首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Growing rats and adult weight-stable mice bearing a transplantable methylcholanthrene-induced sarcoma were compared with animals with various states of malnutrition. Heart protein synthesis was measured in vivo. Myocardial RNA, myofibrillar protein composition and the Ca2+-activated ATPase activity in heavy chains of native myosin were measured. 'Fingerprints' were made from myosin by trypsin treatment to evaluate possible structural changes in the protein. Cardiac protein-synthesis rate was decreased by 20% in growing tumour-bearing rats, by 35% in protein-malnourished (rats) and by 47% in starved rats, compared with freely fed controls (P less than 0.05). Adult tumour-bearing mice showed no significant decrease in myocardial protein synthesis. Pair-weighed control mice had significantly depressed heart protein synthesis. Protein translational efficiency was maintained in both tumour-bearing rats and mice, but was decreased in several groups of malnourished control animals. The Ca2+-activated myosin ATPase activity was decreased in all groups of malnourished animals, including tumour-bearing mice and rats, without any evidence of a change in cardiac isomyosin composition. We conclude that loss of cardiac muscle mass in tumour disease is communicated by both depressed synthesis and increased degradation largely owing to anorexia and host malnutrition. Increased adrenergic sensitivity in hearts from tumour-bearing and malnourished animals is not communicated by increased Ca2+-activated ATPase activity. This may be down-regulated in all groups with malnutrition, without any observable alterations in the isomyosin profile.  相似文献   

2.
Male spontaneously hypertensive rats (SHR) and Wistar-Kyoto normotensive rats (WKY) were subjected to swimming training 6 times/wk, commencing at 4 wk of age, to determine whether this type of endurance exercise might alter contractile proteins and cardiac function in young adult SHR. The total duration of exercise was 190 h. Myofibrillar adenosinetriphosphatase (ATPase) activity was assayed at various free [Ca2+] ranging from 10(-7) to 10(-5) M. Ca2+-stimulated ATPase activity of actomyosin and purified myosin was determined at various Ca2+ concentrations both in the low and high ionic strength buffers. Actin-activated myosin ATPase activity of purified myosin was assayed at several concentrations of actin purified from rabbit skeletal muscle. Under all these conditions the contractile protein ATPase activity was comparable between trained and untrained WKY and SHR. Analysis of myosin isoenzymes on pyrophosphate gels showed a single band corresponding to V1 isoenzyme, and there were no differences between swimming-trained and nontrained WKY and SHR. Ventricular performance was assessed by measuring cardiac output and stroke volume after rapid intravenous volume overloading. Both cardiac index and stroke index were comparable in nontrained WKY and SHR but were significantly increased in the trained groups compared with their respective nontrained controls. These results suggest that myosin ATPase activity and distribution of myosin isoenzymes are not altered in the moderately hypertrophied left ventricle whether the hypertrophy is due to genetic hypertension (SHR) or to exercise training (trained WKY). Moreover, the data indicate that SHR, despite the persistence of a pressure overload, undergo similar increases in left ventricular mass and peak cardiac index after training, as do normotensive WKY.  相似文献   

3.
Studies were conducted to examine the effects of chronic adrenalectomy (Adx) and adrenalectomy plus glucocorticoid replacement therapy on rat cardiac contractile protein ATPase activities. The Ca2+-dependent Mg-ATPase activity of myofibrils isolated from rat ventricles 3 weeks postadrenalectomy (Adx) was significantly decreased at all pCa2+ concentrations (P less than 0.01), compared to sham-operated (SO) rats. Similarly, Ca2+-, K+-EDTA, and actin-activated myosin ATPase activities of Adx rat hearts were markedly decreased below that of SO rats (P less than 0.01). Dexamethasone administration to Adx rats prevented the decrease of Ca2+- and K+-ATPase activities of myosin, but not of myofibrillar Ca2+-dependent Mg-ATPase or actin-activated myosin Mg-ATPase activities. These studies suggest that glucocorticoid insufficiency induced by adrenalectomy results in altered myocardial contractile protein ATPase activity which may underlie impaired cardiac performance.  相似文献   

