首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A natural isolate, Candida tropicalis was tested for xylitol production from corn fiber and sugarcane bagasse hydrolysates. Fermentation of corn fiber and sugarcane bagasse hydrolysate showed xylose uptake and xylitol production, though these were very low, even after hydrolysate neutralization and treatments with activated charcoal and ion exchange resins. Initial xylitol production was found to be 0.43 g/g and 0.45 g/g of xylose utilised with corn fiber and sugarcane bagasse hydrolysate respectively. One of the critical factors for low xylitol production was the presence of inhibitors in these hydrolysates. To simulate influence of hemicellulosic sugar composition on xylitol yield, three different combinations of mixed sugar control experiments, without the presence of any inhibitors, have been performed and the strain produced 0.63 g/g, 0.68 g/g and 0.72 g/g of xylose respectively. To improve yeast growth and xylitol production with these hydrolysates, which contain inhibitors, the cells were adapted by sub culturing in the hydrolysate containing medium for 25 cycles. After adaptation the organism produced more xylitol 0.58 g/g and 0.65 g/g of xylose with corn fiber hydrolysate and sugarcane bagasse hydrolysate respectively.  相似文献   

2.
Characterization of a new xylitol-producer Candida tropicalis strain   总被引:1,自引:0,他引:1  
A xylitol-producer yeast isolated from corn silage and designated as ASM III was selected based on its outstanding biotechnological potential. When cultivated in batch culture mode and keeping the dissolved oxygen at 40% saturation, xylitol production was as high as 130 g l(-1) with a yield of 0.93 g xylitol g(-1) xylose consumed. A preliminary identification of the yeast was performed according to conventional fermentation and assimilation physiological tests. These studies were complemented by using molecular approaches based on PCR amplification, restriction-fragment length polymorphism analysis and sequencing of the rDNA segments: intergenic transcribed spacer (ITS) 1-5.8S rDNA-ITS 2, and D1/D2 domain of the 26S rRNA gene. Results from both the conventional protocols and the molecular characterization, and proper comparisons with the reference strains Candida tropicalis ATCC 20311 and NRRL Y-1367, led to the identification of the isolate as a new strain of C. tropicalis.  相似文献   

3.
A total of 35 yeasts were isolated from the gut of beetles collected from Hyderabad city, India. Twenty of these yeasts utilized xylose as a sole carbon source but only 12 of these converted xylose to xylitol. The ability to convert xylose to xylitol varied among the isolates and ranged from 0.12 to 0.58 g/g xylose. Based on the phenotypic characteristics and phylogenetic analysis of the D1/D2 domain sequence of 26S rRNA gene, these isolates were identified as members of Pichia, Candida, Issatchenkia, and Clavispora. Strain YS 54 (CBS 10446), which was phylogenetically similar to Pichia caribbica and which formed hat-shaped ascospore characteristics of the genus Pichia, was the best xylitol producer (0.58 g xylitol/g xylose). YS 54 was also capable of producing xylitol from sugarcane bagasse hydrolysate and the efficiency of conversion was 0.32 g xylitol/g xylose after 20 cycles of adaptation in medium containing sugarcane bagasse hydrolysate.  相似文献   

4.
The co-production of xylitol and ethanol from agricultural straw has more economic advantages than the production of ethanol only. Saccharomyces cerevisiae, the most widely used ethanol-producing yeast, can be genetically engineered to ferment xylose to xylitol. In the present study, the effects of xylose-specificity, cofactor preference, and the gene copy number of xylose reductase (XR; encoding by XYL1 gene) on xylitol production of S. cerevisiae were investigated. The results showed that overexpression of XYL1 gene with a lower xylose-specificity and a higher NADPH preference favored the xylitol production. The copy number of XYL1 had a positive correlation with the XR activity but did not show a good correlation with the xylitol productivity. The overexpression of XYL1 from Candida tropicalis (CtXYL1) achieved a xylitol productivity of 0.83 g/L/h and a yield of 0.99 g/g-consumed xylose during batch fermentation with 43.5 g/L xylose and 17.0 g/L glucose. During simultaneous saccharification and fermentation (SSF) of pretreated corn stover, the strain overexpressing CtXYL1 produced 45.41 g/L xylitol and 50.19 g/L ethanol, suggesting its application potential for xylitol and ethanol co-production from straw feedstocks.  相似文献   

