首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Chitosan is an amino-polysaccharide with highly efficient properties for the binding of metal ions and anionic dyes. Uptake may occur through chelation on free amino functions (at near-neutral pH) or by electrostatic attraction on protonated amino groups (in acidic solutions). The polymer is soluble in acidic solutions and its binding properties can be used in both solid form (sorption) and liquid form (ultrafiltration coupled with chelation, coagulation–flocculation). These properties have been used for the recovery of mercury from dilute solutions at initial pH 5 (which reveals the most efficient pH in the range pH 4–6) and for the recovery of Reactive Black 5 (RB5, anionic dye) at pH 3. While in the case of mercury binding saturation of the biopolymer is only slightly higher when chitosan is used in the liquid form compared to solid-state adsorption, in the case of the coagulation–flocculation of RB5 (using the liquid-form of chitosan) the saturation of the polymer (calculated on the basis of molar ratio of dye vs. amino groups of the polymer) is reached at a significantly greater value than when the polymer is used for the solid-state binding of the dye. There is a much more efficient use of amino groups when chitosan is used in the liquid-form due to a better availability of amino groups (less hydrogen bonds between the chains of the polymer) and to a better accessibility to internal sorption sites (lower diffusion control).  相似文献   

2.
Zhang Q  Deng S  Yu G  Huang J 《Bioresource technology》2011,102(3):2265-2271
The crosslinked chitosan beads were used as an efficient biosorbent to remove perfluorooctane sulfonate (PFOS) from aqueous solution. The chitosan biosorbent had a sorption capacity up to 5.5 mmol/g for PFOS at the equilibrium concentration of 0.33 mmol/L, much higher than some conventional adsorbents. The sorption kinetics indicated that the sorption equilibrium was reached quickly at high pH and low PFOS concentrations, and the adsorbent size also affected the sorption rate to some extent. The double-exponential model described the kinetic data well, and the sorption of PFOS on the chitosan beads was a diffusion-controlled process. Based on the sorption kinetics and adsorbent characterization, the uptake mechanisms including electrostatic and hydrophobic interactions were identified to be responsible for PFOS sorption, and the hemi-micelles and micelles may form in the porous structure due to high PFOS concentrations within the adsorbent, which had the main contribution to the high sorption capacity.  相似文献   

3.
Silica gel/chitosan composite (SiCS) was prepared via., sol-gel method by mixing silica gel and chitosan and cross-linked with bifunctional cross-linker glutaraldhyde. The SiCS composite was characterized using FT-IR, SEM-EDAX, XRD and BET methods. The sorption of copper and lead ions onto SiCS has been investigated. The SiCS composite was found to have excellent metal sorption capacity than the silica gel (Si) and chitosan (CS). The sorption experiments were carried out in batch mode to optimize various parameters viz., contact time, pH, initial metal ion concentration, co-ions and temperature that influence the sorption. Langmuir, Freundlich and Dubinin-Radushkevich adsorption isotherm models were applied to describe isotherm constants. Equilibrium data agreed well with the Freundlich isotherm model. Thermodynamic studies revealed that the nature of sorption is spontaneous and endothermic. The SiCS removes metals by means of adsorption and complexation. Sorption capacity of SiCS is compared with other sorbents which suggest that this composite was useful for removing copper and lead from aqueous solution.  相似文献   

4.
Polymeric composites made up of nano-hydroxyapatite (n-HAp) with chitin and chitosan have been prepared and studied for the removal of Cu(II) ions from the aqueous solution. The sorption capacity (SC) of n-HAp, n-HAp/chitin (n-HApC) composite and n-HAp/chitosan (n-HApCs) composite were found to be 4.7, 5.4 and 6.2 mg/g respectively with a minimum contact time of 30 min. Batch adsorption studies were conducted to optimize various equilibrating conditions like contact time, pH and selectivity of metal ion. The sorbents were characterized by FTIR, TEM, XRD and SEM with EDAX analysis. The sorption process was explained with Freundlich and Langmuir isotherms respectively. Thermodynamic parameters such as ΔG°, ΔH° and ΔS° were calculated to understand the nature of sorption. A suitable mechanism for copper sorption was established and the selectivity of the metal ions for the composites was identified.  相似文献   

