首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effect in vitro of propoxur on the specific activity of calcium stimulated ATPase and calcium uptake was studied in the rat brain synaptosomes. The data suggest that propoxur might disrupt the synaptic function by altering the calcium dependent ATP hydrolysis and calcium uptake in the central nervous system.  相似文献   

2.
3.
The ATPase activity of acto-myosin subfragment 1 (S-1) was measured in the presence of smooth and skeletal muscle tropomyosins over a wide range of ionic strengths (20-120 mM). In contrast to the 60% inhibitory effect caused by skeletal muscle tropomyosin at all ionic strengths, the effect of smooth muscle tropomyosin was found to be dependent on ionic strength. At low ionic strength (20 mM), smooth muscle tropomyosin inhibits the ATPase activity by 60%, while at high ionic strength (120 mM), it potentiates the ATPase activity 3-fold. All of these ATPase activities were measured at very low ratios of S-1 to actin, under conditions at which a 4-fold increase in S-1 concentration did not change the specific activity of the tropomyosin-acto.S-1 ATPase. Therefore, the potentiation of the ATPase activity by smooth muscle tropomyosin at high ionic strength cannot be explained by bound S-1 heads cooperatively turning on the tropomyosin-actin complex. To determine whether the fully potentiated rates are different in the presence of smooth muscle and skeletal muscle tropomyosins, S-1 which was extensively modified by N-ethylmaleimide was added to the ATPase assay to attain high ratios of S-1 to actin. The results showed that, under all conditions, the fully potentiated rates are the same for both tropomyosins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The mechanism for the potentiation of the actin-activated ATPase of smooth muscle myosin by tropomyosin is investigated using smooth muscle actin, tropomyosin, and heavy meromyosin. In the presence of tropomyosin, an increase in Vmax occurs with no effect on KATPase and Kbinding at 20 mM ionic strength. Utilizing N-ethylmaleimide-treated subfragment-1, which forms rigor complexes with actin in the presence of ATP but does not have ATPase activity, experiments were carried out to determine if the tropomyosin-actin complex exists in both the turned-off and turned-on forms as in the skeletal muscle system. At both 60 and 100 mM ionic strengths, the presence of rigor complexes on the smooth muscle actin filament containing bound tropomyosin causes a 2-3-fold increase in Vmax and about a 3-fold increase in KATPase, resulting in about a 4-fold increase in ATPase activity at moderate actin concentration. The increase in KATPase is correlated with an increase in Kbinding. The finding that rigor complexes increase Vmax and the binding constant for heavy meromyosin to tropomyosin-actin at an ionic strength close to physiological conditions indicates that the tropomyosin-actin complex can be turned on by rigor complexes in a cooperative manner. However, in contrast to the situation in the skeletal muscle system, the increase in KATPase is associated with a corresponding increase in Kbinding. Furthermore, there is only a 3-fold increase in KATPase in the smooth muscle system rather than a 10-fold increase as in the skeletal muscle system.  相似文献   

5.
The ATPase activities in Chlamydomonas axonemes were compared between wild type and a mutant (oda) that lacks entire outer dynein arms, at various ionic strengths and pH values, and in the presence of different concentrations of high-molecular-mass dextran. Over a 0-0.2 M KCl concentration range, the ATPase activity of oda axonemes was found to be 5-12 times lower than that of the wild-type axonemes. The low activity in oda is surprising since outer arm-depleted axonemes of sea urchin sperm have been reported to retain about 50% of the normal activity. In both wild type and oda, the ATPase activity of dynein was higher when contained within the axoneme than when released from it with 0.6 M KCl. The ATPase activation within the wild-type axoneme was inhibited by high ionic strengths or by the presence of dextran. The activation in oda axonemes, on the other hand, was not inhibited by these factors. These significantly different ATPase properties suggest that the inner and outer dynein arms perform somewhat different functions in this organism.  相似文献   