5.
In conversion of biomass to fuels or chemicals, inhibitory compounds arising from physical–chemical pretreatment of the feedstock can interfere with fermentation of the sugars to product. Fungal strain Coniochaeta ligniaria NRRL30616 metabolizes the furan aldehydes furfural and 5‐hydroxymethylfurfural, as well as a number of aromatic and aliphatic acids and aldehydes. Use of NRRL30616 to condition biomass sugars by metabolizing the inhibitors improves their fermentability. Wild‐type C. ligniaria has the ability to grow on xylose as sole source of carbon and energy, with no accumulation of xylitol. Mutants of C. ligniaria unable to grow on xylose were constructed. Xylose reductase and xylitol dehydrogenase activities were reduced by approximately two thirds in mutant C8100. The mutant retained ability to metabolize inhibitors in biomass hydrolysates. Although C. ligniaria C8100 did not grow on xylose, the strain converted a portion of xylose to xylitol, producing 0.59 g xylitol/g xylose in rich medium and 0.48 g xylitol/g xylose in corn stover dilute acid hydrolysate. 2016 American Institute of Chemical Engineers Biotechnol. Prog., 2016 © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:606–612, 2016  相似文献   

6.
Aims: To characterize the kinetics of growth, sugar uptake and xylitol production in batch and fed‐batch cultures for a xylitol assimilation‐deficient strain of Candida tropicalis isolated via chemical mutagenesis. Methods and Results: Chemical mutagenesis using nitrosoguanidine led to the isolation of the xylitol‐assimilation deficient strain C. tropicalis SS2. Shake‐flask fermentations with this mutant showed a sixfold higher xylitol yield than the parent strain in medium containing 25 g l?1 glucose and 25 g l?1 xylose. With 20 g l?1 glycerol, replacing glucose for cell growth, and various concentrations of xylose, the studies indicated that the mutant strain resulted in xylitol yields from xylose close to theoretical. Under fully aerobic conditions, fed‐batch fermentation with repeated addition of glycerol and xylose resulted in 3·3 g l?1 h?1 xylitol volumetric productivity with the final concentration of 220 g l?1 and overall yield of 0·93 g g?1 xylitol. Conclusions: The xylitol assimilation‐deficient mutant isolated in this study showed the potential for high xylitol yield and volumetric productivity under aerobic conditions. In the evaluation of glycerol as an alternative low‐cost nonfermentable carbon source, high biomass and xylitol yields under aerobic conditions were achieved; however, the increase in initial xylose concentrations resulted in a reduction in biomass yield based on glycerol consumption. This may be a consequence of the role of an active transport system in the yeast requiring increasing energy for xylose uptake and possible xylitol secretion, with little or no energy available from xylose metabolism. Significance and Impact of the Study: The study confirms the advantage of using a xylitol assimilation‐deficient yeast under aerobic conditions for xylitol production with glycerol as a primary carbon source. It illustrates the potential of using the xylose stream in a biomass‐based bio‐refinery for the production of xylitol with further cost reductions resulting from using glycerol for yeast growth and energy production.  相似文献   

7.
A thermotolerant yeast capable of fermenting xylose to xylitol at 40°C was isolated and identified as a strain of Debaryomyces hansenii by ITS sequencing. This paper reports the production of xylitol from D-xylose and sugarcane bagasse hemicellulose by free and Ca-alginate immobilized cells of D. hansenii. The efficiency of free and immobilized cells were compared for xylitol production from D-xylose and hemicellulose in batch culture at 40°C. The maximum xylitol produced by free cells was 68.6 g/L from 100 g/L of xylose, with a yield of 0.76 g/g and volumetric productivity 0.44 g/L/h. The yield of xylitol and volumetric productivity were 0.69 g/g and 0.28 g/L/h respectively from hemicellulosic hydrolysate of sugarcane bagasse after detoxification with activated charcoal and ion exchange resins. The Ca-alginate immobilized D. hansenii cells produced 73.8 g of xylitol from 100 g/L of xylose with a yield of 0.82 g/g and volumetric productivity of 0.46 g/L/h and were reused for five batches with steady bioconversion rates and yields.  相似文献   