5.
Competitive sorption of platinum and palladium on chitosan derivatives   总被引:3,自引:0,他引:3  
Glutaraldehyde-cross-linked chitosan (GCC), thiourea derivative of chitosan (TGC) and rubeanic acid derivative of chitosan (RADC) have previously been shown to be very efficient at removing platinum and palladium from single component dilute acidic solutions. This study examines the competitive sorption of these metal anions in bi-component mixtures for GCC, TGC and RADC. Palladium sorption is less sensitive to the presence of platinum than the reverse: the maximum sorption capacity decreases less for palladium than for platinum in the presence of the competitor anion (the metals being in their chloro-metal forms). Moreover, the Langmuir-shape of the sorption isotherm for palladium is unaffected (with the usual plateau reached at low residual palladium), while in the case of platinum sorption, the isotherms exhibit a significant decrease of the sorption capacity at high residual platinum concentration which increases with increasing concentrations of palladium. RADC is more selective for palladium over platinum than the other chitosan derivatives. A preliminary study of the competitive sorption kinetics in both batch and fixed bed systems is presented for RADC and confirms the higher affinity of the sorbent for palladium than for platinum.  相似文献   

6.
This work is devoted to the comprehension of the sorption mechanism of uranyl ions on chitosan particle dispersions. The uranyl concentration measurements were obtained by inductively coupled plasma atomic emission spectrometry (ICP-AES) and we considered the role of various physicochemical parameters (pH; nature and concentration of added salts; degree of acetylation, DA). The use of appropriate calculation software allowed us to determine the chemical nature of uranyl species in solution in relation to these different parameters. The optimal pH of fixation has been found to be within 6.5–7.5 and can be related to the necessity of having both deprotonated amino groups and no carbonate ions, which are a strong complexant of uranyl ions, thus inhibiting their interaction with chitosan. The decrease of metal uptake with an increase of DA and the lack of influence of ionic strength, confirm the results obtained with pH and allowed us to suppose the formation of a complex with chitosan amino groups rather than interactions of an electrostatic nature.  相似文献   

7.
Chitin and chitosan are naturally abundant biopolymers which are of interest to research concerning the sorption of metal ions since the amine and hydroxyl groups on their chemical structures act as chelation sites for metal ions. This study evaluates the removal of copper, chromium, and arsenic elements from chromated copper arsenate (CCA)-treated wood via biosorption by chitin and chitosan. Exposing CCA-treated sawdust to various amounts of chitin and chitosan for 1, 5, and 10 days enhanced removal of CCA components compared to remediation by deionized water only. Remediation with a solution containing 2.5 g chitin for 10 days removed 74% copper, 62% chromium, and 63% arsenic from treated sawdust. Remediation of treated sawdust samples using the same amount of chitosan as chitin resulted in 57% copper, 43% chromium, and 30% arsenic removal. The results suggest that chitin and chitosan have a potential to remove copper element from CCA-treated wood. Thus, these more abundant natural amino polysaccharides could be important in the remediation of waste wood treated with the newest formulations of organometallic copper compounds and other water-borne wood preservatives containing copper.  相似文献   

8.
An improved method for production of silica from rice hull ash   总被引:11,自引:0,他引:11  
Biosorption of monovalent ions Na+ and K+, by deactivated protonated yeast (Saccharomyces cerevisiae) at controlled pH, was compared with biosorption of divalent ions Ca2+ and Mg2+ to help to understand the underlying bindingmechanisms. The adsorption for monovalent ions was accompanied by H+ release. Divalent ions were sorbed by proton displacement, and also an additional mode not accompanied by release of H+. The sorption uptake of both monovalent and divalent metal ions increased with pH in the range 3-7 peaking at 6.75. Equilibrium sorption isotherms at pH = 6.75 showed that the totalmaximum biosorptive capacity for metal ions decreased in the following order: Ca > Mg > Na > or = K.  相似文献   