4.
The effects of purealin isolated from the sea sponge, Psammaplysilla purea, on the enzymatic properties of myosin and natural actomyosin (a complex of myosin, actin, tropomyosin and troponin) from canine cardiac ventricle were studied. Purealin increased the ATPase activity of natural actomyosin and the actin-activated ATPase activity of myosin, and accelerated the superprecipitation of natural actomyosin. The Ca2+- and Mg2+-ATPase activities of myosin were inhibited by purealin, whereas the K+-EDTA-ATPase activity was increased. These results suggest that purealin binds to the myosin portion involved in actin-myosin interaction and increases the actin-activated ATPase activity of myosin.  相似文献   

5.
The time course of structural and enzymatic changes in cardiac myosin was studied in the right and left ventricle of rats exposed to intermittent high altitude (IHA) hypoxia. In the controls, ATPase activity and myosin structure in both ventricles was the same. After the third exposure to simulated high altitude (2 600 m), myosin enzymatic activity rose significantly in the left ventricle and a significant right-left difference appeared. In the next phase of adaptation (11 exposures, 6 000 m), myosin ATPase activity fell in both ventricles and the right-left difference disappeared. After the 16th exposure (7 000 m), enzymatic activity increased again in both ventricles and attained control values. IHA also produced significant structural changes in cardiac myosin, particularly in the rigaht ventricle. The changes were characterized by the formation of myosin aggregates with significantly lower ATPase activity that the myosin monomer. The time course and localization of structural and enzymatic changes in cardiac myosin corresponded to the morphological damage to the heart fibres.  相似文献   

6.
Chronic ouabain treatment produces hypertension acting on the central nervous system and at vascular levels. However, cardiac effects in this model of hypertension are still poorly understood. Hence, the effects of hypertension induced by chronic ouabain administration ( approximately 8 microg day(-1), s.c.) for 5 weeks on the cardiac function were studied in Wistar rats. Ouabain induces hypertension but not myocardial hypertrophy. Awake ouabain-treated rats present an increment of the left ventricular systolic pressure and of the maximum positive and negative dP/dt. Isolated papillary muscles from ouabain-treated rats present an increment in isometric force, and this effect was present even when inotropic interventions (external Ca(2+) increment and increased heart rate) were performed. However, the sarcoplasmic reticulum activity and the SERCA-2 protein expression did not change. On the other hand, the activity of myosin ATPase increased without changes in myosin heavy chain protein expression. In addition, the expression of alpha(1) and alpha(2) isoforms of Na(+), K(+)-ATPase also increased in the left ventricle from ouabain-hypertensive rats. The present results showed positive inotropic and lusitropic effects in hearts from awake ouabain-treated rats, which are associated with an increment of the isometric force development and of the activity of myosin ATPase and expression of catalytic subunits of the Na(+), K(+)-ATPase.  相似文献   

7.
Ventricular myosin ATPase activity, V1 isomyosin content and serum T3 (tri-iodothyronine) values decrease with age in male Fischer 344 rats. To determine if the age decrement in ATPase activity and V1 isomyosin content are caused by decreased T3 levels or an age-related decrease in V1 isomyosin induction by T3, 3-, 12- and 24-month-old male Fischer 344 rats were given constant T3 infusions by osmotic minipump. Rats at all ages were given 0.75, 5 and 15 micrograms(/100 g per 24 h) doses of T3, whereas 12- and 24-month-old rats were given an additional 0.4 microgram dose. In control rats, T3 levels decreased from 97 +/- 2.7 at 3 months to 75 +/- 4.7 ng/100 ml at 24 months. Likewise, Ca2+-activated myosin ATPase activity decreased from 1.04 +/- 0.05 to 0.68 +/- 0.05 mumol of Pi/min per mg of protein, and the relative proportion of V1 of isomyosin decreased from 90 +/- 4.0 to 26 +/- 2.0%. The lowest (0.4 microgram) T3 dose, which was sufficient to restore T3 levels in 24-month-old animals to 3-month control values, abolished the age decrement in myosin ATPase activity and markedly increased the proportion of V1 isomyosin present in the ventricle. These findings indicate that the senescent ventricle responds readily to small doses of T3 and strongly suggest that the age decrement in serum T3 levels is sufficient to contribute to the age-related decrease in myosin ATPase activity and V1 isomyosin content. Since these parameters correlate with ventricular contractility, the age decrement in T3 levels may also contribute to the decreased ventricular contractility and cardiac output observed in senescent rats.  相似文献   

