首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cocos Island is a small oceanic island midway between Costa Rica and the Galápagos Archipelago; about 2 Myr in age, it is the only tropical oceanic island in the eastern Pacific with tropical wet forest. We identified several hundred bark beetle specimens collected during recent expeditions by INBio, the National Biodiversity Institute of Costa Rica, and re-examined all specimens from earlier collections. We report 19 species in ten genera, seven or eight of which are endemic, making scolytines the largest group of beetles known from the island. We describe as new Pycnarthrum pseudoinsulare , Xyleborinus cocoensis , and Xyleborus sparsegranulosus , resurrect Xyleborus bispinatus as separate from X. ferrugineus , and report six other species as new to Cocos Island. Three-quarters of the scolytines reproduce by brother–sister mating, and we argue that inbreeders are superior island colonists because they are less affected than are outbreeders by problems of mate location and inbreeding depression. The fauna and flora of Cocos Island arrived by dispersal and human transport. We examine natural colonization patterns for the fauna, using the distributions of the relatives of island endemics: most colonization came from the Americas, but the closest relatives to some endemics are found on Caribbean or Galápagos islands. © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 89 , 729–743.  相似文献   

2.
Aim A detailed database of distributions and phylogenetic relationships of native Hawaiian flowering plant species is used to weigh the relative influences of environmental and historical factors on species numbers and endemism. Location The Hawaiian Islands are isolated in the North Pacific Ocean nearly 4000 km from the nearest continent and nearly as distant from the closest high islands, the Marquesas. The range of island sizes, environments, and geological histories within an extremely isolated archipelago make the Hawaiian Islands an ideal system in which to study spatial variation in species distributions and diversity. Because the biota is derived from colonization followed by extensive speciation, the role of evolution in shaping the regional species assemblage can be readily examined. Methods For whole islands and regions of each major habitat, species–area relationships were assessed. Residuals of species–area relationships were subjected to correlation analysis with measures of endemism, isolation, elevation and island age. Putative groups of descendents of each colonist from outside the Hawaiian Islands were considered phylogenetic lineages whose distributions were included in analyses. Results The species–area relationship is a prominent pattern among islands and among regions of each given habitat. Species number in each case correlates positively with number of endemics, number of lineages and number of species per lineage. For mesic and wet habitat regions, island age is more influential than area on species numbers, with older islands having more species, more single‐island endemics, and higher species : lineage ratios than their areas alone would predict. Main conclusions Because species numbers and endemism are closely tied to speciation in the Hawaiian flora, particularly in the most species‐rich phylogenetic lineages, individual islands’ histories are central in shaping their biota. The Maui Nui complex of islands (Maui, Moloka‘i, Lāna‘i and Kaho‘olawe), which formed a single large landmass during most of its history, is best viewed in terms of either the age or area of the complex as a whole, rather than the individual islands existing today.  相似文献   

3.
4.
Aim The aim of this study is to explore the interrelationships between island area, species number and habitat diversity in two archipelago areas. Location The study areas, Brunskär and Getskär, are located in an archipelago in south‐western Finland. Methods The study areas, 82 islands in Brunskär and 78 in Getskär, were classified into nine habitat types based on land cover. In the Brunskär area, the flora (351 species) was surveyed separately for each individual habitat on the islands. In the Getskär area, the flora (302 species) was surveyed on a whole‐island basis. We used standard techniques to analyse the species–area relationship on a whole‐island and a habitat level. We also tested our data for the small island effect (SIE) using breakpoint and path analysis models. Results Species richness was significantly associated with both island area and habitat diversity. Vegetated area in particular, defined as island area with the rock habitat subtracted, proved to be a strong predictor of species richness. Species number had a greater association with island area multiplied by the number of habitats than with island area or habitat number separately. The tests for a SIE in the species–area relationship showed the existence of a SIE in one of the island groups. No SIE could be detected for the species–vegetated area relationship in either of the island groups. The strength of the species–area relationship differed considerably between the habitats. Main conclusions The general principles of island biogeography apply well to the 160 islands in this study. Vascular plant diversity for small islands is strongly influenced by physiographic factors. For the small islands with thin and varying soil cover, vegetated area was the most powerful predictor of species richness. The species–area curves of various habitats showed large variations, suggesting that the measurement of habitat areas and establishment of habitat‐based species lists are needed to better understand species richness on islands. We found some evidence of a SIE, but it is debatable whether this is a ‘true’ SIE or a soil cover/habitat characteristics feature.  相似文献   

