首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RecA complexes on DNA and self-polymers were analysed by small-angle neutron scattering in solution. By Guinier analysis at small angles and by model analysis of a subsidiary peak at wider angles, we find that the filaments fall into two groups: the DNA complex in the presence of ATP gamma S, an open helix with pitch 95 A, a cross-sectional radius of gyration of 33 A and a mass per length of about six RecA units per turn, which corresponds to the state of active enzyme; and the compact form (bound to single-stranded DNA in the absence of ATP, or binding ATP gamma S in the absence of DNA, or just the protein on its own), a helical structure with pitch 70 A, cross-sectional radius of gyration 40 A and mass per length about five RecA units per turn, which corresponds to the conditions of inactive enzyme. The results are discussed in the perspective of unifying previous conflicting structural results obtained by electron microscopy.  相似文献   

2.
The complete exchange of strands between circular single-stranded and full length linear duplex DNAs promoted by the recA protein of Escherichia coli is dependent upon the hydrolysis of ATP and is strongly stimulated by the single-stranded DNA binding protein (SSB). In the presence of SSB, stable complexes of recA protein and single-stranded DNA are formed as an early step in the reaction. These complexes dissociate when the ADP/ATP ratio approaches a value of 0.6-1.5, depending upon reaction conditions. Thus, ATP hydrolysis never proceeds to completion but stops when 40-60% of the input ATP has undergone hydrolysis. recA protein can participate in a second round of strand exchange upon regeneration of the ATP. While 100-200 mol of ATP are hydrolyzed/mol of heteroduplex base pair formed under standard reaction conditions in the presence of SSB, this value is reduced to 16 at levels of ADP lower than that required to dissociate the complexes. ATP hydrolysis appears to be completely irreversible since efforts to detect exchange reactions using 18O probes have been unsuccessful.  相似文献   

3.
We have examined the exchange of recA protein between stable complexes formed with single-stranded DNA (ssDNA) and (a) other complexes and (b) a pool of free recA protein. We have also examined the relationship of ATP hydrolysis to these exchange reactions. Exchange was observed between two different recA X ssDNA complexes in the presence of ATP. Complete equilibration between two sets of complexes occurred with a t1/2 of 3-7 min under a set of conditions previously found to be optimal for recA protein-promoted DNA strand exchange. Approximately 200 ATPs were hydrolyzed for every detected migration of a recA monomer from one complex to another. This exchange occurred primarily between adjacent complexes, however. Little or no exchange was observed between recA X ssDNA complexes and the free recA protein pool, even after several hundred molecules of ATP had been hydrolyzed for every recA monomer present. ATP hydrolysis is not coupled to complete dissociation or association of recA protein from or with recA X ssDNA complexes under these conditions.  相似文献   

4.
On the polymerization state of recA in the absence of DNA   总被引:1,自引:0,他引:1  
R W Ruigrok  E DiCapua 《Biochimie》1991,73(2-3):191-198
We present an electron microscopy study on the polymerization state of recA in the absence of DNA. In solution recA exists as monomers, small complexes not clearly longer than wide (approximately 9-18 nm), and filaments (diameter approximately 11 nm and variable lengths). We have attempted to quantify the relative amounts of these species by length measurements of the particles on electron micrographs. The percentages of each of these types was found to depend on recA concentration, temperature and presence in the incubation mixture of Mg2+, ATP gamma S, salt or D2O. These additives do not have an absolute effect on polymerization but rather shift the polymerization equilibrium of recA (which depends on recA concentration) up or down the concentration scale.  相似文献   

5.
recA protein coats DNA co-operatively to form filaments approximately 100 A thick, which in the presence of ATP, and more stably so in the presence of the non-hydrolyzable analog ATP gamma S, have a helical appearance with a deep cleft in the protein coat. This protein helix follows the DNA helix, to which it imparts a new helicity of 18.5 bp per turn of 97 A pitch. Here we test the accessibility of the DNA in the complex to modification by dimethylsulfate, and find that the complexed DNA is approximately 2-fold more reactive on the major groove side than it was in B-DNA (methylation of guanine N7), while it is protected approximately 2-fold on the minor groove side (methylation of adenine N3), suggesting that the protein coats the DNA along the minor groove. Furthermore, N3 of cytosine, a residue involved in base pairing, is found exposed in complexes with single strands as it is in naked single-stranded DNA, while it remains inaccessible in complexes with double strands, suggesting that the latter is not melted at this stage of the strand exchange reaction.  相似文献   

6.
S W Morrical  M M Cox 《Biochemistry》1990,29(3):837-843
In vitro recombination reactions promoted by the recA protein of Escherichia coli are enhanced by the single-stranded DNA binding protein (SSB). SSB affects the assembly of the filamentous complexes between recA protein and ssDNA that are the active form of the recA protein. Here, we present evidence that SSB plays a complex role in maintaining the stability and activity of recA-ssDNA filaments. Results of ATPase, nuclease protection, and DNA strand exchange assays suggest that the continuous presence of SSB is required to maintain the stability of recA-ssDNA complexes under reaction conditions that support their recombination activity. We also report data that indicate that there is a functional distinction between the species of SSB present at 10 mM magnesium chloride, which enhances recA-ssDNA binding, and a species present at 1 mM magnesium chloride, which displaces recA protein from ssDNA. These results are discussed in the context of current models of SSB conformation and of SSB action in recombination activities of the recA protein.  相似文献   