8.
H Rupp  V Elimban  N S Dhalla 《FASEB journal》1992,6(6):2349-2353
To examine the signals regulating cardiac growth and molecular structure of subcellular organelles, cardiac hypertrophy was induced in rats by constriction of the abdominal aorta for 12-13 wk or by treatment with a carnitine palmitoyltransferase I inhibitor, etomoxir (12-15 mg/kg body wt) for 12-13 wk. In contrast to pressure overload, etomoxir redistributed the myosin isozyme population from V3 to V1 and increased the sarcoplasmic reticulum (SR) Ca(2+)-stimulated ATPase activity. When rats with pressure-overloaded hearts were treated with etomoxir, the cardiac hypertrophy was increased whereas the shift in myosin isozymes from V1 to V3 was prevented and the depression in SR Ca(2+)-stimulated ATPase activity was reversed. Plasma thyroid hormone and insulin concentrations were not altered but triglyceride concentrations were reduced in etomoxir-treated rats with pressure overload. The data demonstrate a dissociation between cardiac muscle growth and changes in subcellular organelles and indicate that a shift in myocardial substrate utilization may represent an important signal for molecular remodeling of the heart.  相似文献   

9.
Cardiac contractile function is dependent on the integrity and function of the sarcolemmal membrane. Swimming exercise training is known to increase cardiac contractile performance. The purpose of the present study was to examine whether a swimming exercise program would alter sarcolemmal enzyme activity, ion flux, and composition in rat hearts. After approximately 11 wk of exercise training, cardiac myosin and actomyosin Ca2+-adenosinetriphosphatase (ATPase) activity was significantly higher in exercised rat hearts than in sedentary control rat hearts. Glycogen content was increased in plantaris and gastrocnemius muscles from exercised animals as was succinic dehydrogenase activity in gastrocnemius muscle of exercised rats in comparison to sedentary rat preparations. Sarcolemmal vesicles were isolated from hearts of exercise-trained and control rats. Sarcolemmal Na+-K+-ATPase and K+-p-nitrophenylphosphatase activities, Na+-Ca2+ exchange, and passive Ca2+ binding did not differ between the two groups. ATP-dependent Ca2+ uptake and 5'-nucleotidase activity were elevated in the cardiac sarcolemmal vesicles isolated from exercised animals compared with sedentary control rats. Sarcolemmal phospholipid composition was not altered by the exercise training. Our results demonstrate that swimming training in rats does not affect most parameters of cardiac sarcolemmal function or composition. However, the elevated sarcolemmal Ca2+ pump activity in exercised rats may help to reduce intracellular Ca2+ and augment cardiac relaxation rates. The enhanced 5'-nucleotidase activity may stimulate adenosine production, which could affect myocardial blood flow. The present results further our knowledge on the subcellular response of the heart to swimming training in the rat.  相似文献   

10.
The effects of enalapril, an angiotensin converting enzyme (ACE) inhibitor, and losartan, an angiotensin II receptor type I antagonist, were investigated on alterations in myofibrillar ATPase activity as well as myosin heavy chain (MHC) content and gene expression in failing hearts following myocardial infarction (MI). Three weeks after ligation of the left coronary artery, rats were treated with or without enalapril (10 mg/kg/day), and/or losartan (20 mg/kg/day) for 5 weeks. The infarcted animals exhibited an increase in left ventricle (LV) end diastolic pressure and depressed rates of LV pressure development as well as pressure decay. LV myofibrillar Ca2+ -stimulated ATPase activity was decreased in the infarcted hearts compared with controls, MHC alpha-isoform content was significantly decreased whereas that of MHC beta-isoform was markedly increased. The level of MHC alpha-isoform mRNA was decreased whereas that of MHC beta-isoform was increased in the viable infarcted LV. Treatment of animal with enalapril, losartan, or combination of enalapril and losartan partially prevented the MI induced changes in LV function, myofibrillar Ca2+ -stimulated ATPase activity, MHC protein expression and MHC gene expression. The results suggest that the beneficial effects of the renin-angiotensin system blockade in heart failure are associated with partial prevention of myofibrillar remodeling.  相似文献   

