   

4.
During the past decade, the immune and endocrine systems have been discovered to interact in controlling physiologic processes as diverse as cell growth and differentiation, metabolism, and even human and animal behavior. The interaction between these two major physiological systems is a bi-directional process. While it has been well documented that hormones, including prolactin (PRL), growth hormone (GH), insulin-like growth factor-I (IGF-I), and thyroid-stimulating hormone (TSH), regulate a variety of immune events, a great deal of data have accumulated supporting the notion that cytokines from the innate immune system also affect the neuroendocrine system. Communication between these two systems coordinates processes that are necessary to maintain homeostasis. Proinflammatory cytokines often act as negative regulatory signals that temper the action of hormones and growth factors. This system of 'checks and balances' is an active, ongoing process, even in healthy individuals. Dysregulation of this process has been implicated as a potential pathogenic factor in the development of co-morbid conditions associated with several chronic inflammatory diseases, including type 2 diabetes, cardiovascular disease, cerebrovascular disease, inflammatory bowel disease, rheumatoid arthritis, major depression, and even normal aging. Over the past decade, research in our laboratory has focused on the ability of the major proinflammatory cytokines, tumor necrosis factor (TNF)alpha and interleukin (IL)-1beta, to induce a state of IGF resistance. This review will highlight these and other new findings by explaining how proinflammatory cytokines induce resistance to the major growth factor, insulin-like growth factor-I (IGF-I). We also highlight that IGF-I can induce resistance or reduce sensitivity to brain TNFalpha and discuss how TNFalpha, IL-1beta, and IGF-I interact to regulate several aspects of behavior and cognition.  相似文献   

5.
A decline in circulating progesterone concentration plays an important role in the ethiopathogenesis of pseudopregnancy in the bitch. Because growth hormone (GH) and prolactin (PRL) are essential for normal mammogenesis and the secretion of these hormones is influenced by changes in the circulating progesterone concentration, the purpose of this study was to investigate the effects of mid-luteal phase ovariectomy on the 6-h pulsatile plasma profiles of GH and PRL and the basal plasma concentrations of GH, PRL, and insulin-like growth factor-I (IGF-I) in six beagle bitches. Ovariectomy was followed by only mild or covert signs of pseudopregnancy. The sharp decrease of the plasma progesterone concentration was accompanied by decreased basal plasma concentrations of GH and IGF-I and a rise in basal plasma PRL concentration. GH and PRL were secreted in a pulsatile fashion both prior to and after ovariectomy. The mean basal plasma GH concentration was significantly higher before ovariectomy than on days 1 and 7 after ovariectomy. The mean area under the curve above the zero level (AUC(0)) for GH was significantly higher before than at 7 days after ovariectomy. The mean area under the curve above basal level (AUC(b)) and the frequency of GH pulses at 7 days after ovariectomy were significantly higher than before and 1 day after ovariectomy. Both the mean basal plasma PRL concentration and the mean AUC(0) for PRL increased after ovariectomy. In conclusion, ovariectomy of bitches in the mid-luteal phase stops progesterone-induced GH release from the mammary gland, as evidenced by the lowering of basal plasma GH levels, the recurrence of GH pulsatility, and the lowering of circulating IGF-I levels. The sudden lowering of plasma progesterone concentration is probably a primary cause of a prolonged increase in PRL secretion. These observations underscore the importance of similar, albeit less abrupt, hormonal changes in the cyclical physiological alterations in the mammary gland and in the development of pseudopregnancy.  相似文献   

6.
The expression and synthesis of insulin-like growth factor-1 (IGF-I) and IGF-binding protein-3 (IGFBP-3) are regulated by various hormones and nutritional conditions. We evaluated the effects of thyroid hormones on serum levels of IGF-I and IGFBP-3 levels in patients with autoimmune thyroid diseases including 54 patients with Graves' disease and 17 patients with Hashimoto's thyroiditis, and in 32 healthy age-matched control subjects. Patients were subdivided into hyperthyroid, euthyroid and hypothyroid groups that were untreated, or were treated with methylmercaptoimidazole (MMI) or L-thyroxine (L-T4). Serum levels of growth hormone (GH), IGF-I and IGFBP-3 were determined by radioimmunoassay. Serum GH levels did not differ significantly between the hyperthyroid and the age-matched euthyroid patients with Graves' disease. The serum levels of IGF-I and IGFBP-3 showed a significant positive correlation in the patients (R=0.616, P<0.001). The levels of both IGF-I and IFGBP-3 were significantly higher in the hyperthyroid patients with Graves' disease or in those with Hashimoto's thyroiditis induced by excess L-T4 administration than in control subjects. Patients with hypothyroid Graves' disease induced by the excess administration of MMI showed significantly lower IGFBP-3 levels as compared to those in healthy controls (P<0.05). Levels of IGFBP-3, but not IGF-I levels, showed a significant positive correlation with the levels of free T4 and free T3. In Graves' disease, levels of TPOAb, but not of TRAb, showed a significant positive correlation with IGFBP-3. We conclude that in patients with autoimmune thyroid diseases, thyroid hormone modulates the synthesis and/or the secretion of IGF-I and IGFBP-3, and this function is not mediated by GH.  相似文献   

