共查询到2条相似文献,搜索用时 0 毫秒
1.
将粒子群优化算法应用于序列联配,提出了一种改进的粒子群优化算法,该算法在粒子群的进化过程中根据粒子的适应值动态地调整粒子群的惯性权重与粒子群飞行速度范围,提高了算法的收敛速度和收敛精度;针对PSO算法可能出现的早熟现象,引入重新初始化机制,增强了算法的搜索能力,实验表明该算法是有效的。 相似文献
2.
物种分布模型是建立在物种出现或缺失数据的基础上,但可获得的真实分布数据存在着各种各样的缺点(如:物种识别错误、坐标错误、抽样偏差、数据缺失等),影响着物种分布模型的预测性能、稳定性及应用,因此使用物种真实分布数据评估物种分布模型将带来很大的不确定性。为避免这种不确定性,越来越多的研究使用虚拟物种来评价物种分布模型的性能,评估新方法的优劣。虚拟物种是一种建立在真实(或虚拟)地理信息系统下人工生命,是简化和抽象的物种,它通过模拟物种对环境变量的响应关系,评估物种在不同环境变量下的出现概率,人为地给出虚拟的物种分布数据。虚拟物种具有数据容易获得、数据质量可控、避免过度模拟等优势,目前它被广泛用于评估物种特性、抽样偏差、地理信息、出现/缺失标准等对物种分布模型性能的影响。虚拟物种是大尺度研究中不可或缺的重要工具,有利于解决真实数据未能解决的科学问题。常用的构成算法有求和法、求积法和综合法,但这些方法可能存在补偿效应,扩大了物种的分布范围。考虑到虚拟物种的不足,提出了未来虚拟物种可能的发展方向(避免过度脱离真实,完善虚拟物种的构成算法,构建虚拟的模式生物、群落及生态系统等)。为帮助研究者快速构建虚拟物种,基于R环境开发了一个虚拟物种构成软件包(SDMvspecies)。虚拟物种可以与真实物种相结合,通过改进模型的构成方法,有利于解决一些真实数据未能解决的问题;虚拟物种的应用也将导致一些新理论的产生,有利于更好地理解生态学原理。 相似文献