5.
An index (Ci*E) combining the number of line‐of‐sight islands (Ci) within a radius i and target island elevation (E) has been proposed as an improved predictive model of plant species richness (St) in the Galápagos Archipelago. We examined this index critically and found that several major flaws preclude it from being a useful predictive tool for the archipelago. Although the number of collecting trips to an island was reported over 20 years ago to have substantial predictive value for reported plant species richness in the Galápagos Islands, this relationship was ignored in multiple regression analyses of the index. When we included the number of collecting trips in different multiple regression analyses of the index, Ci*E had less predictive power than collecting trips or ceased to be significant at all. Additionally, the strong significant relationship between elevation and area in the Galápagos Archipelago results in area having a major confounding influence on the Ci*E index. When elevation is removed from the Ci*E index, the predictive power of Ci is far less than area alone. Finally, the data used to construct and correlate the Ci*E index with (St) were based only on a subset of the islands and species lists that were incomplete or out of date. Species richness on islands can be related to the interaction of different factors, so development and testing of indices like Ci*E is not inappropriate. However, it is important to examine the interrelationships among the components of these indices thoroughly, and not ignore the effect of factors already known to have high predictive power. We propose several ways in which more meaningful indices of source pool(s) capacity can be constructed.  相似文献   

6.
The study of phylogeographical patterns may contribute to a better understanding of factors affecting the dispersal of organisms in ecological and historical times. For intertidal organisms, islands are particularly suitable models allowing the test of predictions related to the efficacy of pelagic larvae dispersal. Here, we study the phylogeographical patterns and gene flow within three groups of species of the genus Patella present in the Macaronesian Islands that have been previously shown to be monophyletic. The genetic variability of around 600 bp of the mitochondrial gene cytochrome c oxidase subunit I was studied by single strand conformation polymorphism and/or sequencing for seven species of limpets. A total of 420 samples were analysed from the Macaronesian archipelagos, North Africa, and Atlantic and Mediterranean shores of the Iberian Peninsula. No clear geographical pattern or temporal congruence was found between the three groups of species, pointing to independent histories and colonization events. However, for the three groups, the split between the Macaronesian and the mainland forms most probably occurred before 3.9 million years ago, predating the establishment of the current circulation patterns. The presence of pelagic larvae in these species is shown to be insufficient to ensure gene flow between continental and Macaronesian populations and between the Macaronesian archipelagos. In the endangered Azorean populations of Patella candei, there is restricted gene flow to Flores and Graciosa.  相似文献   