7.
Leptin plays an important role in the regulation of food intake and thermogenesis, regulates long term energy balance and reproductive function and its concentrations are closely linked to body mass index. Leptin secretion is influenced by many factors and the age-related changes in different hormones might modify circulating leptin concentrations. Sex dimorphism in leptin concentrations has been clearly shown in previous studies and its concentrations were lower in men than in women in all decades of life. Insulin growth factor-I (IGF-I) is a peptide growth factor that is present in all types of physiologic fluids and is also produced by connective tissue cell types and its autocrine/paracrine secretion is nearly always present within tissues. There is a physiological decline of the growth hormone (GH)/IGF-I axis with ageing and in addition, insulin, thyroid hormones and the supply of dietary energy may directly regulate the circulating levels of the IGFs and growth hormone binding protein (GHBP). Furthermore, there is no doubt that GH participates in the regulation of body composition, and with advanced age there is a decrease in muscle and an increase in adiposity associated with a decline in GH and total IGF-I. The biological activities of the IGF ligands are modulated by the family of high affinity GHBP. Sex hormone binding globulin (SHBG) concentrations are thought to be regulated primarily through opposing actions of sex steroids on hepatic SHBG production, with oestrogen stimulating and androgen inhibiting SHBG production, and thyroid hormones are also a potent stimulator of SHBG production concentrations. Some studies support an independent IGFBP3 contribution to SHBG variability and these findings are compatible with the hypothesis that some of the anabolic effects ascribed to the GH/IGF axis may be caused by SHBG-mediated changes in testosterone activity or SHBG/total testosterone index.  相似文献   

8.
It is known that growth hormone (GH) plays an important role in growth and development.Additionally, emerging evidence suggest that it also influences hypothalamic-pituitary-gonadal function. We have found that GH from different species has different effects in mice. In rodents, human GH (hGH) binds to both GH and prolactin (PRL) receptors; it has both somatotrophic and lactotrophic effects. Since PRL has a profound effect on neuroendocrine function, the results obtained from hGH treatment or from transgenic animals expressing the hGH gene reflect PRL-like effects of this hormone. However, bovine GH (bGH) is purely somatogenic and therefore the effects of bGH represent the function of the natural GH produced in rodents. Furthermore, our studies in mice and rats have shown that not all effects of GH are stimulatory and the duration of exposure of the hypothalamo-hypophyseal-gonadal system to GH might influence the secretions of gonadotropins and gonadal steroids. In humans, excess productions of GH in acromegaly and GH resistance in Laron syndrome adversely affect reproduction. Similarly, it has been demonstrated that in transgenic mice expressing various GH genes, in insulin-like growth factor-I (IGF-I) gene-knockout mice, in GH receptor gene-disrupted (GHR-KO) mice, and in Ames dwarf mice the onset of puberty and/or fertility is altered. Therefore, excess or subnormal secretion of GH can affect reproduction. We have shown that the hypothalamic-pituitary functions are affected in transgenic mice expressing the GH genes, Ames dwarf mice and in GH receptor gene knockout mice. The majority of the GH effects are mediated via IGF-I and the aforementioned effects may be due to the GH-induced IGF-I secretion or due to the absence of this peptide production. It is important to realize that the syntheses and actions of IGF binding proteins are controlled by IGF-I. Furthermore, some IGF binding proteins can inhibit IGF-I action. Therefore, the concentrations of IGF binding proteins and the ratio of these binding proteins and IGF-I within the body might play a pivotal role in modulating IGF-I effects on the neuroendocrine-gonadal system.  相似文献   