9.
The sorption ability of Candida utilis biomass for cadmium ions with accumulating competence of dried cells and cells in alginate was compared. After an optimization of process conditions (pH 5.5, biomass concentration 1 g/L and c0 50 mg/L), the cadmium sorption capacity of dried yeast biomass was perceptibly higher than that of the other tested adsorbents. Considering the sorption of the dried yeast biomass equal to 100 %, the cells in alginate reached 86 % while native cells showed only 42 %.  相似文献   

10.
Molybdate ion uptake both by raw chitosan and by glutaraldehyde cross-linked chitosan beads was investigated. This study focused on the identification of sorption mechanisms by means of several analytical procedures such as infra-red and reflectance spectrophotometries and CP-MAS 13C NMR analyses. Although the amine functions of glucosamine residues remain the major sites of interaction with the metal species, other functional groups can also be involved. It is certainly the case with carbonyl functions provided by the glutaraldehyde structure in cross-linked sorbents. Due to the large size of the polynuclear hydrolysed molybdate species, the sorption may involve several monomer units, resulting in additional linkages between the polymer chains. This behaviour can be confirmed by the chemical shifts of the carbon atoms observed by CP-MAS 13C NMR on raw chitosan beads, showing that the carbon atoms supporting the amino sites are not the only atoms affected by molybdate ion sorption. Moreover, cross-linking promotes a partial reduction of molybdenum species in the presence of some unreacted aldehyde groups.  相似文献   

11.
Interactions between anionic polyelectrolyte sodium alginate and the cationic surfactant cetytrimethylammonium bromide (CTAB) have been investigated by viscosity measurement techniques. The polymer–surfactant interactions are observed between alginate and CTAB at different pH in dilute solution. The results show that the rheological response of alginate dilute solutions is sensitive to a change of pH in the low pH range. The steady shear and intrinsic viscosity measurements reveal that the strong association between alginate and CTAB by electrostatic attraction above pH 5.0. However, as the pH value of solution decrease from 5.0 to 3.0, the strong association between alginate and CTAB is affected by not only electrostatic attraction but also hydrophobic interaction.  相似文献   

12.
Batch sorptions of acetazolamide (AZ) were conducted using four soils from China. Sorption of AZ was found to be impacted by OC, clay content, and soil pH, with higher kd values for soils with higher clay content. The kd values of SOM-removed soils are much lower than those of bulk soils. Sorption data were well fitted with a Freundlich model (r2 > 0.99). Chelating with the metal ions on the surfaces of soil particles was probably involved. With pH increase, the electrostatic attraction between anionic AZ and positively charged soil surface may increase. The sorption capacity decreased when the temperature increased from 20 to 40°C, and the calculated thermodynamics parameters of ΔG0, ΔH0, and ΔS0 indicated that the sorption was a non-spontaneous, physisorption, and exothermic process. Sorption coefficients (kd) for the compound in soil were low (ranging from 0.42 to 1.19 L·kg?1) and indicated that low level sorption of AZ with appreciable risk of ground water contamination.  相似文献   

13.
Chitosan is a biocompatible and biodegradable amino polysaccharide, which is soluble in aqueous solutions at pH < 6.5. It has been widely used for developing drug delivery systems because of its excellent mucoadhesive properties. Although many studies report on chitosan being mucoadhesive, the nature of interactions between chitosan and mucin remains poorly defined. Here, we have examined the role of primary amino groups and the role of electrostatic attraction, hydrogen bonding, and hydrophobic effects on aggregation of gastric mucin in the presence of chitosan. Reducing the number of amino groups through their half acetylation results in expansion of chitosan's pH-solubility window up to pH 7.4 but also reduces its capacity to aggregate mucin. We demonstrated that electrostatic attraction forces between chitosan and gastric mucin can be suppressed in the presence of 0.2 mol/L sodium chloride; however, this does not prevent the aggregation of mucin particles in the presence of this biopolymer. The presence of 8 mol/L urea or 10% v/v ethanol in solutions also affects mucin aggregation in the presence of chitosan, demonstrating the role of hydrogen bonding and hydrophobic effects, respectively, in mucoadhesion.  相似文献   

