共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Yan Huang Beiling Wu Dingzhu Shen Jiulin Chen Zhihua Yu Chuan Chen 《International journal of biological sciences》2021,17(1):151
As a systemic syndrome characterized by age-associated degenerative skeletal muscle atrophy, sarcopenia leads to a risk of adverse outcomes in the elderly. Age-related iron accumulation is found in the muscles of sarcopenia animal models and patients, but the role of iron in sarcopenia remains poorly understood. It has been recently found that iron overload in several diseases is involved in ferroptosis, an iron- dependent form of programmed cell death. However, whether this excess iron can result in ferroptosis in muscles is still unclear. In our present study, we found that ferric citrate induced ferroptosis in C2C12 cells, as well as impaired their differentiation from myoblasts to myotubes. Due to the decreased muscle mass and fiber size, 40-week-old senescence accelerated mouse prone 8 (SAMP8) mice were used as a sarcopenia model, in whose muscles the iron content and markers of ferroptosis were found to increase, compared to 8-week- old SAMP8 controls. Moreover, our results showed that iron overload upregulated the expression of P53, which subsequently repressed the protein level of Slc7a11 (solute carrier family 7, member 11), a known ferroptosis-related gene. The downregulation of Slc7a11 then induced the ferroptosis of muscle cells through the accumulation of lipid peroxidation products, which may be one of the causes of sarcopenia. The findings in this study indicate that iron plays a key role in triggering P53- Slc7a11-mediated ferroptosis in muscles, and suggest that targeting iron accumulation and ferroptosis might be a therapeutic strategy for treating sarcopenia. 相似文献
3.
4.
The senescence accelerated mouse (SAMP8) is a spontaneous animal model of overproduction of amyloid precursor protein (APP) and oxidative damage. It develops early memory disturbances and changes in the blood-brain barrier resulting in decreased efflux of amyloid-β protein from the brain. It has a marked increase in oxidative stress in the brain. Pharmacological treatments that reduce oxidative stress improve memory. Treatments that reduce amyloid-β (antisense to APP and antibodies to amyloid-β) not only improve memory but reduce oxidative stress. Early changes in lipid peroxidative damage favor mitochondrial dysfunction as being a trigger for amyloid-β overproduction in this genetically susceptible mouse strain. This sets in motion a cycle where the increased amyloid-beta further damages mitochondria. We suggest that this should be termed the Inflammatory-Amyloid Cycle and may well be similar to the mechanisms responsible for the pathophysiology of Alzheimer's disease. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease. 相似文献
5.
Changes in membrane fatty acids and delta-9 desaturase in senescence accelerated (SAMP8) mouse hippocampus with aging 总被引:4,自引:0,他引:4
Senescence accelerated mice (SAMP8) exhibit age induced impairments such as loss of memory and learning disabilities by the age of 8-10 months. Analysis of hippocampus of SAMP8 mice revealed that delta 9-desaturase (delta9desaturase) activity reduced up to 44-50% with age. Correspondingly, levels of unsaturated fatty acids are also lowered in the aged animals approximately to the same levels. RNase protection assay showed that delta9specific message decreased similarly with age. As such a decrease is known to cause alterations in membrane fluidity and affect cellular signaling pathways, these results suggest that lowering of delta9gene expression may be partly involved in age induced impairments. 相似文献
6.
Ye X Meeker HC Kozlowski PB Wegiel J Wang KC Imaki H Carp RI 《Histology and histopathology》2004,19(4):1141-1151
Liver disease is characterized by fatty liver, hepatitis, fibrosis and cirrhosis and is a major cause of illness and death worldwide. The prevalence of liver diseases highlights the need for animal models for research on the mechanism of disease pathogenesis and efficient and cost-effective treatments. Here we show that a senescence-accelerated mouse strain (SAMP8 mice), displays severe liver pathology, which is not seen in senescence-resistant mice (SAMR1). The livers of SAMP8 mice show fatty degeneration, hepatocyte death, fibrosis, cirrhotic changes, inflammatory mononuclear cell infiltration and sporadic neoplastic changes. SAMP8 mice also show abnormal liver function tests: significantly increased levels of alanine amino-transferase (ALT) and aspartate aminotransferase (AST). Furthermore, titers of murine leukemia virus are higher in livers of SAMP8 than in those of SAMR1 mice. Our observations suggest that SAMP8 mouse strain is a valuable animal model for the study of liver diseases. The possible mechanisms of liver damage in SAMP8 mice are also discussed. 相似文献
7.