8.
Candida tropicalis, a strain isolated from the sludge of a factory manufacturing xylose, produced a high xylitol concentration of 131 g/l from 150 g/l xylose at 45 h in a flask. Above 150 g/l xylose, however, volumetric xylitol production rates decreased because of a lag period in cell growth. In fed-batch culture, the volumetric production rate and xylitol yield from xylose varied substantially with the controlled xylose concentration and were maximum at a controlled xylose concentration of 60 g/l. To increase the xylitol yield from xylose, feeding experiments using different ratios of xylose and glucose were carried out in a fermentor. The maximum xylitol yield from 300 g/l xylose was 91% at a glucose/xylose feeding ratio of 15%, while the maximum volumetric production rate of xylitol was 3.98 g l−1 h−1 at a glucose/xylose feeding ratio of 20%. Xylitol production was found to decrease markedly as its concentration rose above 250 g/l. In order to accumulate xylitol to 250 g/l, 270 g/l xylose was added in total, at a glucose/xylose feeding ratio of 15%. Under these conditions, a final xylitol production of 251 g/l, which corresponded to a yield of 93%, was obtained from 270 g/l xylose in 55 h. Received: 20 April 1998 / Received revision: 29 May 1998 / Accepted: 19 June 1998  相似文献   

9.
Pretreatment steps are necessary for the bioconversion of corn stover (CS) to xylitol. In order to optimize the pretreatment parameters, the sulfuric acid concentration, sulfuric acid residence time, and solid slurry concentration were evaluated, based on the glucose and xylose recovered from CS at the relatively low temperature of 120°C. The optimum conditions were found to be pretreatment with 2.5% (w/v) sulfuric acid for 1.5 h, with a solid slurry concentration of 90 g/L. Under these conditions, the hydrolysis rates of glucan and xylan were approximately 26.0 and 82.8%, respectively. High xylitol production (10.9 g/L) and conversion yield (0.97 g/g) were attained from corn stover hydrolysate (CSH) without detoxification and any nutrient addition. Our results were similar for xylitol production in synthetic medium under the same conditions. The non-necessity of both the hydrolysate detoxification step and nutrient addition to the CSH is undoubtedly promising for scale-up application on an industrial scale, because this medium-based manufacturing process is expected to reduce the production cost of xylitol. The present study demonstrates that value-added xylitol could be effectively produced from CS under optimized pretreatment conditions, especially with CSH as the substrate material.  相似文献   

10.
The ability of a recombinant Saccharomyces yeast strain to ferment the sugars glucose, xylose, arabinose and galactose which are the predominant monosaccharides found in corn fibre hydrolysates has been examined. Saccharomyces strain 1400 (pLNH32) was genetically engineered to ferment xylose by expressing genes encoding a xylose reductase, a xylitol dehydrogenase and a xylulose kinase. The recombinant efficiently fermented xylose alone or in the presence of glucose. Xylose-grown cultures had very little difference in xylitol accumulation, with only 4 to 5g/l accumulating, in aerobic, micro-aerated and anaerobic conditions. Highest production of ethanol with all sugars was achieved under anaerobic conditions. From a mixture of glucose (80g/l) and xylose (40g/l), this strain produced 52g/l ethanol, equivalent to 85% of theoretical yield, in less than 24h. Using a mixture of glucose (31g/l), xylose (15.2g/l), arabinose (10.5g/l) and galactose (2g/l), all of the sugars except arabinose were consumed in 24h with an accumulation of 22g ethanol/l, a 90% yield (excluding the arabinose in the calculation since it is not fermented). Approximately 98% theoretical yield, or 21g ethanol/l, was achieved using an enzymatic hydrolysate of ammonia fibre exploded corn fibre containing an estimated 47.0g mixed sugars/l. In all mixed sugar fermentations, less than 25% arabinose was consumed and converted into arabitol.  相似文献   