11.
This study tested the reversal of subcellular remodelling in heart failure due to myocardial infarction (MI) upon treatment with losartan, an angiotensin II receptor antagonist. Twelve weeks after inducing MI, rats were treated with or without losartan (20 mg/kg; daily) for 8 weeks and assessed for cardiac function, cardiac remodelling, subcellular alterations and plasma catecholamines. Cardiac hypertrophy and lung congestion in 20 weeks MI‐induced heart failure were associated with increases in plasma catecholamine levels. Haemodynamic examination revealed depressed cardiac function, whereas echocardiographic analysis showed impaired cardiac performance and marked increases in left ventricle wall thickness and chamber dilatation at 20 weeks of inducing MI. These changes in cardiac function, cardiac remodelling and plasma dopamine levels in heart failure were partially or fully reversed by losartan. Sarcoplasmic reticular (SR) Ca2+‐pump activity and protein expression, protein and gene expression for phospholamban, as well as myofibrillar (MF) Ca2+‐stimulated ATPase activity and α‐myosin heavy chain mRNA levels were depressed, whereas β‐myosin heavy chain expression was increased in failing hearts; these alterations were partially reversed by losartan. Although SR Ca2+‐release activity and mRNA levels for SR Ca2+‐pump were decreased in failing heart, these changes were not reversed upon losartan treatment; no changes in mRNA levels for SR Ca2+‐release channels were observed in untreated or treated heart failure. These results suggest that the partial improvement of cardiac performance in heart failure due to MI by losartan treatment is associated with partial reversal of cardiac remodelling as well as partial recovery of SR and MF functions.  相似文献   

12.
The purpose of the present study was to compare the ATPase activities of cardiac SR in two species in which the different intrinsic myocardial contractility can only partially be explained by the different properties of cardiac myosins. In cardiac SR isolated from rat heart, the total ATPase activity was 1512.5 +/- 23.3 nmol Pi/mg protein/min, nearly four times as high as in dog cardiac SR (408.8 +/- 28.9 nmol Pi/mg protein/min). The Ca2+-activated ATPase in rat cardiac SR represented only 23.8% of the total ATPase activity, while in dog cardiac SR it was approximately 50% of the total. Thus, the specific Ca2+-activated ATPase was nearly two times higher in the cardiac SR of the rat than in that of the dog. This higher rate of ATP hydrolysis in rat cardiac SR may be, at least in part, responsible for the increased intensity and shorter duration of the active state in the rat myocardium. Polyacrylamide gel electrophoresis of SR showed that the relative amount of Ca2+-pump protein was two times higher in dog heart, similar to the percentage of Ca2+-activated ATPase activity. At the same time, the specific Ca2+-activated ATPase activity and the relative amount of Ca2+ pump protein in both the rat and dog cardiac SR were inversely related.  相似文献   

13.
A reduction (by 16-24%) in the amount of myosin regulatory light chains (LC2) in all heart sections of patients with dilated cardiomyopathy was found. The appearance of atrial essential light chains in ventricular myosin (up to 23%) not typical for this heart section in norm was also revealed. The decrease in LC2 content leads to a considerable inhibition of actin-activated ATPase activity and a loss of Ca2+ sensitivity of reconstructed filaments of myosin isolated from atria and ventricles of patients with dilated cardiomyopathy. The hybridization of myosin molecules from heavy chains of pathological human left ventricular myosin and light chains of pig left ventricular myosin leads to an increase in actin-activated ATPase activity of myosin and its Ca2+ sensitivity to the control level. The data suggest strongly the contribution of LC2-deficit to the distortion of functional properties of myosin in dilated cardiomyopathy. In contrast, the appearance of atrial LC1 in ventricle in dilated cardiomyopathy is a factor improving these properties.  相似文献   

14.
Our previous biochemical and mechanical studies have demonstrated an increase in Ca2+ sensitivity of cardiac myofilaments in ovariectomized rats. To test whether the body weight gain associated with ovariectomy contributed some effects to the changes in myofibrillar functions, the relations of pCa (-log Ca2+ molar concentration) to actomyosin adenosine triphosphatase (ATPase) activity of isolated myofibrillar preparations from 10-week pair-fed ovariectomized rats were compared with those from sham-operated controls. Despite similar body weights, the maximum myofibrillar ATPase activity was significantly lower in pair-fed ovariectomized rats as compared to that of sham-operated controls. In addition, the pCa-actomyosin ATPase relationship of pair-fed ovariectomized hearts still demonstrated a significant leftward shift in pCa50 (-log half-maximally Ca2+ activation) from that of sham-operated controls. To find out which hormone was responsible for the observed increase in myofibrillar Ca2+ sensitivity, different sex hormone supplemental regimens were administered to ovariectomized rats. Subcutaneous injection of estrogen (5 microg/rat) or estrogen plus progesterone (1 mg/rat) three times a week could effectively prevent the changes in body weight, heart weight, and uterine weight of the ovariectomized animals. Moreover, supplements of either estrogen or progesterone could prevent a decrease in maximum ATPase activity. In contrast, only the estrogen replacement could abolish the Ca2+ hypersensitivity of the myofilaments in these ovariectomized rats. These results suggest differential cardio-regulatory effects of ovarian sex hormones on the Ca2+ activation of the myofilaments.  相似文献   

