首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The glial cell contents of S100 protein, 2',3'-cyclic AMP, 3'-phosphohydrolase (CNP), isoenzyme II of carbonic anhydrase (CAII) and butyrylcholinesterase (BuChE) were biochemically determined in the cerebellum and cerebrum of the reeler mutant mouse. Astrocytes and oligodendrocytes, shown by this study, contain abnormal amounts of these components. The CAII concentration was significantly increased in the particulate fraction of the reeler cerebellum and cerebrum (by 50% and 89%, respectively). The BuChE specific activity was greatly increased in the reeler, by 120% for cerebellum and by 40% in cerebrum. In contrast, the S100 protein concentration was reduced in the reeler cerebellum by 40% and by 25% in cerebrum, while the CNP specific activity increased by 30% in the reeler cerebellum. In addition, the glial cell distribution was studied by immunohistological techniques with antibodies directed against S100 protein, glial fibrillary acidic protein (GFA) and CAII. Apparently the density of glial cells is not significantly affected. However, the Golgi epithelial cells were usually abnormally placed and their Bergmann fibres were less well developed.  相似文献   

2.
3.
4.
Abstract: Snell dwarf mice (dw) showed a lower CNPase activity (59% of the normal controls) only in the cerebrum among different parts of the CNS, and a strikingly reduced level of spontaneous locomotion activity with an indistinct diurnal periodicity in a 24-h record at 40 days of age. Daily administration of bGH and T4 to the dwarfs during the first 40 days of postnatal life restored CNPase activity to the level of the normal controls, and was accompanied by normalization of the pattern of spontaneous locomotion activity. Daily administration of bGH alone also restored CNPase activity and spontaneous locomotion, but to a lesser extent. The daily administration of thyroid stimulating hormone (TSH) alone, however, failed to restore CNPase activity, in spite of the fact that the thyroid glands of the TSH-treated dwarfs were indistinguishable from the normal controls in organization and appearance. These results indicate that the restoration of both the retarded myelinogenesis and abnormal behavior of the Snell dwarf mice might essentially depend upon GH levels and the synergistic effects of T4.  相似文献   

5.
In comparison with normal controls, hydrocortisone-intoxicated rats (HC rats) had smaller cerebra, lowered 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNPase) activity, and greatly reduced learning ability. The reduction in cerebral weight and DNA content was considered to be caused by a decrease in the number of proliferating glial cells, because the usual postnatal elevation of thymidine kinase (TK) activity was found to be suppressed in the cerebra from the HC rats. Electron microscopic observation of the pituitary gland revealed that the 5-day-old HC rat contained growth hormone (GH) secretory cells which were fully packed with GH granules, suggesting a disorder in the system which releases GH. In an attempt to promote cerebral development in the HC rats, we administered bovine GH (bGH) to some of the HC rats daily from the day of birth until weaning (HC + bGH rats). In the HC + bGH rats, the cerebral DNA was restored to normal levels and a concomitant increase in TK and CNPase activity was noted. Furthermore, in the brightness discrimination test, whereas the HC + bGH rats attained the learning ability of the normal controls after only 10 sessions, the HC rats were unable to reach an equivalent level even after 25 sessions.  相似文献   

6.
Immunohistochemical reactions were conducted, using the antibodies against GFA and S-100 proteins on sections of cerebellum from the homozygous (jj) and the heterozygous (Jj) Gunn rats. Hypertrophy of the fibrous astrocytes was observed but hyperplasia of the glial cells was not. Although the molecular layer was very thin, the Bergmann fibre appeared normal. Among the free amino acids in the cerebellum from the jj rat, glutamate concentration decreased to two-thirds of the control level. The protein profile of the cerebellum from the jj rat obtained by SDS-polyacrylamide gel electrophoresis revealed that the amount of P400 protein that is characteristic of Purkinje cells decreased considerably and there were also some changes of the other unidentified proteins. By two-dimensional electrophoresis, it was observed that in the supernatant from the jj rat cerebellum one protein spot diminished and in the particulate fraction from the jj rat one spot was enormously increased. The activity of 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNPase) in the cerebellum from the jj rat did not differ significantly from that of the control; however, activities of choline acetyltransferase and acetylcholinesterase of the jj rat were about twice as high as those of the control. 2-Deoxyglucose incorporation was maximum in the granular layer from both the jj and the Jj rat cerebella. However, the incorporation in the jj cerebellum was not higher than in the Jj control and even lower in some parts of the jj cerebellum than in the control Jj cerebellum.  相似文献   