6.
The influence of ionic strength on the isometric tension, stiffness, shortening velocity and ATPase activity of glycerol-treated rabbit psoas muscle fiber in the presence and the absence of Ca2+ has been studied. When the ionic strength of an activating solution (containing Mg2+-ATP and Ca2+) was decreased by varying the KCl concentration from 120 to 5 mM at 20 degrees C, the isometric tension and stiffness increased by 30% and 50%, respectively. The ATPase activity increased 3-fold, while the shortening velocity decreased to one-fourth. At 6 degrees C, similar results were obtained. These results suggest that at low ionic strengths ATP is hydrolyzed predominantly without dissociation of myosin cross-bridges from F-actin. In the absence of Ca2+, with decreasing KCl concentration the isometric tension and stiffness developed remarkably at 20 degrees C. However, the ATPase activity and shortening velocity were very low. At low ionic strength, even in the absence of Ca2+ myosin heads are bound to thin filaments. The development of the tension and stiffness were greatly reduced at 6 degrees C or at physiological ionic strength.  相似文献   

7.
The role of the overlap region at the ends of tropomyosin molecules in the properties of regulated thin filaments has been investigated by substituting nonpolymerizable tropomyosin for tropomyosin in a reconstituted troponin-tropomyosin-actomyosin subfragment 1 ATPase assay system. A previous study [Heeley, Golosinka & Smillie (1987) J. Biol. Chem. 262, 9971-9978] has shown that at an ionic strength of 70 mM, troponin will induce full binding of nonpolymerizable tropomyosin to F-actin both in the presence and absence of calcium. At a myosin subfragment 1-to-actin ratio of 2:1 ([actin] = 4 microM) and an ionic strength of 50 mM, comparable levels of ATPase inhibition were observed with increasing levels of tropomyosin or the truncated derivative in the presence of troponin (-Ca2+). Large differences were noted, however, in the activation by Ca2+. Significantly lower ATPase activities were observed with nonpolymerizable tropomyosin and troponin (+Ca2+) over a range of subfragment 1-to-actin ratios from 0.25 to 2.5. The concentration of subfragment 1 required to generate ATPase activities exceeding those seen with actomyosin subfragment 1 alone under these conditions was 3-4-fold greater when nonpolymerizable tropomyosin was used. Similar effects were seen at the much lower ionic strength of 13 mM and are consistent with the reduced ATPase activity with nonpolymerizable tropomyosin observed previously [Walsh, Trueblood, Evans & Weber (1985) J. Mol. Biol. 182, 265-269] at low ionic strength and a subfragment 1-to-actin ratio of 1:100. Little cooperativity in activity as a function of subfragment 1 concentration with either intact tropomyosin or its truncated derivative was observed under the present conditions. Further studies are directed towards an understanding of these effects in terms of the two-state binding model for the attachment of myosin heads to regulated thin filaments.  相似文献   

8.
To facilitate study of the role of the beta-subunit in the membrane-bound proton-translocating ATPase of Escherichia coli, we identified mutant strains from which an F1-ATPase containing abnormal beta-subunits can be purified. Seventeen strains of E. coli, characterized by genetic complementation tests as carrying mutations in the uncD gene (which codes for the beta-subunit), were studied. The majority of these strains (11) were judged to be not useful, as their membranes lacked ATPase activity, and were either proton-permeable as prepared or remained proton-impermeable after washing with buffer of low ionic strength. A further two strains were of a type not hitherto reported, in that their membranes had ATPase activity, were proton-impermeable as prepared, and were not rendered proton-permeable by washing in buffer of low ionic strength. Presumably in these two strains F1-ATPase is not released in soluble form by this procedure. F1-ATPase of normal molecular size were purified from strains AN1340 (uncD478), AN937 (uncD430), AN938 (uncD431) and AN1543 (uncD484). F1-ATPase from strain AN1340 (uncD478) had 15% of normal specific Mg-dependent ATPase activity and 22% of normal ATP-synthesis activity. The F1-ATPase preparations from strains AN937, AN938 and AN1543 had respectively 1.7%, 1.8% and 0.2% of normal specific Mg-dependent ATPase activity, and each of these preparations had very low ATP-synthesis activity. The yield of F1-ATPase from the four strains described was almost twice that obtained from a normal haploid strain. The kinetics of Ca-dependent ATPase activity were unusual in each of the four F1-ATPase preparations. It is likely that these four mutant uncD F1-ATPase preparations will prove valuable for further experimental study of the F1-ATPase catalytic mechanism.  相似文献   