Molecular cloning, expression, and regulation of hippocampal amyloid precursor protein of senescence accelerated mouse (SAMP8). 总被引:8,自引:0,他引:8
V B Kumar K Vyas M Franko V Choudhary C Buddhiraju J Alvarez J E Morley 《Biochimie et biologie cellulaire》2001,79(1):57-67
Alzheimer's disease (AD) is associated with increased expression of amyloid precursor protein (APP) with a consequent deposition of amyloid beta peptide (Abeta) which forms characteristic senile plaques. We have noticed that the senescence accelerated mouse (SAMP8), a strain of mouse that exhibits age-dependent defects such as loss of memory and retention at an early age of 8-12 months, also produces increased amounts of APP and Abeta similar to those observed in Alzheimer's disease (AD). In order to investigate if this is due to mutations in APP similar to those observed in AD, and to develop molecular probes that regulate its expression, APP cDNA was cloned from the hippocampus of 8-month-old SAMP8 mouse. The nucleotide sequence is 99.7% homologous with that of mouse and rat, 88.7% with monkey, and 89.2% with human homologues. At the amino acid level, the homology was 99.2% and 97.6% with rodent and primate sequences, respectively. A single amino acid substitution of Alanine instead of Valine at position 300 was unique to SAMP8 mouse APP. However, no mutations similar to those reported in human familial AD were observed. When the cDNA was expressed in HeLa cells, glycosylated mature APP could be detected by immunoblotting technique. The expression could be regulated in a time- and concentration-dependent manner by using an antisense oligonucleotide specific to APP mRNA. Such regulation of APP expression may have a therapeutic application in vivo. 相似文献
8.
9.
Ultrastructural changes in bones of the senescence-accelerated mouse (SAMP6): a murine model for senile osteoporosis 总被引:7,自引:0,他引:7
SAMP6, a substrain of senescence-accelerated mice, was developed as an animal model for senile osteoporosis. In the present study, we investigated the bone morphology, together with serum calcium and bone mineral density (BMD) in SAMP6 and age-matched normal mice SAMR1. We did not find any significant differences between SAMR1 and SAMP6 at 1 month of age with regard to the serum compositions and bone morphology. As compared with SAMR1, BMD, the femoral weight, femoral calcium and phosphorus levels were significantly reduced in SAMP6 at 2 and 5 months of age. The number of osteoblasts in trabecular bones was also significantly reduced. Swollen mitochondria and myelin-like structures were found in osteoblasts and osteocytes of SAMP6 mice at 2 and 5 months of age. There was a greater proportion of resting surface and less forming surface in the femoral endosteal surfaces of SAMP6 mice. The amount of trabecular bone in the lumbar vertebra and the distal metaphysis of the femur was reduced. The number of the mast cells in bone marrow of the tibia significantly increased in SAMP6 mice. These findings indicate that the lower bone mass in SAMP6 was due to the reduction in osteoblast formation and suggested that mast cells in bone marrows play a role in the pathogenesis of senile osteoporosis. 相似文献
10.
Oxidative stress on the astrocytes in culture derived from a senescence accelerated mouse strain 总被引:2,自引:1,他引:1
Astrocytes are one of the predominant glial cell types in the adult central nervous system functioning as both supportive and metabolic cells for the brain. Our objective in this experiment is to study the direct effects of hydrogen peroxide induced oxidative stress on astrocytes in culture. These astrocytes were derived from both an aged mouse strain (P8) and a matched control strain (R1). The astrocytes for both the P8 and R1 strains were treated with increasing concentrations of hydrogen peroxide. Our results showed that the oxidative stress had a similar effect in both strains of astrocytes; decreases in 3-(4,5-dimethylthiazol-2-yl)-2,2-diphenyltetrazolium bromide (MTT) and glial fibrillary acidic protein (GFAP) levels, and increases in terminal deoxynucleotidyltransferase-mediated dUTP nick end-labeling (TUNEL) staining, lactate dehydrogenase (LDH) staining, and superoxide dismutase (SOD), caspase-3 and B-cell lymphoma 2-associated protein X (bax) levels. At a hydrogen peroxide concentration of 400 microM , the differences of the above parameters between P8 cultures and R1 cultures were statistically significant (p<0.05). This strongly suggested that astrocytes derived from P8 and R1 strains reacted to oxidative stress with similar mechanisms and consequences. However, the mechanisms were not able to compensate for the oxidative stress in the P8 strain at a hydrogen peroxide concentration of 400 microM. The inability of the P8 astrocytes to counteract the oxidative stress might lead to inadequate protection from neuronal loss possibly resulting in significantly more astrocytic death. Our results suggested that the changes of astrocytes in peroxide detoxification may play a role in aging of the central nervous system, and further aging studies should examine the oxidative status of the samples. 相似文献
11.