7.
Hypomyelination in the Cerebrum of the Congenitally Hypothyroid Mouse (hyt)   总被引:4,自引:2,他引:2  
2',3'-Cyclic nucleotide 3'-phosphohydrolase activity in the cerebrum of the inherited primary hypothyroid mouse (hyt/hyt) is reduced in comparison with the normal heterozygate (hyt/+). No differences were observed with regard to DNA and RNA content and the RNA/DNA ratio. The results of this study indicate that hypomyelination in the hypothyroid mouse is restricted to the cerebrum, and is not related to arrested glial proliferation.  相似文献   

8.
Abstract: The activity of 2',3'-cyclic nucleotide 3'-phos-phohydrolase (CNPase) has been determined in corpus callosum, subcortical white matter, and spinal cord of infants whose death was attributed to the sudden infant death syndrome (SIDS), and compared with enzyme activity in other cases in which the cause of death was not associated with respiratory distress. In nearly half the SIDS cases, CNPase activity and oligodendroglial cell numbers were reduced before the onset of myelination, but only in the corpus callosum. In other SIDS cases, enzyme activity and cell numbers were the same as in non-SIDS cases. If the expression of CNPase activity reflects glioblast differentiation to oligodendrocytes with myelinating potential, then this transformation is abnormal in certain SIDS cases, as also evidenced in cases of prolonged neonatal respiratory insufficiency and gives rise to a subsequent deficit of myelin in the corpus callosum.  相似文献   