14.
Biosorption, the passive accumulation of metal ions by biomass, can be used for purifying metal bearing wastewater. Seaweeds represent a readily available source of biosorbent material that possesses a high metal binding capacity. For example, Sargassum can accumulate 2 mequiv of Cd per gram of biomass i.e. 10% of its dry weight. Binding of Cd and Cu by Sargassum is an ion exchange process involving both covalent and ionic bonds. The amount of cations bound covalently or by complexation can be predicted using multi-component sorption isotherms involving 2 types of binding sites, carboxyl and sulphate. A Donnan model was used to account for the effect of ionic strength and electrostatic attraction. The use of a multi-component isotherm that included one term for Na binding was less appropriate than the Donnan model for modelling ionic strength effects. It was possible to predict metal and proton binding as a function of the pH value, metal concentration and ionic strength of the solution. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
The impact of a cationic polyelectrolyte on the pH sensitivity of the electrical charge and aggregation stability of protein-coated lipid droplets was examined. One percent (w/w) corn oil-in-water emulsions containing lipid droplets coated by β-lactoglobulin [0.05% (w/w) β-Lg, 10 mM acetate buffer, pH 3] were prepared in the absence (“primary” emulsions) and presence (“secondary” emulsions) of chitosan (0 to 0.05 wt%). The pH (3 to 8) of these emulsions was adjusted, and the particle charge, particle size, creaming stability, and microstructure were measured. Chitosan adsorbed to the β-Lg-coated droplets from pH 4.5 to 7.5, which was attributed to electrostatic attraction between the cationic polyelectrolyte and anionic patches on the droplet surfaces. Droplets coated by β-Lg–chitosan had better stability to flocculation than those coated by β-Lg alone around the isoelectric point of the adsorbed proteins (pH 4.5 to 5.5), which was attributed to increased electrostatic and steric repulsion between the droplets. We have shown that chitosan may be used to modulate the electrical characteristics and stability of protein-coated lipid droplets, which may be useful in the design and formation of delivery systems for use in the food, pharmaceutical, and other industries.  相似文献   

16.
Kinetics and capacity of Ni2+ and Cu2+ sorption by Chlorella vulgaris were studied using single and binary metal solutions at various concentrations of these metal ions. The second-order rate law best described the kinetics of metal sorption from both single and binary metal systems. C. vulgaris preferentially sorbed Cu2+ over Ni2+ in the binary system. In comparison to the single metal system, the amounts of Ni2+ and Cu2+ sorbed at equilibrium (qe) were respectively 73% and 25%, and the initial rate of sorption (h) was ca. 50% in the case of the binary metal system. The test metals inhibited sorption of each other, thereby indicating competition between Ni2+ and Cu2+ for sorption onto non-specific binding sites. The present study showed that C. vulgaris has specific as well as non-specific sites for the binding of Ni2+ and Cu2+. Participation of these sites for sorption depended on the ratio of Ni2+ and CU2+ in solution. The maximum metal sorption capacity of C. vulgaris was 6.75 mmol g(-1) from the binary metal solution at the tested biomass concentration (100 mg dry weight l(-1)). Total metal sorption was enhanced with increasing total concentration of both the metals up to 1.6 mM, beyond which a decrease occurred. Two-dimensional contour plots were successfully used for the first time for the evaluation of metal sorption potential.  相似文献   

17.
Biosorption of precious metals   总被引:3,自引:0,他引:3  
Biosorption has emerged as a low-cost and often low-tech option for removal or recovery of base metals from aqueous wastes. The conditions under which precious metals such as gold, platinum and palladium are sorbed by biomass are often very different to those under which base metals are sorbed. This, coupled with the increasingly high demand for precious metals, drives the increase in research into efficient recovery of precious metal ions from all waste material, especially refining wastewaters. Common biosorbents for precious metal ions include various derivatives of chitosan, as well as other compounds with relatively high surface amine functional group content. This is generally due to the ability of the positively charged amine groups to attract anionic precious metal ions at low pH. Recent research regarding the biosorption of some precious metals is reviewed here, with emphasis on the effects of the biosorption environment and the biosorption mechanisms identified.  相似文献   