Zakhidov ST Marshak TL Uryvaeva IV Gopko AV Semenova ML Delone GV Mikhaleva IaIu Makarov AA 《Ontogenez》2002,33(6):444-456
It was shown that during ontogenesis, the mice prone to (SAMP1) and resistant against accelerates senescence did not differ substantially in the frequency of cytogenetic aberrations in the hepatocytes and spermatogenic cells (spermatozoa and circular spermatids). These data suggest that in the mice of both lines, the processes of appearance, development, and functioning of complex biological systems, such as liver and testis, take place against the background of high genetic instability. The role of genetic instability in senescence is discussed. 相似文献
12.
Apoptosis is crucial for proper development of the CNS, wherein a significant percentage of all central neurons produced during early ontogeny die by apoptosis. To characterize the pattern of developmental programmed cell death, we assayed rat brainstem, neocortex, hippocampus, and cerebellum from birth through senescence. Quantitatively, using an ELISA for oligonucleosomal DNA fragments, we demonstrated that PND1 brainstem, neocortex, and hippocampus have the highest levels of fragmented DNA compared to older ages. Cerebellum displayed a large peak at PND10 and a smaller peak at PND21. Low levels were observed throughout adulthood and into senescence, which was corroborated qualitatively by agarose gel and TUNEL data. These data provide a temporal and regional baseline for further studies of the effects of perturbations of cell death during neural development. Quantitative and qualitative changes in these regional profiles of apoptosis due to environmental insults during early ontogeny may alter neuron number and function later in life. 相似文献
13.
Antioxidant activity of gallic acid from rose flowers in senescence accelerated mice 总被引:3,自引:0,他引:3
The activities of the antioxidant enzymes catalase (CAT) and glutathione peroxidase (GPx) in the blood and liver of the aging model induced by injection of different doses of D-gal into normal mice, and in senescence accelerated mice (SAM) of different ages, were determined. The results showed that the enzyme activities in the D-gal treated mice did not alter appreciably but the enzyme activities in blood of the SAM declined significantly with the increase in age, especially in the 9-month-old SAM. When gallic acid purified from rose flowers was used to treat the 9-month-old male SAM, it not only reinstated the activities of CAT and GPx but also significantly reduced the amount of malondialdehyde (MDA) in the liver, brain and kidney. The results demonstrated that 9-month-old male SAM represent an appropriate animal model to evaluate the antioxidant activities of natural products. 相似文献
14.
The senescence-accelerated mouse (SAM) is a useful animal model to study aging or age-associated disorders due to its inherited aging phenotype. To investigate proteins involved in the aging process in liver, we compared the young (4- or 20-week old) and the aged group (50-week-old) of SAMP8 (short life span) and SAMR1 (control) mice, and identified 85 differentially expressed distinct proteins comprising antioxidation, glucose/amino acid metabolism, signal transduction and cell cycle systems using proteomics tools. For the antioxidation system, the aged SAMP8 mice showed a large increase in glutathione peroxidase and decreases in glutathione-S-transferase and peroxiredoxin, ranging from 2.5- to 5-fold, suggesting lower detoxification potentials for oxidants in the aged SAMP8 liver. Similarly, levels of key glycolytic enzymes decreased greatly in the aged SAMP8 compared to SAMR1, indicating a disturbance in glucose homeostasis that may be closely related to the typical deficits in learning and memory of the aged SAMP8. Protein profiles of amino acid metabolic enzymes suggest that accumulation of glutamine and glutamate in tissues of the aged SAMP8 may be due to hyperexpression of ornithine aminotransferase and/or glutamate dehydrogenase. Decreases in levels of proteins involved in signal transduction/apoptosis (e.g., cathepsin B) in the aged SAMP8 may support the previously proposed negative relationship between apoptosis and aging. However, the changes described above were not markedly seen in the young group of both strains. For cell cycle systems, levels of selenium binding protein increased about four-fold with age in SAMP8. Yet, almost no change occurred in either the young or the aged SAMR1, which may explain problems associated with cell proliferation and tissue regeneration in the aged SAMP8. In conclusion, composite profiles of key proteins involved in age-related processes enable assessment of accelerated senescence and the appearance of senescence-related pathologies in the aged SAMP8. 相似文献
15.