9.
The effects of treatment with L-thyroxine (subcutaneously 0.3 microgram/g body weight daily from birth, i.e., day 1) and 2.5S nerve growth factor (NGF; intraventricularly 2 micrograms on 1, 3, 5, 7, and 9 postnatal days), separately and together, were studied on the biochemical development of different cell types in the basal forebrain of 10-day-old rats. The development of cholinergic, gamma-aminobutyric acid-ergic (GABAergic), and glutamatergic neurons was monitored respectively in terms of choline acetyltransferase (ChAT), glutamate decarboxylase (GAD), and glutaminase activities, whereas glutamine synthetase (GS) and 2',3'-cyclic nucleotide-3'-phosphohydrolase (CNPase) activities were used to judge the maturation of astroglial and oligodendroglial cells. Treatment with either thyroid hormone or NGF from birth significantly increased the expression of ChAT activity in the basal forebrain of neonatal rats. When both agents were administered to the same animal, in agreement with our earlier in vitro findings, the stimulation in ChAT activity was much greater than the sum of the individual effects. In hypothyroid rats, significant effects of NGF at the low doses used were not detectable, although the increase of ChAT activity induced by thyroxine was potentiated by NGF in these animals. Under the present experimental conditions neither thyroxine nor NGF treatment had an appreciable effect on the activities of glutaminase, GS, and lactate dehydrogenase. However, the administration of thyroxine markedly increased CNPase activity in normal rats, whereas in hypothyroid rats the effect on both CNPase and GAD was also significant. Similar elevations in CNPase and GAD activities were not observed after NGF treatment, suggesting that the effect of NGF was specific to the cholinergic cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Myelin was purified from the spinal cords of normal mice and mice heterozygous for the shiverer mutation, and measurements were made of the major myelin proteins and lipids and the specific activities of three myelin-associated enzymes. The myelin purified from the spinal cords of the heterozygotes (shi/+) was deficient by 30-40% in yield and had an apparently unique composition. In particular, when compared with normal mouse spinal cord myelin, there were more high-molecular-weight protein, less myelin basic protein, a higher protein-to-lipid ratio, and higher specific activities of 2',3'-cyclic nucleotide-3'-phosphohydrolase (EC 3.1.4.37) and carbonic anhydrase (EC 4.2.1.1) in the myelin purified from the shi/+ animals. These abnormalities were reflected in the composition of shi/+ whole spinal cord, where the protein-to-lipid ratio was intermediate between the respective values for +/+ and shi/shi spinal cords. Whole brains from shi/+ mice showed deficiencies in galactocerebroside and galactocerebroside sulfate and an increase in total phospholipid, and the lipid composition in the brains of the shi/shi mice was similar to that reported for another dysmyelinating mutant, quaking. The findings provide the first values for the lipids in normal mouse spinal cord myelin and show that heterozygotes are affected by the shiverer mutation. The observations imply that there can be considerable deviation from the normal CNS myelin content and composition without apparent qualitative morphological abnormalities or loss of function and that the amount of myelin basic protein available during myelination may influence the incorporation of other constituents into the myelin membranes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Abstract: Cultured murine oligodendrocytes elaborate extensive membrane sheets that, unlike multilamellar myelin in vivo, allow the study of interactions between myelin proteins and cytoskeletal elements. This article describes the events that occur due to the interaction of specific antibodies with their respective antigens, myelin/oligodendrocyte-specific protein (MOSP) and myelin/oligodendrocyte glycoprotein (MOG), which are expressed uniquely by oligodendrocytes. After antibody binding, surface anti-MOSP:MOSP complexes redistribute over those cytoplasmic microtubular veins that have 2',3'-cyclic nucleotide 3'-phosphohydrolase colocalized along them. In contrast, surface anti-MOG-MOG complexes redistribute over internal myelin basic protein domains. Long-term anti-MOSP IgM exposure results in an apparent increase in number as well as thickness of microtubular structures in oligodendrocyte membrane sheets, whereas long-term anti-MOG exposure causes depolymerization of microtubular veins in membrane sheets. These data suggest that antibody binding to these two surface proteins elicits signals that have opposite effects on the cytoskeleton in oligodendroglial membrane sheets. Thus, it is possible that signals transduced via antibody binding may contribute to the pathogenesis of diseases affecting CNS myelin.  相似文献   

12.
Myelin-associated glycoprotein (MAG), 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) activity, myelin basic protein (BP), and proteolipid protein (PLP) were quantitated in the brains of 20-day-old Jimpy and control mice. The levels of MAG, CNPase, and BP in Jimpy brains were 5.3%, 9.7%, and 1.9% of those in control brains, respectively. Immunoblotting analysis did not reveal an increased apparent Mr for MAG in the Jimpy mouse, as has been observed in some other hypomyelinating murine mutants. PLP was reduced more than the other proteins, as it was not detected by an immunoblotting technique that was capable of detecting 0.5% of the control level.  相似文献   

13.
Primary cultures of cells dissociated from fetal rat brain were utilized to define the developmental changes in cholesterol biosynthesis and the role of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase in the regulation of these changes. Cerebral hemispheres of fetal rats of 15-16 days of gestation were dissociated mechanically into single cells and grown in the surface-adhering system. Cholesterol biosynthesis, studied as the rate of incorporation of [14C]acetate into digitonin-precipitable sterols, was shown to exhibit two distinct increases in synthetic rates, a prominent increase after 6 days in culture and a smaller one after 14 days in culture. Parallel measurements of HMG-CoA reductase activity also demonstrated two discrete increases in enzymatic activity, and the quantitative and temporal aspects of these increases were virtually identical to those for cholesterol synthesis. These data indicate that cholesterol biosynthesis undergoes prominent alterations with maturation and suggest that these alterations are mediated by changes in HMG-CoA reductase activity. The timing of the initial prominent peak in both cholesterol biosynthesis and HMG-CoA reductase activity at 6 days was found to be the same as the timing of the peak in DNA synthesis, determined as the rate of incorporation of [3H]thymidine into DNA. The second, smaller peak in reductase activity and sterol biosynthesis at 14 days occurred at the time of the most rapid rise in activity of the oligodendroglial enzyme, 2':3'-cyclic nucleotide 3'-phosphohydrolase (CNP). These latter observations suggest an intimate relationship of the sterol biosynthetic pathway with cellular proliferation and with oligodendroglial differentiation in developing mammalian brain.  相似文献   