7.
Aim We used insular lizard communities to test the predictions of two hypotheses that attempt to explain patterns of species richness on small islands. We first address the subsidized island biogeography (SIB) hypothesis, which predicts that spatial subsidies may cause insular species richness to deviate from species–area predictions, especially on small islands. Next, we examine the small island effect (SIE), which suggests small islands may not fit the traditional log‐linear species–area curve. Location Islands with arthropodivorous lizard communities throughout the Gulf of California. Methods To evaluate the SIB hypothesis, we first identified subsidized and unsubsidized islands based on surrogate measures of allochthonous productivity (i.e. island size and bird presence). Subsequently, we created species–area curves from previously published lizard species richness and island area data. We used the residuals and slopes from these analyses to compare species richness on subsidized and unsubsidized islands. To test for an SIE, we used breakpoint regression to model the relationship between lizard species richness and island area. We compared results from this model to results from the log‐linear regression model. Results Subsidized islands had a lower slope than unsubsidized islands, and the difference between these groups was significant when small islands were defined as < 1 km2. In addition to comparing slopes, we tested for differences in the magnitude of the residuals (from the species–area regression of all islands) for subsidized vs. unsubsidized islands. We found no significant patterns in the residual values for small vs. large islands, or between islands with and without seabirds. The SIE was found to be a slightly better predictor of lizard species richness than the traditional log‐linear model. Main conclusions Predictions of the SIB hypothesis were partially supported by the data. The absence of a significant SIE may be a result of spatial subsidies as explained by the SIB hypothesis and data presented here. We conclude by suggesting potential scenarios to test for interactions between these two small island hypotheses. Future studies considering factors affecting species richness should examine the possible role of spatial subsidies, an SIE, or a synergistic effect of the two in data sets with small islands.  相似文献   

8.
Aim We looked at the biogeographical patterns of Oniscidean fauna from the small islands of the Mediterranean Sea in order to investigate the species–area relationship and to test for area‐range effects. Location The Mediterranean Sea. Methods We compiled from the literature a data set of 176 species of Oniscidea (terrestrial isopods) distributed over 124 Mediterranean islands. Jaccard's index was used as input for a UPGMA cluster analysis. The species–area relationship was investigated by applying linear, semi‐logarithmic, logarithmic and sigmoid models. We also investigated a possible ‘small island effect’ (SIE) by performing breakpoint regression. We used a cumulative and a sliding‐window approach to evaluate scale‐dependent area‐range effects on the log S/log A regression parameters. Results Based on similarity indexes, results indicated that small islands of the Mediterranean Sea can be divided into two major groups: eastern and western. In general, islands from eastern archipelagos were linked together at similarity values higher than those observed for western Mediterranean islands. This is consistent with a more even distribution of species in the eastern Mediterranean islands. Separate archipelagos in the western Mediterranean could be discriminated, with the exception of islets, which tended to group together at the lowest similarity values regardless of the archipelago to which they belong. Islets were characterized by a few common species with large ranges. The species–area logarithmic model did not always provide the best fit. Most continental archipelagos showed very similar intercepts, higher than the intercept for the Canary island oceanic archipelago. Sigmoid regression returned convex curves. Evidence for a SIE was found, whereas area‐range effects that are dependent on larger scale analyses were not unambiguously supported. Main conclusions The Oniscidea fauna from small islands of the Mediterranean Sea is highly structured, with major and minor geographical patterns being identifiable. Some but not all of the biogeographical complexity can be explained by interpreting the different shapes of species–area curves. Despite its flexibility, the sigmoid model tested did not always provide the best fit. Moreover, when the model did provide a good fit the curves looked convex, not sigmoid. We found evidence for a SIE, and minor support for scale‐dependent area‐range effects.  相似文献   