Ho HY Cheng ML Lu FJ Chou YH Stern A Liang CM Chiu DT 《Free radical biology & medicine》2000,29(2):156-169
Glucose-6-phosphate dehydrogenase (G6PD) is involved in the generation of reduced nicotinamide adenine dinucleotide phosphate (NADPH) and the maintenance of the cellular redox balance. The biological effects of G6PD deficiency in nucleated cells were studied using G6PD-deficient human foreskin fibroblasts (HFF). In contrast to that of normal HFF, the doubling time of G6PD-deficient cells increased readily from population doubling level (PDL) 15 to 63. This was accompanied by a significant increase in the percentage of G(1) cells. The slow-down in growth preceded an early entry of these cells into a nondividing state reminiscent of cellular senescence. These cells exhibited a significant increase in level of senescence-associated beta-galactosidase (SA-beta-gal) staining. The importance of G6PD activity in cell growth was corroborated by the finding that ectopic expression of active G6PD in the deficient cells prevented their growth retardation and early onset of senescence. Mechanistically, the enhanced fluorescence in dichlorofluorescin (H(2)DCF)-stained G6PD-deficient cells suggests the possible involvement of reactive oxygen species in senescence. Taken together, our results show that G6PD deficiency predisposes human fibroblasts to retarded growth and accelerated cellular senescence. Moreover, G6PD-deficient HFF provides a useful model system for delineating the effects of redox alterations on cellular processes. 相似文献
16.
Lorke DE Wong LY Lai HW Poon PW Zhang A Chan WY Yew DT 《Cellular and molecular neurobiology》2003,23(2):143-164
Senescence-acceleration-prone mice (SAMP8) provide a model to study the influence of early postnatal sound exposure upon the aging auditory midbrain. SAMP8 were exposed to a 9-kHz monotone of either 53- or 65-dB sound pressure level during the first 30 postnatal days, the neurons in the auditory midbrain responding selectively to 9 kHz were localized by c-fos immunohistochemistry and the following parameters were compared to control SAMP8 not exposed to sound: mortality after sound exposure, dendritic spine density, and quantitative neurochemical alterations in this 9-kHz isofrequency lamina. For morphometric analysis, animals were examined at 1, 4, and 8 months of age. Serial sections of the inferior colliculus were Golgi impregnated or stained immunohistochemically for the expression of 1 subunit of NMDA receptor or GABA. Mortality after exposure to 53 dB was the same as in controls, but was markedly increased from 7 months of age onward after postnatal exposure to 65 dB. No gross morphological alterations were observed in the auditory midbrain after sound exposure. However, sound exposure to 53 or 65 dB significantly reduced dendritic spine density by 11% at 4 months or by 11–17% both at 1 and 4 months of age, respectively. The effect of sound exposure upon neurons expressing the NMDA1 subunit was dose-dependent. Increasing with age until 4 months in control mice and remaining essentially stable thereafter, the percentage of NMDA1-immunoreactive neurons was significantly elevated by 40–66% in 1- and 8-month-old SAMP8 exposed to 53 dB, whereas no significant effect of 65 dB was apparent. The proportion of GABAergic cells declined with age in controls. It was significantly decreased at 1 month after 53 and 65 dB sound exposure. In contrast, it was elevated at later stages, being significantly increased at 4 months after exposure to 53 dB and at 8 months after exposure to 65 dB. The total cell number in the 9-kHz isofrequency lamina of SAMP8 decreased with age, but was not affected by exposure to either 53 or 65 dB. The present results indicate that early postnatal exposure to a monotone of mild intensity has long-term effects upon the aging auditory brain stem. Some of the changes induced by sound exposure, e.g., decline in spine density, are interpreted as accelerations of the normal aging process, whereas other effects, e.g., increased NMDA1 expression after 53 dB and elevated GABA expression after both 53 and 65 dB, are not merely explicable by accelerated aging. 相似文献
17.
18.