18.
The equilibrium and solution structural properties of the iron(III) and copper(II) complexes of an asymmetric salen-like ligand (N,N'-bis(2-hydroxybenzyl)-2,3-diamino-propionic acid, H(3)bhbdpa) bearing a pendant carboxylate group were characterized in aqueous solution by potentiometric, pH-dependent electron paramagnetic resonance (EPR) and UV-Vis (UV-Visible) measurements. In the equimolar systems the pentadentate ligand forms very stable, differently protonated mononuclear complexes with both metal ions. In the presence of iron(III) {NH, PhO(-), COO(-)}, {2NH, 2PhO(-), COO(-)} and {2NH, 2PhO(-), COO(-), OH(-)} coordinated complexes are dominant. The EPR titrations reflected the presence of microscopic complex formation pathways, leading to the formation of binding isomers in case of Cu(H(2)bhbdpa)(+), Cu(Hbhbdpa) and Cu(bhbdpa)(-). The {2NH, 2PhO(-)+COO(-)/H(2)O} coordinated Cu(bhbdpa) is the only species between pH 6-11. At twofold excess of metal ion dinuclear complexes were detected with both iron(III) and copper(II). In presence of iron(III) a mu-carboxylato-mu-hydroxo-bridged dinuclear complex (Fe(2)(bhbdpa)(OH)(3)) is formed from Fe(H(2)bhbdpa)(2+) through overlapping proton release processes, providing one of the rare examples for the stabilization of an endogenous carboxylate bridged diiron core in aqueous solution. The complex Cu(2)(bhbdpa)(+) detected in the presence of copper(II) is a paramagnetic (S=1) species with relatively weakly coupled metal ions.  相似文献   

19.
This work reports on a study of the biosorption of copper and cobalt, both singly and in combination (in equimolar concentrations), by the resting cells of Penicillium brevicompactum. Equilibrium batch sorption studies were carried out at 30 degrees C and pH 5.0 for a contact time of 1 hour to guarantee that equilibrium was reached. The equilibrium data were analyzed using the Langmuir and Freundlich isotherms. The adsorption of binary mixtures of heavy metal solutions on the fungal biomass was found to be of competitive type where the adsorption capacity for any single metal decreased in the presence of the other. The cobalt ions showed a higher affinity for Penicillium brevicompactum than the copper ions.  相似文献   

20.
Biosorption is potentially an attractive technology for treatment of wastewater for retaining heavy metals from dilute solutions. This study investigated the feasibility of anaerobic granules as a novel type of biosorbent, for lead, copper, cadmium, and nickel removal from aqueous solutions. Anaerobic sludge supplied from a wastewater treatment plant in the province of Quebec was used. Anaerobic granules are microbial aggregates with a strong, compact and porous structure and excellent settling ability. After treatment of the biomass with Ca ions, the cation exchange capacity of the biomass was approximately 111 meq/100 g of biomass dry weight which is comparable to the metal binding capacities of commercial ion exchange resins. This work investigated the equilibrium, batch dynamics for the biosorption process. Binding capacity experiments using viable biomass revealed a higher value than those for nonviable biomass. Binding capacity experiments using non-viable biomass treated with Ca revealed a high value of metals uptake. The solution initial pH value affected metal sorption. Over the pH range of 4.0-5.5, pH-related effects were not significant. Meanwhile, at lower pH values the uptake capacity decreased. Time dependency experiments for the metal ions uptake showed that adsorption equilibrium was reached almost 30 min after metal addition. It was found that the q(max) for Pb2+, Cd2+, Cu2+, and Ni2+ ions, were 255, 60, 55, and 26 mg/g respectively (1.23, 0.53, 0.87, and 0.44 mmol/g respectively). The data pertaining to the sorption dependence upon metal ion concentration could be fitted to a Langmiur isotherm model. Based on the results, the anaerobic granules treated with Ca appear to be a promising biosorbent for removal of heavy metals from wastewater due to its optimal uptake of heavy metals, its particulate shape, compact porous structure, excellent settling ability, and its high mechanical strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号