9.
SYNOPSIS. The ATPase activity of isolated flagella was studied in Euglena gracilis strain Z in the presence of Mg++ or Ca++. With Mg++, the optimum activity was at pH 7 and with Ca++, at pH 9. The K m values were respectively 6.6 × 10−4 and 3.6 × 10−4. Activity was influenced also by temperature and ionic strength. Results with inhibitors of membrane ATPase suggest the presence of a specific contractile system in the flagella. Our results are compatible with a multicomponent enzymic system containing 2 active ATPases.  相似文献   

10.
1. Both the Ca(2+)-pump ATPase and the polyphosphoinositide phosphodiesterase of the erythrocyte membrane can, when assayed under appropriate conditions, be activated by Ca(2+) in the micromolar range. We have therefore compared the mechanisms and affinities for Ca(2+) activation of the two enzymes in human erythrocyte membranes, to see whether the polyphosphoinositide phosphodiesterase would be active in normal healthy erythrocytes. 2. At physiological ionic strength and in the presence of calmodulin, the Ca(2+)-pump ATPase was activated by Ca(2+) in a highly co-operative manner, with half-maximal activation occurring at about 0.3mum-Ca(2+). At an optimal Ca(2+) concentration, calmodulin stimulated the Ca(2+)-sensitive ATPase activity about 10-fold. 3. Ca(2+) activated the polyphosphoinositide phosphodiesterase in a non-co-operative manner. The Ca(2+) requirements for breakdown of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate were identical, which supports our previous conclusion that Ca(2+) activates a single polyphosphoinositide phosphodiesterase that degrades both lipids with equal facility. Added calmodulin did not affect the activity of the polyphosphoinositide phosphodiesterase. 4. At low ionic strength in the absence of Mg(2+), half-maximal activation of the phosphodiesterase was at about 3mum-Ca(2+). The presence of 1mm-Mg(2+) shifted the Ca(2+) activation curve to the right, as did elevation of the ionic strength. When the Ca(2+)-pump ATPase and the polyphosphoinositide phosphodiesterase were assayed in the same incubations and under conditions of intracellular ionic strength and Mg(2+) concentration, the ATPase was fully activated at 3mum-Ca(2+), whereas no polyphosphoinositide phosphodiesterase activity was detected below 100mum-Ca(2+). 5. The Ca(2+)-pump ATPase of the erythrocyte membrane normally maintains the Ca(2+) concentration of healthy erythrocytes below approx. 0.1mum. It therefore seems unlikely that the polyphosphoinositide phosphodiesterase of the erythrocyte membrane ever expresses its activity in a healthy erythrocyte.  相似文献   

11.
The effects of 2,3-butanedione 2-monoxime (BDM) on mechanical responses of glycerinated fibers and the ATPase activity of heavy meromyosin (HMM) and myofibrils have been studied using rabbit skeletal muscle. The mechanical responses and the ATPase activity were measured in similar conditions (ionic strength 0.06-0.2 M, 0.4-4 mM MgATP, 0-20 mM BDM, 2-20 degrees C and pH 7.0). BDM reversibly reduced the isometric tension, shortening speed, and instantaneous stiffness of the fibers. BDM also inhibited myofibrillar and HMM ATPase activities. The inhibitory effect on the relative ATPase activity of HMM was not influenced by the addition of actin or troponin-tropomyosin-actin. High temperature and low ionic strength weakened BDM's suppression of contraction of the fibers and the ATPase activity of contracting myofibrils, but not of the HMM, acto-HMM and relaxed myofibrillar ATPase activity. The size of the initial phosphate burst at 20 degrees C was independent of the concentration of BDM. These results suggest that the suppression of contraction of muscle fibers is due mainly to direct action of BDM on the myosin molecules.  相似文献   