9.
Prolactin (PRL) and growth hormone (GH) are known to be able to act as antimetamorphic hormones. From investigations of how PRL inhibits Xenopus tail regression in vitro, it was found that the both hormones could, in addition to their known antimetamorphic actions, upregulate mRNA expression of type III iodothyronine 5-deiodinase (5D), an enzyme that inactivates thyroid hormones (TH). Conversely, both PRL and GH were found to downregulate 5D mRNA expression in the liver. Blockage by PRL of TH-induced tail regression in organ culture was released by treatment with iopanoic acid (IOP, an inhibitor of 5D activity). The IOP-released tail regression displayed a unique morphology of the larger fins retained on the regressing tails, consistent with the finding that mRNA for both PRL receptor and 5D were enriched in the fin. The results suggest that the metamorphosis-modulating actions of PRL and GH are mediated, at least partially, by tissue-specific regulation of 5D mRNA expression.  相似文献   

10.
Neuroendocrine hormones such as growth hormone (GH) and prolactin (PRL) have been demonstrated to accelerate the recovery of the immune response after chemotherapy and bone marrow transplantation and to enhance the restoration of immunity in individuals infected with HIV and in normal individuals with compromised immune systems associated with aging. As the mechanism of action of these hormones has been elucidated, it has become clear that they are integral members of the immunological cytokine/chemokine network and share regulatory mechanisms with a wide variety of cytokines and chemokines. The members of this cytokine network induce and can be regulated by members of the suppressor of cytokine signaling (SOCS) family of intracellular proteins. In order to take advantage of the potential beneficial effects of hormones such as GH or PRL, it is essential to take into consideration the overall cytokine network and the regulatory effects of SOCS proteins.  相似文献   

11.
This experiment tested the hypothesis that thyroid hormones are essential for a milk production response to growth hormone (GH) and prolactin (PRL). Prior to breeding, female transgenic mice expressing the herpes simplex type-I thymidine kinase in the thyroid were treated with ganciclovir to ablate thyroid follicular cells. To provide for normal gestation, thyrocyte-ablated mice were supplied thyroxine (T4) in drinking water (0.2 microgram/ml) until 7 days before parturition. Litter size was adjusted to 9 pups, hormone administration began on Day 2 of lactation, and mice were sacrificed on Day 12. There were 5-6 mice in each of 7 treatments that included nonablated controls, thyrocyte-ablated controls, and thyrocyte-ablated mice treated with T4, GH, PRL, GH + T4, and PRL + T4. Thyroxine was administered in drinking water, and GH and PRL (20 microgram/d) were administered by subcutaneous injection. Compared with thyrocyte-ablated controls, litter weight gain was unaffected when dams were treated with GH, PRL, or T4 alone. However, when dams were treated with GH or PRL in combination with T4, litter weight gain increased 13% compared with thyrocyte-ablated controls and 18% compared with GH or PRL-treated mice. Concentration of T4 in serum of pups averaged 62 ng/ml and did not differ among treatments. Concentration of T4 in serum of dams averaged 76 ng/ml when T4-treated. Thyroxine 5'-deiodinase (5'D), the enzyme that converts T4 to triiodothyronine, was quantitated in liver, kidney, and mammary gland. Quantity of 5'D was lower in liver and kidney of thyrocyte-ablated dams without T4 than in respective tissues of mice treated with T4, and there was no effect of GH or PRL. However, in mammary gland, 5'D was increased by treatment with GH, PRL, or T4. Data show that thyroid hormones are necessary for a galactopoietic response to GH and PRL and demonstrate a unique organ-specific regulation of 5'D by galactopoietic hormones.  相似文献   

12.
There have been no studies in any vertebrate that have localized insulin-like growth factor (IGF)-I receptors in prolactin (PRL) cells or that have correlated pituitary binding to the potency of IGF-I in regulating both PRL and growth hormone (GH) secretion. We show that IGF-I binds with high affinity and specificity to the pituitary gland of hybrid striped bass (Morone saxatilis x M. chrysops). IGF-I and IGF-II were equipotent in inhibiting saturable (125)I-IGF-I binding, whereas insulin was ineffective. IGF-I binds with similar affinity to the rostral pars distalis (>95% PRL cells) as the whole pituitary gland and immunohistochemistry colocalizes IGF-I receptors and PRL in this same region. Des(1-3)IGF-I, a truncated analog of IGF-I that binds with high affinity to IGF-I receptors but weakly to IGF-I binding proteins (IGFBPs), showed a similar inhibition of saturable (125)I-IGF-I binding, but it was more potent than IGF-I in stimulating PRL and inhibiting GH release. These results are the first to localize IGF-I receptors to PRL cells, correlate IGF-I binding to its efficacy in regulating GH and PRL secretion, as well as demonstrate that IGFBPs may play a significant role in modulating the disparate actions of IGF-I on PRL and GH secretion.  相似文献   