15.
This study was undertaken to determine biochemical and functional (in vivo) adaptations of the rodent neonatal heart in response to a training program of endurance running. Ten day-old rats were progressively trained on a treadmill (final intensity, 21 m/min, 30% grade, 1 h/day) until 75 days of age. The training program induced 14, 57, and 24% increases in relative heart mass, skeletal muscle citrate synthase activity, and whole-body maximal O2 uptake, respectively (P less than 0.05). Cardiac myosin (ATPase) and Ca2+-regulated myofibril ATPase were both reduced by approximately 15% in trained vs. sedentary animals (P less than 0.05). In the majority of trained hearts examined, the myosin isozyme profile reflected an estimated 14 +/- 3% shift toward the V3 or low ATPase isozyme. Left ventricular functional indices during submaximal exercise, derived from a fluid-filled indwelling cannula, indicated that the trained animals maintained similar left ventricular (LV) systolic pressure, LV + the time derivative of pressure, and systemic arterial mean blood pressure compared with their sedentary counterparts. These functional parameters were maintained even though the trained animals performed with lower submaximal exercise heart rate. These findings suggest that maximal exercise capacity can be enhanced in neonatal rats even though the biochemical potential for ATP degradation in the cardiac contractile system is lowered. We speculate that the trend to maintain the myosin isozyme pattern further in the direction of the V3 isozyme in the trained neonatal rat heart may reflect a means to economize cross-bridge cycling while maintaining normal levels of ventricle performance at a given submaximal work load.  相似文献   

16.
Studies were conducted to analyze the effect of the thyroid hormone on ventricular myosin during ontogenesis of mice, rats and rabbits. Hypothyroidism was induced in mice and rats by administering propylthiouracyl in drinking water. Rabbits were made hyperthyroid by chronic administration of thyroxine. The change in the thyroid state of rats and rabbits influenced young and adult animals differently depending on whether V1 or V3 was the major ventricular isomyosin form present. Measurements of Ca2+-ATPase activity of myosins from young and old control animals and from animals with changed thyroid state showed that hypothyroidism in rats is associated with a greater decrease of myosin ATPase in young rats which contain V1 isomyosin only, when compared with old rats which contain a preponderance of V3 isomyosin and less of the V1 form. In rabbits, ATPase activity of ventricular myosin was more elevated after thyroxine administration in adult rabbits, which contain V3 isomyosin only, than in young rabbits in which myosin consists of V1 and V3 isomyosins. Ventricular myosins of young and adult mice did not differ in their ATPase activity and the treatment of mice with propylthiouracyl had only slight effect on myosin ATPase. It can be concluded based on these results that the hypothesis concerning hypothyroidism inducing transformation of V1 into V3 isomyosin does not hold generally.  相似文献   

17.
The effects of purified protein kinase C (PKC) on the Ca(2+)-pumping ATPase of cardiac sarcolemma were investigated. The addition of PKC to sarcolemmal vesicles resulted in a significant increase in ATP-dependent Ca2+ uptake, by increasing the calcium affinity by 2.8-fold (Km 0.14 vs. 0.4 microM for control) and by increasing Vmax from 5 to 6.8 nmol.mg protein-1.min-1. The addition of PKC also stimulated Ca2+ ATPase activity in sarcolemmal preparations. This activity was increased further upon the addition of calmodulin. These results suggest that PKC stimulates Ca2+ ATPase through a kinase-directed phosphorylation. The addition of PKC to a purified preparation of Ca2+ ATPase in the presence of [gamma-32P]ATP resulted in a 100% increase in phosphorylation that was dependent on the presence of Ca2+, phosphatidylserine, and phorbol 12,13-dibutyrate. These results demonstrate that the Ca2+ ATPase of canine cardiac muscle can be phosphorylated by PKC in vitro, resulting in increased affinity of the Ca2+ ATPase for Ca2+ and increase in the Ca2+ pump pumping rate. The results suggest that the Ca(2+)-pumping ATPase in heart tissue can be stimulated by PKC, thereby regulating the intracellular Ca2+ levels in whole heart.  相似文献   