12.
The inhibition effect of ionic lead on membrane ATPase activity, transmembrane potential (delta psi) and permeability level of the Pb-sensitive P. fluorescens B894 and Pb-resistant P. fluorescens B4252 bacteria cells have been studied. It have been shown that decreasing ATPase activity and transmembrane potential values and the increasing of permeability by lead are higher for Pb-sensitive strain then for Pb-resistant. It is suggested that mechanism of the ionic lead toxic effect deals with plasma membrane biochemical parameters (ATPase activity, value of delta psi) alterations and interruption of it barrier function.  相似文献   

13.
The effects of norepinephrine in interaction with adrenergic blocking compounds were studied on membrane adenosine triphosphatase (ATPase) activities of human lymphocytes and lymphoblasts. Sodium-potassium ion exchange pump activity was assayed by 86-Rb uptake and ATPase activity of membrane fractions was assayed by ADP and inorganic phosphate generation. The results of these studies indicate that norepinephrine acts by an alpha adrenergic mechanism to enhance membrane sodium-potassium ion exchange pump activity and ATPase activity. The pharmacologic and ionic dissection of the adrenergic sensitivity of ATPase activity indicates that this alpha adrenergic mechanism is related to membrane ATPase activities in addition to that associated with the ion exchange pump. Analysis of fractions obtained by sucrose gradients indicates that the action of norepinephrine is localized in the plasma membrane. Beta adrenergic stimulation was observed to inhibit ATPase activity. The complexity of adrenergic effects on membrane ATPase suggests interactions of hormone modulation of membrane nucleotide cyclases and transport-related ATPase enzymes.  相似文献   

14.
Myosin was purified from the membrane fraction and the cytoplasm of human platelets, and the K+(EDTA)- and Ca2+-dependent ATPase activities were studied under various experimental conditions. The ATPase activity of the myosin from the membrane fraction was slightly lower than that of its cytoplasmic counterpart, regardless of the different assay conditions (pH, ionic strength, and temperature). Both myosins showed the same pH optima and a similar ionic strength dependence for the two ATPase activities measured. In addition, they exhibited the same substrate specificity using ATP, CTP, and GTP as substrates. The activation energy of the Ca2+-dependent ATPase activity was essentially the same for the two myosins, while the activation energy of the K+(EDTA)-dependent ATPase activity of the membrane myosin was higher than that of the cytoplasmic myosin. The ATPase activity of the membrane myosin was found to be more sensitive to freezing and thawing than the cytoplasmic myosin. The alkylation of the thiol groups by N-ethylmaleimide or N-iodoacetyl-N-(5-sulfo-1-naphtyl)ethylenediamine, and the trinitrophenylation of the lysyl residues by 2,4,6-trinitrobenzenesulfonate caused a significant decrease in the K+(EDTA)-dependent ATPase activity of the two myosins. However, the membrane myosin was much less affected than the cytoplasmic myosin. Actin induced inhibition of the K+ (EDTA) ATPase of both myosins, and much smaller quantities of actin were needed to inhibit the cytoplasmic myosin ATPase compared to quantities needed to inhibit the myosin ATPase from the membrane fraction. This indicates that the membrane myosin has a lower affinity toward actin. The observed variations in the ATPase activity of the myosins isolated from the membrane and the cytoplasm fractions of human platelets may reflect differences in their respective physiological functions.  相似文献   

15.
It has previously been shown that cotyledonary pricks inducedmodifications of ion levels (H+ and K+) in hypocotyl cells ofBidens pilosa. These modifications differed according to thelight quality: H + levels increased and K+ levels decreasedin white light (WL), whereas H+ levels decreased and K+ levelsincreased in blue light (BL). In this study, in order to determinethe mechanism responsible for these ionic modifications, plasmamembrane vesicles have been isolated and characterized fromhypocotyl cells. The effects of light quality and cotyledonarypricks on plasma-lemma ATPase activity (EC 3.6.1.3 [EC] ) were studied.Cotyledonary pricks induced, in WL, rapid (5 min) and transient(restoration in 60 min) inhibition of plasmalemma ATPase activity.Conversely, in BL, a rapid and transient stimulation was observed.These results suggest that, in Bidens pilosa, plasmalemma ATPaseis involved in 'short-term' ionic level modifications inducedby traumatisms. Key words: ATPase activity, short-term ionic regulation, growth inhibition  相似文献   