9.
10.
11.
Aim To investigate species compositions, rates of species turnover, species–area and species–distance relationships and patterns of nestedness in the floras of small Bahamian islands, by comparing two groups of islands that had been differentially affected by two hurricanes. Location Small islands occurring on either side of Great Exuma near Georgetown, Bahamas. Methods We surveyed the plant species of 44 small islands over a 5‐year period from 1998 to 2002. Hurricanes Lili and Michelle occurred in 1996 and 2001, respectively; both storms affected small islands on the more exposed south‐west side of Great Exuma to a greater degree than small islands on the more protected north‐east side. A set of 27 islands was surveyed in 1998 and 2002 to evaluate species turnover. Stepwise multiple linear regression analyses and an information‐theoretic approach (the Akaike information criterion) were used to elucidate the importance of area and distance as predictors of plant species number. We compared a piecewise linear regression model with a simple linear regression of species number against area to determine whether a small island effect existed. Nestedness patterns were evaluated by Wilcoxon two‐sample tests to analyse occurrence sequences. Results Species turnover was low in an absolute sense (overall = 0.74% year?1), yet was over three times higher than that documented in a nearby archipelago in the absence of hurricanes. Both vegetated area and distance were important predictor variables for exposed islands but not for protected islands. Some support was found for a small island effect for the exposed islands based on a piecewise linear regression model. Both island groups revealed significant nestedness at the level of the assemblage (both P < 0.001). On exposed islands, 65–79% (depending upon the method of calculation) of all species were significantly nested, but only 47% of all species were significantly nested on protected islands. Main conclusions Overall, these insular floras seem highly resistant to hurricane‐force disturbances. Species turnover was low (< 1% year?1) in an absolute sense, particularly in comparison with rates for other taxa. Higher degrees of nestedness and significant species–area and species–distance relationships for exposed islands indicated stronger patterns of community assembly. It is likely that disturbance is a major structuring force for the exposed islands, although the type of disturbances that mediate these patterns may not be primarily hurricane‐force storms.  相似文献   

12.
13.
Aim Amphibians are a model group for studies of the biogeographical origins of salt‐intolerant taxa on oceanic islands. We used the Gulf of Guinea islands to explore the biogeographical origins of island endemism of one species of frog, and used this to gain insights into potential colonization mechanisms. Location São Tomé and Príncipe, two of the four major islands in the Gulf of Guinea, West Africa, are truly oceanic and have an exceptionally high biodiversity. Methods Mitochondrial DNA is used to test the endemic status of a frog from São Tomé and compare it with congeneric taxa from tropical Africa. Existing data on surface currents, surface salinity, atmospheric circulation and bird migration in the Gulf of Guinea are summarized to address hypotheses concerning colonization mechanisms. Results The endemic status of Ptychadena newtoni (Bocage) is supported here by mitochondrial DNA sequences, and analysis of this and other molecular data indicates that an East African species close to Ptychadena mascareniensis (Duméril and Bibron) is its nearest relative. We refute the possibility that this population was anthropogenically introduced, in favour of a natural dispersal mechanism. Main conclusions With six endemic frogs and one caecilian, the Gulf of Guinea islands harbour a diverse amphibian fauna. Five of these species appear to have their closest relatives in East Africa. Insufficient evidence exists for transportation by storms, birds or rafts alone. However, we propose a synergy of rafting, favourable surface currents and a reduction in salinity of surface waters. Catastrophic events, or wet periods in climatic history, could allow freshwater paths to open far enough to enable continental flora and fauna to reach these and other isolated oceanic islands.  相似文献   

14.
Aim  To illustrate problems in the methods proposed by B. Vilenkin and V. Chikatunov to study levels of endemism and species–area relationships.
Location  The study used data on the distribution of tenebrionid beetles (Coleoptera, Tenebrionidae) on the Aegean Islands (Greece).
Methods  A total of 32 islands and 170 taxa (species and subspecies) were included in this study. Levels of endemism were evaluated both as the proportion of endemic taxa, and according to the methods proposed by Vilenkin and Chikatunov, which are based on the number of non-endemic taxa and various relationships with area. A model of the species–area relationship proposed by these authors was also analysed.
Results  The number of endemic taxa was positively correlated with the number of taxa with different distribution types, but this positive correlation did not influence the estimation of the level of endemism. In fact, the commonly used estimate of endemicity as a percentage was strongly correlated with the endemism values calculated according to the method of Vilenkin and Chikatunov. The usual power function fitted the species–area relationship as well as the most complicated method of Vilenkin and Chikatunov.
Main conclusions  As hypothesized by Vilenkin and Chikatunov, the number of endemic taxa was influenced both by the number of taxa of other biogeographical ranks, and by an island's area. However, explanations for the positive relationship between the number of endemic taxa and taxa of different biogeographical ranks are equivocal. Importantly, this relationship did not necessarily influence the level of endemism, which could be expressed adequately by percentages. The method proposed by Vilenkin and Chikatunov to estimate the species–area relationship cannot be clearly justified on theoretical grounds and is of questionable practical utility.  相似文献   