11.
In ruminant diets, soluble sugar is an important factor in the digestive process. The objective of this study was to evaluate the effects of the source and dose of soluble sugars, under controlled pH conditions, on the in vitro digestibility of DM, fibre fractions (NDF and ADF) and cell wall neutral monosaccharides of corn silage. Silage was collected from several points in a silage mass from a bunker silo, oven-dried at 55°C and ground through a 1-mm screen. Sub-samples were combined with sugars to compose the treatments, in a 5 × 5 factorial arrangement, as a combination of five soluble sugar sources (glucose, fructose, arabinose, xylose and sucrose) and five sugar doses (0, 100, 200, 300 and 400 g/kg sugar in DM corn silage), respecting the following proportions of sugar : corn silage, 0 : 100, 10 : 90, 20 : 80, 30 : 70, 40 : 60 represented by the sugar doses, respectively. An in vitro test was performed to determine the true digestibility (D) of the chemical entities (DM, NDF and ADF) and cell wall monosaccharides (glucose = gluc, arabinose = arab and xylose = xyl). During the first 12 h of incubation, the pH was maintained above 6.0 by the addition of 2.5 N NaOH. The concentrations of neutral monosaccharides (arabinose, xylose and glucose) were determined by GLC. The soluble sugars decreased the digestibility of corn silage followed by pH reduction, especially at doses higher than 200 g/kg sugar. Overall, xylose, followed by sucrose, fructose and arabinose, had greater impacts on DM digestibility, whereas fibre digestibility was impaired by sucrose at all doses. Xylose and fructose had greater impacts on NDF digestibility at 300 and 400 g/kg sugar. Although xylose impaired the Dgluc in the cell wall in all doses. All doses of glucose improved the Dgluc and Dxyl in the cell wall.  相似文献   

12.
About 270 yeast isolates were screened for xylitol production using xylose as the sole carbon source. The best isolate, Debaryomyces hansenii UFV-170, released 5.84 g L(-1) xylitol from 10 g L(-1) xylose after 24 h, corresponding to a yield of xylitol on consumed substrate (Y(P/S)) of 0.54 g g(-1). This strain was cultivated batch-wise at variable starting concentrations of xylose (S(o)) and biomass (X(o)) and agitation intensity, in order to improve xylitol production and to evaluate, through simple carbon balances, the influence of these conditions on xylose metabolism. Under the best microaerobic conditions (S(o) = 53 g L(-1), X(o) = 1.4 g L(-1), 200 rpm), xylitol production reached 37.0 g L(-1), corresponding to xylitol volumetric productivity of 1.0 g L(-1)h(-1), specific productivity of 0.22 g g(-1)h(-1) and Y(P/S) = 0.76 g g(-1). Almost 83% of xylose was consumed for xylitol production, the rest being consumed for growth, while respiration was negligible. The new isolate appeared to be a promising alternative for industrial xylitol bioproduction.  相似文献   

13.
The traditional ethanologenic yeast Saccharomyces cerevisiae cannot metabolize xylose, which is an abundant sugar in non-crop plants. Engineering this yeast for a practicable fermentation of xylose will therefore improve the economics of bioconversion for the production of fuels and chemicals such as ethanol. One of the most widely employed strategies is to express XYL1, XYL2, and XYL3 genes derived from Scheffersomyces stipitis (formerly Pichia stiptis) in S. cerevisiae. However, the resulting engineered strains have been reported to exhibit large variations in xylitol accumulation and ethanol yields, generating many hypotheses and arguments for elucidating these phenomena. Here we demonstrate that low expression levels of the XYL2 gene, coding for xylitol dehydrogenase (XDH), is a major bottleneck in efficient xylose fermentation. Through an inverse metabolic engineering approach using a genomic library of S. cerevisiae, XYL2 was identified as an overexpression target for improving xylose metabolism. Specifically, we performed serial subculture experiments after transforming a genomic library of wild type S. cerevisiae into an engineered strain harboring integrated copies of XYL1, XYL2 and XYL3. Interestingly, the isolated plasmids from efficient xylose-fermenting transformants contained XYL2. This suggests that the integrated XYL2 migrated into a multi-copy plasmid through homologous recombination. It was also found that additional overexpression of XYL2 under the control of strong constitutive promoters in a xylose-fermenting strain not only reduced xylitol accumulation, but also increased ethanol yields. As the expression levels of XYL2 increased, the ethanol yields gradually improved from 0.1 to 0.3g ethanol/g xylose, while the xylitol yields significantly decreased from 0.4 to 0.1g xylitol/g xylose. These results suggest that strong expression of XYL2 is a necessary condition for developing efficient xylose-fermenting strains.  相似文献   