16.
The extent of activation of myofibrillar ATPase activity by trypsin treatment has been measured.

When myofibril (5 mg/ml) was treated with a low concentration of trypsin (2.5 μg/ml), the Mg-modified ATPase activity of myofibrils at a low ionic strength increased appreciably, while the EDTA-enhanced ATPase activity of myofibrils at a high ionic strength did not change with the progress of trypsin digestion.

The dependence of myofibrillar ATPase activity on KCl concentration also became greater with the progress of trypsin digestion.

Trypsin treatment caused 5-fold increase in the Mg-modified ATPase activity of 0-myofibril, when treated with trypsin in a ratio of 1 to 2000 myofibril for 80 min. Under the same condition, the ATPase activity of 1-myofibril increased by about 150%, whereas that of 8-myofibril increased by approximately 50%.

When myofibrils were treated with trypsin in a ratio of 1 to 200 myofibril, the Mg-ATPase activity of 8-myofibril decreased earlier than that of 1-myofibril did by about 20 min.

Experimental results obtained in this study were enough to confirm that the myofibrils from the aged muscle are more susceptible to tryptic action.

An assumption was made that the structural alteration of myofibrils during aging might be attributed to the change in thin filament of myofibrils, including Z-lines, which are mainly due to the change in the native tropomyosin of thin filaments.  相似文献   

17.
Calcium sensitivity of vertebrate skeletal muscle myosin   总被引:3,自引:0,他引:3  
D L Pulliam  V Sawyna  R J Levine 《Biochemistry》1983,22(10):2324-2331
The calcium sensitivity of vertebrate skeletal muscle myosin has been investigated. Adenosinetriphosphatase (ATPase) activity was assayed in a reconstituted system composed of either purified rabbit myosin plus actin or myosin plus actin, tropomyosin, and troponin. The calcium sensitivity of actomyosin Mg-ATPase activity was found to be directly affected by the ionic strength of the assay medium. Actomyosin assayed at approximately physiological ionic strength (120 mM KCl) demonstrated calcium sensitivity which varied between 6 and 52%, depending on the myosin preparation and the age of the myosin. Mg-ATPase activity was increased when calcium was present in the assay medium at physiological ionic strength. Conversely, actomyosin Mg-ATPase activity assayed at a lower ionic strength (15 mM KCl) was inhibited by addition of calcium. Addition of tropomyosin and troponin to the assay increased the calcium sensitivity of the system at the physiological ionic strength still further (up to 99% calcium sensitivity) and conferred calcium sensitivity on the system at the lower ionic strength (greater than 90% calcium sensitivity). A correlation also existed between myosin's calcium sensitivity and the phosphorylated state of light chain 2.  相似文献   

18.
Peripheral and integral subunits of the tonoplast H+-ATPase from oat roots   总被引:10,自引:0,他引:10  
The subunit organization of the tonoplast H+-pumping ATPase from oat roots (Avena sativa L. var. Lang) was investigated. Tonoplast vesicles were treated with low ionic strength solutions (0.1 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffer or 0.1 mM Na EDTA), carbonate, or a chaotropic reagent (KI), and then centrifuged to give a soluble fraction and a pellet. Treatments with low ionic strength solutions or KI resulted in 70-80% reduction in the membrane-associated ATPase activity, but did not affect the K+-stimulated pyrophosphatase activity. Polypeptides of 72, 60, and 41 kDa were solubilized from tonoplast vesicles by these wash treatments. These polypeptides reacted with polyclonal antibodies against the holoenzyme of tonoplast ATPase (anti-ATPase) and copurified with the tonoplast ATPase activity during gel filtration chromatography (Sepharose CL-6B). Mono-specific antibody against the 72- or 60-kDa polypeptide reacted with the solubilized 72- or 60-kDa polypeptide, respectively. However, the N,N-[14C]dicyclohexylcarbodiimide-binding 16-kDa polypeptide and a 13-kDa polypeptide that also reacted with anti-ATPase and copurified with the tonoplast ATPase activity during gel filtration remained in the pellets after the wash treatments. We conclude that the 72- and 60-kDa polypeptides appear to be peripheral subunits of the tonoplast ATPase and that the 16-kDa polypeptide is probably embedded in the membrane bilayer. Additional subunits of the ATPase complex may include a 41-kDa (peripheral) and a 13-kDa (integral) polypeptide. Based on these results, a working model of the tonoplast ATPase analogous to the F1F0-ATPase is proposed.  相似文献   