13.
Experiments were conducted to evaluate the possible role of circulating growth hormones triiodothyronine (T3), thyroxine (T4), and insulin-like growth factor I (somatomedin-C; IGF-I) in the elevation of plasma growth hormone (GH) which occurs in protein-restricted chickens. Plasma hormone changes were determined over a 2-week period of protein depletion by feeding a 5% protein diet as well as a similar period of protein repletion with a 20% protein diet. The rise in plasma GH was observed in two separate studies. Plasma concentrations of T4, T3, and IGF-I were all depressed in protein-restricted chicks prior to or concurrent with the GH elevation. In the protein repletion time course study, T4 and T3 concentrations were normalized prior to or concurrent with plasma GH normalization. However, IGF-I concentrations in repleted chicks did not return to control levels until after normal levels of GH were observed. These data suggest that thyroid hormones may play a greater role in the regulation of GH secretion during periods of malnourishment than IGF-I; the latter being currently thought to be a peripherally circulating inhibitor of GH release in animals.  相似文献   

14.
We recently discovered a new role for insulin-like growth factor-I (IGF-I) as a specific and direct stimulator of prolactin (PRL) release in addition to its recognized function as an inhibitor of growth hormone (GH) release and synthesis. Little is known of the mechanisms that transduce the actions of IGF-I on PRL and GH release in vertebrates. The present study was undertaken to determine the cellular pathways that mediate the disparate actions of IGF-I on PRL and GH release in hybrid striped bass (Morone saxatilis X M. chrysops). When regulating cellular function, IGF-I may activate two primary pathways, phosphatidylinositol 3-kinase (PI 3-K) and mitogen-activated protein kinase (MAPK). The specific MAPK inhibitor, PD98059, blocked IGF-I-evoked PRL release as well as GH release inhibition over an 18-20-h incubation. LY294002, a specific PI 3-K inhibitor, overcame IGF-I's inhibition of GH release but was ineffective in blocking PRL release stimulated by IGF-I. These studies suggest IGF-I disparately alters PRL and GH by activating distinct as well as overlapping signaling pathways central for mediating actions of growth factors on secretory activity as well as cell proliferation. These results further support a role for IGF-I as a physiological regulator of PRL and GH.  相似文献   

15.
A Bartke 《Steroids》1999,64(9):598-604
Growth hormone (GH), insulin-like growth factor (IGF-I), and prolactin (PRL) can influence various aspects of reproductive functions in both females and males. However, the physiological role of PRL and the GH-IGF-I axis in the control of reproduction has been difficult to define, and the recent availability of knock-out (KO) animals allows re-examination of this issue. PRL-receptor (R)-KO and PRL-KO females are sterile because of luteal failure. In addition, these mice have severe deficits in the development of oocytes and early embryos. However, male fertility is not affected in the PRL-KO and in most of the PRL-R-KO animals. IGF-KO animals have an infantile reproductive system and are sterile. GH-R-KO mice can reproduce, but their breeding performance is reduced, particularly in females. These data indicate that IGF-I signaling is required for normal reproductive development and confirm the requirement for PRL for fertility in the female mouse. GH resistance leads to quantitative deficits in reproductive development and functions, but does not preclude fertility in either sex. We suspect that PRL and the GH-IGF-I axis provide partially overlapping (redundant) regulatory inputs to the hypothalamic-pituitary-gonadal axis, and consequently, targeted disruption of either signaling pathway has relatively mild consequences on many functions related to reproduction. Overexpression of heterologous or homologous GH in transgenic animals can lead to severe reproductive deficits, including female sterility in some of the lines. Studies in GH transgenics should allow the identification of mechanisms that mediate the effects of chronic overexposure to GH on reproduction.  相似文献   