14.
Abstract: Separate analyses were made of gray matter and white matter from rat brain after neonatal undernutrition. Newborn rats were redistributed into control, large-litter, and protein-deficient groups. Large litters had 16 rather than 8 pups with a dam. Protein-deficient dams were fed a 4%, instead of a 24%, casein diet. For controls at 21 days of age, the 2',3'-cyclic nucleotide-3'-phosphohydrolase activity was more than fivefold greater in white matter than in gray matter. Severe undernutrition (protein-deficient) gave 2',3'-cyclic nucleotide-3'-phosphohydrolase activities that were 36% lower in gray matter and 56% lower in white matter. Lipid galactose concentrations were 17% less than control in both gray matter and white matter. In protein-deficient white matter, phospholipid concentrations were 15% lower than control. Ethanolamine plasmalogens and phosphatidyl serine were affected most. Moderate undernutrition (large litter) had no effect on 2',3'-cyclic nucleotide-3'-phosphohydrolase activity. A 14% deficit of galactolipids was the only difference from controls in large-litter white matter. In large-litter gray matter, phospholipid concentrations were 16% higher than controls. Nearly all glycerophos-pholipids, including plasmalogens, were affected. With the exception of the myelination markers, 2',3'-cyclic nucleotide-3'-phosphohydrolase and lipid galactose, the development of lipids in gray matter is almost completely spared from the effects of undernutrition. The primary effect of undernutrition is on myelination, especially in white matter.  相似文献   

15.
2',3'-Cyclic nucleotide 3'-phosphodiesterase activity was examined in brains and spinal cords of normal and myelin-deficient Wistar rats. While the activity in normal brains increased from 0.2 mumol/min/mg protein (units) at 6-10 days to 3.5 units at 25 days of postnatal age, the activity in the myelin-deficient rat remained at 0.2-0.3 units over the same period. In spinal cord, the normal activities were 5.7 and 10.9 units at 12 and 20 days, respectively, whereas they declined in the myelin-deficient rat from 1.06 to 0.79 units for the same age points. 5'-Nucleotidase activities in brain and spinal cord were normal in the myelin deficient rat at both ages.  相似文献   

16.
In an effort to determine the factors that stimulate myelin synthesis, we investigated the mechanism by which dibutyryl cyclic AMP induces the activity of the myelin enzyme, 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP; EC 3.1.4.37), in C6 glioma cells. Immunotitration experiments and measurements of the accumulation of [35S]methionine-labeled CNP showed that dibutyryl cyclic AMP increased the amount of CNP in the cells but not the catalytic activity per molecule of the enzyme. Moreover, inhibition of protein synthesis with cycloheximide abolished induction of enzyme activity. Dibutyryl cyclic AMP doubled the rate of CNP synthesis but had no effect on the half-life of the enzyme (approximately 33 h). The induction was partially blocked by the inhibitors of mRNA synthesis, cordycepin or alpha-amanitin. Thus, cyclic AMP induces the synthesis of CNP.  相似文献   

17.
An extensive scheme for the subcellular fractionation of myelinating mouse brain is presented. Several centrifugation procedures for the separation of membranes involved in myelinogenesis are critically appraised, and guidelines for selection of centrifugation conditions are given. Characteristics of subcellular fractions are presented in the form of electron micrographs; also presented are distribution of RNA and protein; electrophoretic profiles of membrane proteins, and verification of the myelin-specific basic proteins, proteolipid protein, and glycoprotein by the immuno-electroblot technique; and the distribution of eight marker enzyme activities. Myelin-related membranes were found to differ both qualitatively and quantitatively in their complement of myelin-specific proteins. These myelin-containing fractions appear to represent different stages of myelination that coexist in developing mouse brain. These results provide the fundamental methodologies and background information for kinetic radioisotope analysis of intracellular events in the assembly of myelin presented in a companion article.  相似文献   