14.
Candida parapsilosis was grown for 59 h in a medium containing corn cob hydrolysate consisting of 50 g xylose l–1, 3.0 g glucose l–1, 2.0 g arabinose l–1, and 0.9 g acetic acid l–1. A biomass of 9.1 g l–1 was produced with 36 g xylitol l–1 and 2.5 g ethanol l–1. In a medium containing 50 g xylose l–1 instead of corn cob hydrolysate, the concentrations of cells, xylitol, and ethanol were 8.6 g l–1, 33 g l–1, and 0.2 g l–1, respectively. The differences between two cultures were due to the glucose and arabinose in the corn cob hydrolysate stimulating growth and the low concentration of acetic acid stimulating xylitol production.  相似文献   

15.
An endophytic yeast, Rhodotorula mucilaginosa strain PTD3, that was isolated from stems of hybrid poplar was found to be capable of production of xylitol from xylose, of ethanol from glucose, galactose, and mannose, and of arabitol from arabinose. The utilization of 30 g/L of each of the five sugars during fermentation by PTD3 was studied in liquid batch cultures. Glucose-acclimated PTD3 produced enhanced yields of xylitol (67% of theoretical yield) from xylose and of ethanol (84, 86, and 94% of theoretical yield, respectively) from glucose, galactose, and mannose. Additionally, this yeast was capable of metabolizing high concentrations of mixed sugars (150 g/L), with high yields of xylitol (61% of theoretical yield) and ethanol (83% of theoretical yield). A 1:1 glucose:xylose ratio with 30 g/L of each during double sugar fermentation did not affect PTD3's ability to produce high yields of xylitol (65% of theoretical yield) and ethanol (92% of theoretical yield). Surprisingly, the highest yields of xylitol (76% of theoretical yield) and ethanol (100% of theoretical yield) were observed during fermentation of sugars present in the lignocellulosic hydrolysate obtained after steam pretreatment of a mixture of hybrid poplar and Douglas fir. PTD3 demonstrated an exceptional ability to ferment the hydrolysate, overcome hexose repression of xylose utilization with a short lag period of 10 h, and tolerate sugar degradation products. In direct comparison, PTD3 had higher xylitol yields from the mixed sugar hydrolysate compared with the widely studied and used xylitol producer Candida guilliermondii.  相似文献   

16.
Xylitol, a functional sweetener, was produced from xylose by biological conversion using Candida tropicalis ATCC 13803. Based on a two-substrate fermentation using glucose for cell growth and xylose for xylitol production, fed-batch fermentations were undertaken to increase the final xylitol concentration. The effects of xylose and xylitol on xylitol production rate were studied to determine the optimum concentrations for fed-batch fermentation. Xylose concentration in the medium (100 g l−1) and less than 200 g l−1 total xylose plus xylitol concentration were determined as optimum for maximum xylitol production rate and xylitol yield. Increasing the concentrations of xylose and xylitol decreased the rate and yield of xylitol production and the specific cell growth rate, probably because of an increase in osmotic stress that would interfere with xylose transport, xylitol flux to secretion to cell metabolism. The feeding rate of xylose solution during the fed-batch mode of operation was determined by using the mass balance equations and kinetic parameters involved in the equations in order to increase final xylitol concentration without affecting xylitol and productivity. The optimized fed-batch fermentation resulted in 187 g l−1 xylitol concentration, 0.75 g xylitol g xylose−1 xylitol yield and 3.9 g xylitol l−1 h−1 volumetric productivity. Journal of Industrial Microbiology & Biotechnology (2002) 29, 16–19 doi:10.1038/sj.jim.7000257 Received 15 October 2001/ Accepted in revised form 30 March 2002  相似文献   