19.
The ATPase activity of acto-myosin subfragment 1 (S1) at low ratios of S1 to actin in the presence of tropomyosin is dependent on the tropomyosin source and ionic conditions. Whereas skeletal muscle tropomyosin causes a 60% inhibitory effect at all ionic strengths, the effect of smooth muscle tropomyosin was found to be dependent on the ionic strength. At low ionic strength (20 mM) smooth muscle tropomyosin inhibits the ATPase activity by 60%, while at high ionic strength (120 mM) it potentiates the ATPase activity three- to five-fold. Therefore, the difference in the effect of smooth muscle and skeletal muscle tropomyosin on the acto-S1 ATPase activity was due to a greater fraction of the tropomyosin-actin complex being turned on in the absence of S1 with smooth muscle tropomyosin than with skeletal muscle tropomyosin. Using well-oriented gels of actin and of reconstituted specimens from vertebrate smooth muscle thin filament proteins suitable for X-ray diffraction, we localized the position of tropomyosin on actin under different levels of acto-S1 ATPase activity. By analysing the equatorial X-ray pattern of the oriented specimens in combination with solution scattering experiments, we conclude that tropomyosin is located at a binding radius of about 3.5 nm on the f-actin helix under all conditions studied. Furthermore, we find no evidence that the azimuthal position of tropomyosin is different for smooth muscle tropomyosin at various ionic strengths, or vertebrate tropomyosin, since the second actin layer-line intensity (at 17.9 nm axial and 4.3 nm radial spacing), which was shown in skeletal muscle to be a sensitive measure of this parameter, remains strong and unchanged. Differences in the ATPase activity are not necessarily correlated with different positions of tropomyosin on f-actin. The same conclusion is drawn from our observations that, although the regulatory protein caldesmon inhibits the ATPase activity in native and reconstituted vertebrate smooth muscle thin filaments at a molar ratio of actin/tropomyosin/caldesmon of 28:7:1, the second actin layer-line remains strong. Only adding caldesmon in excess reduces the intensity of the second actin layer-line, from which the binding radius of caldesmon can be estimated to be about 4 nm. The lack of predominant meridional reflections in oriented specimens, with caldesmon present, suggests that caldesmon does not project away from the thin filament as troponin molecules in vertebrate striated muscle in agreement with electron micrographs of smooth muscle thin filaments. In freshly prepared native smooth muscle thin filaments we observed a Ca(2+)-sensitive reversible bundling effect.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
The hypothesis that an alteration in the SH1 site of hypertrophy myosin is reponsible for the reduced Ca2+-stimulated ATPase activity is examined.The functional integrity of the SH1 site was evaluated by measurement of the (K+)-EDTA-stimulated and Mg2+-inhibited ATPase activities. Neither activity differed from control although the Ca2+-stimulated ATPase of the same preparations was significantly reduced. The reduction in Ca2+-activated ATPase was independent of ionic strength. Titration with N-ethylmaleimide elevated the Ca2+-stimulated ATPase of hypertrophy myosin to the same peak activity as control. Actin-stimulated ATPase activity of hypertrophy myosin was also reduced. The results indicate that the SH1 of hypertrophy myosin is functionally intact for (K+)EDTA-stimulated ATPase and Mg2+ inhibition, but functionally deficient with regard to Ca2+-stimulated and actin-activated ATPase activities. This implies a partition of the functional aspects of SH1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号