18.
Evidence is presented that the major protein components of the high molecular weight CNS myelin proteins designated as the Wolfgram protein doublet (W1 and W2) contain the enzyme 2',3'-cyclic nucleotide 3'-phosphodiesterase (EC 3.1.4.37, CNP). CNP is a basic hydrophobic protein containing about 830 to 840 amino acid residues. When electrophoresed on SDS polyacrylamide gels, CNP appears as a protein doublet, separated by a molecular weight difference of about 2500-3000 in bovine, human, rat, guinea pig, and rabbit. A similar protein doublet has been identified as the Wolfgram proteins W2 and W1 in myelin and in the chloroform-methanol-insoluble pellet obtained from myelin. Moreover, the relative Coomassie blue staining intensity of the CNP2 plus CNP1 protein doublet among the species examined was remarkably similar to that observed for electrophoresed myelin and chloroform-methanol-insoluble pellet derived from myelin. Antisera raised against purified bovine CNP recognized the W1 and W2 proteins isolated from bovine and human brain. The amino acid composition of pure bovine CNP is presented and compared with the compositions of several rat and bovine Wolfgram proteins obtained by other investigators. Our electrophoretic, compositional, and immunological data support the contention that the enzyme CNP is a major component of the Wolfgram protein doublet.  相似文献   

19.
Wallerian degeneration of the rabbit optic nerve was investigated by the technique of retinal ablation which precludes edema, hemorrhage, or macrophage infiltration. After 8 days of degeneration, marked degradation of axons and some myelin abnormalities appeared in the optic nerve, optic chiasma, and optic tract. Myelin lesions were maximal 32 days after retinal destruction. The amount of material stained with a myelin dye decreased drastically between 32 and 90 days after the operation. Biochemical parameters gave the following sequence of events. The concentration of the major periodic acid--Schiff staining glycoproteins was decreased after 2 days, and 6 days later the presence of cholesterol esters was detected in the optic tissue. After 16 days of Wallerian degeneration, the specific activity of 2',3'-cyclic nucleotide 3'-phosphodiesterase not associated with myelin decreased, indicating a possible de-differentiation of oligodendrocytes. Degradation of myelin basic protein became significant at 32 days and the amount of myelin isolated decreased later. The loss of myelin basic protein coincided with a reduction of myelin periodicity as measured in purified fractions by electron microscopy. These results show that secondary myelin destruction in the absence of edema, hemorrhage, or macrophages is a very slow process, and in this situation myelin undergoes a selective and sequential loss of its constituents.  相似文献   

20.
Abstract: The direct influence of l -3,3',5-triiodothyronine (T3) on the development of 2',3'-cyclic nucleotide 3'-phosphohydrolase (EC 3.1.4.37, CNPase) is demonstrated by using an in vitro culture system of dissociated embryonic mouse brain cells. Serum from a thyroidectomized calf, which contained low levels of T3 (31 ng/100 ml), and thyroxine, T4 (<1 μg/ml), was used in the culture medium in place of normal calf serum (T3, 103 ng/100 ml; T4, 5.7 μg/ml) to render the culture responsive to exogenously added T3. The lower levels of enzyme activity observed in the presence of such a deficient medium could be restored to normal values by T3 supplementation. Half-maximal effect was obtained with 2.5 ± 10−9 m -T3. Three days of hormone treatment resulted in the maximal stimulation of CNPase. T4 was less effective in inducing CNPase activity and the inactive analog of the hormone, reverse T3 (3,3',5'-T3) was ineffective. The morphological appearance of the cells was characterized by deformed (smaller size and less in number) reaggregates in the cultures, lacking hormone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号