16.
The scientific literature is replete with evidence of the multifarious functions of the prolactin (PRL)/growth hormone (GH) superfamily in adult vertebrates. However, little information is available on the roles of PRL and related hormones prior to the adult stage of development. A limited number of studies suggest that GH functions to stimulate glucose transport and protein synthesis in mouse blastocytes and may be involved during mammalian embryogenesis. In contrast, the evidence for a role of PRL during vertebrate embryogenesis is limited and controversial. Genes encoding GH/PRL hormones and their respective receptors are actively transcribed and translated in various animal models at different time points, particularly during tissue remodeling. We have addressed the potential function of GH/PRL hormones during embryonic development in zebrafish by the temporary inhibition of in vivo PRL translation. This treatment caused multiple morphological defects consistent with a role of PRL in embryonic-stage organogenesis. The affected organs and tissues are known targets of PRL activity in fish and homologous structures in mammalian species. Traditionally, the GH/PRL hormones are viewed as classical endocrine hormones, mediating functions through the circulatory system. More recent evidence points to cytokine-like actions of these hormones through either an autocrine or a paracrine mechanism. In some situations they could mimic actions of developmentally regulated genes as suggested by experiments in multiple organisms. In this review, we present similarities and disparities between zebrafish and mammalian models in relation to PRL and PRLR activity. We conclude that the zebrafish could serve as a suitable alternative to the rodent model to study PRL functions in development, especially in relation to organogenesis.  相似文献   

17.
Active acromegaly is almost always the result of a benign growth hormone (GH)-secreting adenoma of the pituitary gland. Because the same pituitary stem cell can produce both GH and prolactin (PRL), many acromegalic patients also have hyperprolactinemia. The advantages of surgical excision of pituitary adenomas associated with acromegaly include: (1) prompt decrease in GH; (2) reliable and immediate relief of the mass effect from the tumor (decompression of the optic nerves and chiasm), and (3) the opportunity to obtain tumor tissue for characterization and investigative study. Currently, more than 97% of operations for removal of pituitary tumors associated with acromegaly are done using the transsphenoidal approach rather than craniotomy. Technical advances to make the surgery safer continue to evolve, and include endoscopic approaches, computer-guided image-based intraoperative visualization, and intraoperative magnetic resonance imaging. Criteria for satisfactory remission of acromegaly after surgery are the same as those used for medical management. They include normal insulin-like growth factor (IGF)-I and suppression of GH to undetectable levels (<1.0 ng/ml) during an oral glucose tolerance test (OGTT). Data from a recent series of 86 patients operated upon for acromegaly at the University of Virginia and followed for more than 1 year have been reviewed. In patients receiving surgery as the initial procedure, 67% had a normal IGF-I, and 52% suppressed to <1.0 ng/ml in an OGTT. There was one true recurrence of disease diagnosed 81 months after surgery. Results are best in patients with noninvasive microadenomas. Gamma knife radiosurgery has been a valuable adjunct in those patients who fail to achieve postoperative remission. Pathological evaluation of the tumors revealed that 16% expressed GH only, 25% stained for GH and glycoprotein hormones (follicle stimulating hormone, thyroid hormone, thyroid stimulating hormone, alpha-subunit), 21% for GH and PRL, and 33% for GH, PRL and glycoprotein hormones. There was one acidophil stem cell tumor and 10% had the mammosomatotroph subtype. This contemporary series was free of mortality or serious complications. One patient had a transient cerebrospinal fluid leak and 3 developed transient SIADH with hyponatremia. Surgical treatment remains an important aspect of the combined management of patients with acromegaly.  相似文献   

18.
19.
家禽垂体特异转录因子POU1F1研究进展   总被引:10,自引:0,他引:10  
姜润深  杨宁 《遗传》2004,26(6):957-961
  相似文献   

20.
The classical distinction between hormones and cytokines has become increasingly obscure with the realization that homeostatic responses to infection involve coordinated changes in both the neuroendocrine and immune systems. The hypothesis that these systems communicate with one another is supported by the ever-accruing demonstrations of a shared molecular network of ligands and receptors. For instance, leukocytes express receptors for hormones and these receptors modulate diverse biological activities such as the growth, differentiation and effector functions. Leukocyte lineages also synthesize and secrete hormones, such as insulin-like growth factor-I (IGF-I), in response to both growth hormone (GH) and also to cytokines such as tumor necrosis factor-α (TNF-α). Since hormones share intracellular signaling substrates and biological activities with classical lymphohemopoietic cytokines, neuroendocrine and immune tissues share a common molecular language. The physiological significance of this shared molecular framework is that these homeostatic systems can intercommunicate. One important example of this interaction is the mechanism by which bacterial lipopolysaccharide, by eliciting a pro-inflammatory cytokine cascade from activated leukocytes, modulate pituitary GH secretion as well as other CNS-controlled behavioral and metabolic events. This article reviews the cellular and molecular basis for this communication system and proposes novel mechanisms by which neuroendocrine-immune interactions converge to modulate disease resistance, metabolism and growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号