18.
The sarcoplasmic reticulum (SR) plays a critical role in mediating cardiac contractility and its function is abnormal in the diabetic heart. However, the mechanisms underlying SR dysfunction in the diabetic heart are not clear. Because protein phosphorylation regulates SR function, this study examined the phosphorylation state of phospholamban, a key SR protein that regulates SR calcium (Ca2+) uptake in the heart. Diabetes was induced in male Sprague-Dawley rats by an injection of streptozotocin (STZ; 65 mg kg(-1) i.v.), and the animals were humanely killed after 6 weeks and cardiac SR function was examined. Depressed cardiac performance was associated with reduced SR Ca2+-uptake activity in diabetic animals. The reduction in SR Ca2+-uptake was consistent with a significant decrease in the level of SR Ca2+-pump ATPase (SERCA2a) protein. The level of phospholamban (PLB) protein was also decreased, however, the ratio of PLB to SERCA2a was increased in the diabetic heart. Depressed SR Ca2+-uptake was also due to a reduction in the phosphorylation of PLB by the Ca2+-calmodulin-dependent protein kinase (CaMK) and cAMP-dependent protein kinase (PKA). Although the activities of the SR-associated Ca2+-calmodulin-dependent protein kinase (CaMK), cAMP-dependent protein kinase (PKA) were increased in the diabetic heart, depressed phosphorylation of PLB could partly be attributed to an increase in the SR-associated protein phosphatase activities. These results suggest that there is increased inhibition of SERCA2a by PLB and this appears to be a major defect underlying SR dysfunction in the diabetic heart.  相似文献   

19.
Enzymatic properties and the protein pattern of sarcolemma fractions isolated from three groups of rabbits: euthyroid, hyperthyroid and hypothyroid, were studied. The amount of phosphorylated intermediate formed by the calmodulin-dependent (Ca2+-Mg2+)ATPase and the activity of this enzyme as well as that of (Na+-K+)ATPase were the highest in membranes isolated at the hyperthyroid state. On the other hand, sarcolemma obtained from the hypothyroid animals exhibited a decreased activity of (Na+-K+)ATPase, while the activity of calmodulin-dependent (Ca2+-Mg2+)ATPase was the same as in the preparations obtained from euthyroid animals. Thyroid hormones also changed the protein pattern of muscle sarcolemma. Membranes isolated from hyperthyroid animals lacked peptides of apparent molecular masses of 41 kDa and 53 kDa, while a peptide of the apparent molecular mass of 63 kDa was enriched in the preparation from hypothyroid animals. Thyroid hormones affected endogenous cAMP-dependent protein phosphorylation. The sarcolemma fraction obtained from hyperthyroid animals exhibited a decreased phosphorylation of peptides of apparent molecular masses of 30 kDa and 47 kDa, while the cAMP-independent phosphorylation of several other peptides was augmented. Moreover, sarcolemma preparations isolated from hyperthyroid animals showed higher activity of cAMP-independent protein kinase(s) and lower activity of cAMP-dependent protein kinase when compared to the euthyroid preparations. It is proposed that thyroxine increases the content of calmodulin-dependent (Ca2+-Mg2+)ATPase protein and affects the activity of cAMP-independent and cAMP-dependent protein kinases bound to sarcolemma.  相似文献   

20.
Pressure-overload due to banding of the abdominal aorta in rats for 10 weeks resulted in cardiac hypertrophy, redistribution of myosin isoenzymes and reduction in the sarcoplasmic reticulum (SR) Ca2+-stimulated ATPase activity. Administration of sucrose in the drinking water (0.8%, w/v) to rats prevented changes in myosin isoenzymes and SR Ca2+-stimulated ATPase in hypertrophied hearts. This beneficial effect of sucrose feeding with respect to remodeling of the subcellular organelles in the myocardium was not associated with any significant changes in plasma glucose or thyroid hormone levels. It is suggested that the prevention of subcellular changes in the hypertrophied hearts due to sucrose feeding may be due to a shift in fuel utilization by the myocardium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号