15.
Aim We studied the relationship between the size and isolation of islands and bat species richness in a near‐shore archipelago to determine whether communities of vagile mammals conform to predictions of island biogeography theory. We compared patterns of species richness in two subarchipelagos to determine whether area per se or differences in habitat diversity explain variations in bat species richness. Location Islands in the Gulf of California and adjacent coastal habitats on the Baja California peninsula in northwest Mexico. Methods Presence–absence surveys for bats were conducted on 32 islands in the Gulf of California using acoustic and mist‐net surveys. We sampled for bats in coastal habitats of four regions of the Baja peninsula to characterize the source pool of potential colonizing species. We fitted a semi‐log model of species richness and multiple linear regression and used Akaike information criterion model selection to assess the possible influence of log10 area, isolation, and island group (two subarchipelagos) on the species richness of bats. We compared the species richness of bats on islands with greater vegetation densities in the southern gulf (n = 20) with that on drier islands with less vegetation in the northern gulf (n = 12) to investigate the relationship between habitat diversity and the species richness of bats. Results Twelve species of bats were detected on islands in the Gulf of California, and 15 species were detected in coastal habitats on the Baja peninsula. Bat species richness was related to both area and isolation of islands, and was higher in the southern subarchipelago, which has denser vegetation. Log10 area was positively related to bat species richness, which increased by one species for every 5.4‐fold increase in island area. On average, richness declined by one species per 6.25 km increase in isolation from the Baja peninsula. Main conclusions Our results demonstrate that patterns of bat species richness in a near‐shore archipelago are consistent with patterns predicted by the equilibrium theory of island biogeography. Despite their vagility, bats may be more sensitive to moderate levels of isolation than previously expected in near‐shore archipelagos. Differences in vegetation and habitat xericity appear to be associated with richness of bat communities in this desert ecosystem. Although observed patterns of species richness were consistent with those predicted by the equilibrium theory, similar relationships between species richness and size and isolation of islands may arise from patch‐use decision making by individuals (optimal foraging strategies).  相似文献   

16.
Aim We examined phytogeographical patterns of West Indian orchids, and related island area and maximum elevation with orchid species richness and endemism. We expected strong species–area relationships, but that these would differ between low and montane island groups. In so far as maximum island elevation is a surrogate for habitat diversity, we anticipated a strong relationship with maximum elevation and both species richness and endemism for montane islands. Location The West Indies. Methods Our data included 49 islands and 728 species. Islands were classified as either montane (≥ 300 m elevation) or low (< 300 m). Linear and multivariate regression analyses were run to detect relationships between either area or maximum island elevation and species richness or the number of island endemic species. Results For all 49 islands, the species–area relationship was strong, producing a z‐value of 0.47 (slope of the regression line) and explaining 46% of the variation. For 18 relatively homogeneous, low islands we found a non‐significant slope of z = −0.01 that explained only 0.1% of the variation. The 31 montane islands had a highly significant species–area relationship, with z = 0.49 and accounting for 65% of the variation. Species numbers were also strongly related to maximum island elevation. For all islands < 750 km2, we found a small‐island effect, which reduced the species–area relationship to a non‐significant z = 0.16, with only 5% of the variation explained by the model. Species–area relationships for montane islands of at least 750 km2 were strong and significant, but maximum elevation was the best predictor of species richness and accounted for 79% of the variation. The frequency of single‐island endemics was high (42%) but nearly all occurred on just nine montane islands (300 species). The taxonomic distribution of endemics was also skewed, suggesting that seed dispersability, while remarkable in some taxa, is very limited in others. Montane island endemics showed strong species–area and species–elevation relationships. Main conclusions Area and elevation are good predictors of orchid species diversity and endemism in the West Indies, but these associations are driven by the extraordinarily strong relationships of large, montane islands. The species richness of low islands showed no significant relationship with either variable. A small‐island effect exists, but the montane islands had a significant relationship between species diversity and maximum elevation. Thus, patterns of Caribbean orchid diversity are dependent on an interplay between area and topographic diversity.  相似文献   