17.
The influence of other hemicellulosic sugars (arabinose, galactose, mannose and glucose), oxygen limitation, and initial xylose concentration on the fermentation of xylose to xylitol was investigated using experimental design methodology. Oxygen limitation and initial xylose concentration had considerable influences on xylitol production by Canadida tropicalis ATCC 96745. Under semiaerobic conditions, the maximum xylitol yield was 0.62 g/g substrate, while under aerobic conditions, the maximum volumetric productivity was 0.90 g/l h. In the presence of glucose, xylose utilization was strongly repressed and sequential sugar utilization was observed. Ethanol produced from the glucose caused 50% reduction in xylitol yield when its concentration exceeded 30 g/l. When complex synthetic hemicellulosic sugars were fermented, glucose was initially consumed followed by a simultaneous uptake of the other sugars. The maximum xylitol yield (0.84 g/g) and volumetric productivity (0.49 g/l h) were obtained for substrates containing high arabinose and low glucose and mannose contents.  相似文献   

18.
Production of ethanol and xylitol from lignocellulosic hydrolysates is an alternative to the traditional production of ethanol in utilizing biomass. However, the conversion efficiency of xylose to xylitol is restricted by glucose repression, causing a low xylitol titer. To this end, we cloned genes CDT-1 (encoding a cellodextrin transporter) and gh1-1 (encoding an intracellular β-glucosidase) from Neurospora crassa and XYL1 (encoding a xylose reductase that converts xylose into xylitol) from Scheffersomyces stipitis into Saccharomyces cerevisiae, enabling simultaneous production of ethanol and xylitol from a mixture of cellobiose and xylose (main components of lignocellulosic hydrolysates). We further optimized the expression levels of CDT-1 and XYL1 by manipulating their promoters and copy-numbers, and constructed an engineered S. cerevisiae strain (carrying one copy of PGK1p-CDT1 and two copies of TDH3p-XYL1), which showed an 85.7% increase in xylitol production from the mixture of cellobiose and xylose than that from the mixture of glucose and xylose. Thus, we achieved a balanced co-fermentation of cellobiose (0.165 g/L/h) and xylose (0.162 g/L/h) at similar rates to co-produce ethanol (0.36 g/g) and xylitol (1.00 g/g).  相似文献   

19.
With D-xylose (50 g l ) as sole carbon substrate, aerobic cultures of S. cerevisiae consumed significant amounts of sugar (26.4 g l ), producing 4.0 g xylitol l but no ethanol. In the presence of a mixture of glucose (35 g l ) and xylose (15 g l ), yeasts consumed 1.6 g xylose l that was converted nearly stoichiometrically to xylitol. Anaerobic conditions lessened xylose consumption and its conversion into xylitol. Traces of ethanol (0.4 g l ) were produced when xylose was the only carbon source, however. Agar-entrapped yeasts behaved as anaerobically-grown cultures but with higher specific rates of xylose consumption and xylitol production.  相似文献   

20.
Summary The ability of C. guilliermondii and C. parapsilosis to ferment xylose to xylitol was evaluated under different oxygen transfer rates in order to enhance the xylitol yield. In C. guilliermondii, a maximal xylitol yield of 0.66 g/g was obtained when oxygen transfer rate was 2.2 mmol/l.h. Optimal conditions to produce xylitol by C. parapsilosis (0.75 g/g) arose from cultures at pH 4.75 with 0.4 mmoles of oxygen/l.h. The response of the yeasts to anaerobic conditions has shown that oxygen was required for xylose metabolism.Nomenclature max maximum specific growth rate (per hour) - qSmax maximum specific rate of xylose consumption (g xylose per g dry biomass per hour) - qpmax maximum specific productivity of xylitol (g xylitol per g dry biomass per hour) - Qp average volumetric productivity of xylitol (g xylitol per liter per hour) - YP/S xylitol yield (g xylitol per g substrate utilized) - YP'/S glycerol yield (g glycerol per g substrate utilized) - YX/S biomass yield (g dry biomass per g substrate utilized)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号