The highly conserved Structural Maintenance of Chromosome (SMC) proteins are crucial for the formation of three essential complexes involved in high fidelity chromosome transmission during cell division. Recently, the Smc5/6 complex has been reported to be important for telomere maintenance in yeast and also in cancerous human ALT cells, where it could function in a homologous recombination-based (HR) telomere maintenance pathway. Here, we investigate the possible roles of the budding yeast Smc5/6 complex in maintaining appropriate chromosome end-structures allowing cell survival in absence of telomerase. The results show that cells harbouring mutant alleles of genes encoding Smc5/6-complex proteins rapidly stop growing after telomerase loss. Furthermore, this telomerase-induced growth arrest is much more pronounced as compared to cultures with a functional Smc5/6-complex. Bulk telomere sequence loss is not increased in the mutant cells and the evidence suggests that Smc5/6 slows senescence through a partially HR-independent pathway. We propose that in yeast, the Smc5/6-complex is required for efficient and timely termination of DNA replication and repair at telomeres to avoid stochastic telomere loss during cell division. Consistent with this hypothesis, sequencing of telomeres from telomerase-positive smc5/6 mutant cells revealed a higher frequency of telomere breakage events. Finally, the results also show that on dysfunctional telomeres, the generation of 3'-single stranded DNA is impaired, suggesting that the complex may also participate in the formation of single-stranded overhangs which are thought to be the substrates for telomere repeat replenishment in the absence of telomerase. 相似文献
19.
Amyloid β-peptide (Aβ) plays a central role in the pathophysiology of Alzheimer's disease (AD) through the induction of oxidative stress. This peptide is produced by proteolytic cleavage of amyloid precursor protein (APP) by the action of β- and γ-secretases. Previous studies demonstrated that reduction of Aβ, using an antisense oligonucleotide (AO) directed against the Aβ region of APP, reduced oxidative stress-mediated damage and prevented or reverted cognitive deficits in senescence-accelerated prone mice (SAMP8), a useful animal model for investigating the events related to Aβ pathology and possibly to the early phase of AD. In the current study, aged SAMP8 were treated by AO directed against PS-1, a component of the γ-secretase complex, and tested for learning and memory in T-maze foot shock avoidance and novel object recognition. Brain tissue was collected to identify the decrease of oxidative stress and to evaluate the proteins that are differently expressed and oxidized after the reduction in free radical levels induced by Aβ. We used both expression proteomics and redox proteomics approaches. In brain of AO-treated mice a decrease of oxidative stress markers was found, and the proteins identified by proteomics as expressed differently or nitrated are involved in processes known to be impaired in AD. Our results suggest that the treatment with AO directed against PS-1 in old SAMP8 mice reverses learning and memory deficits and reduces Aβ-mediated oxidative stress with restoration to the normal condition and identifies possible pharmacological targets to combat this devastating dementing disease. 相似文献
20.
Cristina Díez-Vives Marina Gay† Silvia García-Matas Francesc Comellas‡ Montserrat Carrascal† Joaquín Abian† Arantxa Ortega-Aznar§ Rosa Cristòfol Coral Sanfeliu 《Journal of neurochemistry》2009,111(4):945-955
Senescence-accelerated prone (SAMP) strain 8 mice suffer an earlier development of cognitive age-related pathologies and a shorter life span than conventional mice. Protein alterations in astrocytes, in addition to those in neurons, may contribute to neurodegenerative damage. We applied proteomics techniques to study cell-specific early markers of brain aging-related degeneration in SAMP8. The two-dimensional protein expression patterns of the SAMP8 neuron and astrocyte cultures were compared with those obtained from senescence-accelerated resistant mouse strain 1 cultures. Differentially expressed spots were identified by matrix-assisted laser desorption/ionization–time of flight peptide map fingerprinting and database search. Proteins belonged to cell pathways of energy metabolism, biosynthesis, cell transduction and signaling, stress response, and the maintenance of cytoskeletal functions. Most of the changes were cell type specific. However, there was a general increase in cell transduction, signaling, and stress-related proteins and a decrease in cytoskeletal proteins. In addition, neurons showed an increased expression of proteins involved in biosynthetic pathways. A number of the protein alterations have been previously reported in the brain tissue proteome of SAMP8, aged brain or Alzheimer's disease brain. Alterations in neuron and astrocyte proteoma indicated that both cell types are involved in the brain degenerative changes of SAMP8 mice. However, network analysis suggests that neuronal changes are more complex and have a greater influence. 相似文献