17.
1 Bird species numbers were studied on 109 reed islands at Lake Velence, Hungary, in the 1993 and 1994 breeding seasons. The aim was to describe and account for the abundance and distribution patterns of the bird species. 2 It was expected that an exponential model would fit the calculated species–area curves. However, for the 1993 data, both the power function (LogS ~ LogArea) and the exponential (S ~ LogArea) models did so, while the power function, exponential and linear (S ~ A) models fitted the curves for the 1994 data. 3 The results showed that the pattern was not random: a collection of small islands held more species than a few large islands with the same total area. 4 The relative species richness of small islands is a result of the preference of most common passerine bird species for the edges of reed islands. Most individuals were found in the first 5 m of the reedbed, and no edge avoidance was detected on a local spatial scale. Large, rarer species (e.g. Great White Egret), however, were found to be dependent on large reed islands. 5 Comparison of results with two other studies on bird communities of reed islands revealed that the type of landscape matrix (e.g. deep water, shallow water or agricultural lands) among reed patches significantly influences bird communities. Deep water was dominated by grebes and coot, shallow water by reed‐nesting passerines, and farmed areas by reed‐ and bush‐nesting passerines.  相似文献   

18.
Abstract.  1. Determining large-scale distribution patterns for mosquitoes could advance knowledge of global mosquito biogeography and inform decisions about where mosquito inventory needs are greatest.
2. Over 43 000 georeferenced records are presented of identified and vouchered mosquitoes from collections undertaken between 1899 and 1982, from 1853 locations in 42 countries throughout the Neotropics. Of 492 species in the data set, 23% were only recorded from one location, and Anopheles albimanus Wiedemann is the most common species.
3. A linear log–log species–area relationship was found for mosquito species number and country area. Chile had the lowest relative density of species and Trinidad-Tobago the highest, followed by Panama and French Guiana.
4. The potential distribution of species was predicted using an Ecological Niche Modelling (ENM) approach. Anopheles species had the largest predicted species ranges, whereas species of Deinocerites and Wyeomyia had the smallest.
5. Species richness was estimated for 1° grids and by summing predicted presence of species from ENM. These methods both showed areas of high species richness in French Guiana, Panama, Trinidad-Tobago, and Colombia. Potential hotspots in endemicity included unsampled areas in Panama, French Guiana, Colombia, Belize, Venezuela, and Brazil.
6. Argentina, The Bahamas, Bermuda, Bolivia, Cuba, and Peru were the most under-represented countries in the database compared with known country species occurrence data. Analysis of species accumulation curves suggested patchiness in the distribution of data points, which may affect estimates of species richness.
7. The data set is a first step towards the development of a global-scale repository of georeferenced mosquito collection records.  相似文献   

19.
Morphological data, in combination with molecular data, may provide invaluable insights into speciation processes on archipelagos. Land snails offer ample opportunities to evalutate adaptive and non-adaptive speciation scenarios. However, studies investigating processes of differentiation and speciation on the Azores are scarce. The present study comprises a morphometrical analysis of shell and genital characters in a group of Azorean land snails (Pulmonata, Leptaxinae). Geographical isolation appears to be an important mechanism underlying morphological and molecular differentiation in the Azorean Leptaxini, instead of adaptive radiation through ecological differentiation. Nevertheless, we could not exclude the occurrence of ecological speciation on the oldest island (Santa Maria) where two species that markedly differ in shell-shape co-occur.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 166–176.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号