7.
Neutron and light-scattering studies of DNA gyrase and its complex with DNA   总被引:8,自引:0,他引:8  
The solution structure of Escherichia coli DNA gyrase, an enzyme that catalyzes the ATP-dependent supercoiling of DNA, has been characterized by small-angle neutron scattering (SANS) and dynamic light-scattering (DLS). The enzyme and its complex with a 172 base-pair fragment of duplex DNA, in H2O or 2H2O solvent, were studied by contrast variation and the measurement of hydrodynamic parameters as a function of scattering angle. The complex was also measured in the presence of 5'-adenylyl-beta,gamma-imidodiphosphate (ADPNP), a non-hydrolyzable ATP analog that is known to support limited supercoiling. The values of the radius of gyration, Rg = 67 A, from SANS and the hydrodynamic radius, Rh = 64 A, from DLS predict a larger than expected volume for the enzyme, supporting the notion of channels or cavities within the molecule. In addition, several classes of models were rejected based on SANS data obtained in 2H2O at larger scattering angles. The best fit to both the SANS and DLS data is obtained for oblate, inhomogeneous particles approximately 175 A wide and 52 A thick. Such particles provide a large surface area for DNA interaction. Both Rg and Rh values change very little upon addition of DNA, suggesting that DNA binds in a manner that does not significantly change the shape of the protein. No appreciable change in structure is found with the addition of ADPNP. However, the higher-angle SANS data indicate a slight rearrangement of the enzyme in the presence of nucleotide.  相似文献   

8.
When recA protein binds cooperatively to single-stranded DNA to form filamentous nucleoprotein complexes, it becomes competent to hydrolyze ATP. No correlation exists between the ends of such complexes and the rate of ATP hydrolysis. ATP hydrolysis is not, therefore, restricted to the terminal subunits on cooperatively bound recA oligomers, but occurs throughout the complex. Similarly, during recA protein-promoted branch migration (during DNA strand exchange), ATP hydrolysis is not restricted to recA protein monomers at the branch point. DNA cofactors of lengths varying from 16 bases to over 12,000 bases support ATP hydrolysis. The maximum value of kcat at infinite DNA concentration is about 29/min independent of the length of the DNA cofactor. The apparent dissociation constant, however, is a strong function of DNA length, providing evidence for a minimum site size of 30-50 bases for efficient binding of recA protein.  相似文献   

9.
Neutron small-angle scattering studies of single protein subunits in a protein-DNA complex require the adjustment of the neutron scattering-length densities of protein and DNA, which is attainable by specific deuteration of the protein. The neutron scattering densities of unlabelled DNA and DNA-dependent RNA polymerase of Escherichia coli match when RNA polymerase is isolated from cells grown in a medium containing 46% D2O and unlabelled glucose as carbon source. Their contrasts vanish simultaneously in a dialysis buffer containing 65% D2O. An expression was evaluated which allows the calculation of the degree of deuteration and match point of any E. coli protein from the D2O content of the growth medium, taking the 2H incorporation into RNA polymerase amino acids to be representative for all amino acids in E. coli proteins. The small-angle scattering results, on which the calculation of the degree of deuteration is based, were confirmed by mass spectrometric measurements.  相似文献   

10.
F E Benson  A Stasiak    S C West 《The EMBO journal》1994,13(23):5764-5771
In bacteria, genetic recombination is catalysed by RecA protein, the product of the recA gene. A human gene that shares homology with Escherichia coli recA (and its yeast homologue RAD51) has been cloned from a testis cDNA library, and its 37 kDa product (hRad51) purified to homogeneity. The human Rad51 protein binds to single- and double-stranded DNA and exhibits DNA-dependent ATPase activity. Using a topological assay, we demonstrate that hRad51 underwinds duplex DNA, in a reaction dependent upon the presence of ATP or its non-hydrolysable analogue ATP gamma S. Complexes formed with single- and double-stranded DNA have been observed by electron microscopy following negative staining. With nicked duplex DNA, hRad51 forms helical nucleoprotein filaments which exhibit the striated appearance characteristic of RecA or yeast Rad51 filaments. Contour length measurements indicate that the DNA is underwound and extended within the nucleoprotein complex. In contrast to yeast Rad51 protein, human Rad51 forms filaments with single-stranded DNA in the presence of ATP/ATP gamma S. These resemble the inactive form of the RecA filament which is observed in the absence of a nucleotide cofactor.  相似文献   

11.
recA protein forms stable filaments on duplex DNA at low pH. When the pH is shifted above 6.8, recA protein remains stably bound to nicked circular DNA, but not to linear DNA. Dissociation of recA protein from linear duplex DNA proceeds to a non-zero endpoint. The kinetics and final extent of dissociation vary with several experimental parameters. The instability on linear DNA is most readily explained by a progressive unidirectional dissociation of recA protein from one end of the filament. Dissociation of recA protein from random points in the filament is eliminated as a possible mechanism by several observations: (1) the requirement for a free end; (2) the inverse and linear dependence of the rate of dissociation on DNA length (at constant DNA base-pair concentration); and (3) the kinetics of exposure of a restriction endonuclease site in the middle of the DNA. Evidence against another possible mechanism, ATP-mediated translocation of the filament along the DNA, is provided by a novel effect of the non-hydrolyzable ATP analog, ATP gamma S, which generally induces recA protein to bind any DNA tightly and completely inhibits ATP hydrolysis. We find that very low, sub-saturating levels of ATP gamma S completely stabilize the filament, while most of the ATP hydrolysis continues. If these levels of ATP gamma S are introduced after dissociation has commenced, further dissociation is blocked, but re-association does not occur. These observations are inconsistent with movement of recA protein along DNA that is tightly coupled to ATP hydrolysis. The recA nucleoprotein filament is polar and the protein binds the two strands asymmetrically, polymerizing mainly in the 5' to 3' direction on the initiating strand of a single-stranded DNA tailed duplex molecule. A model consistent with these results is presented.  相似文献   

12.
S W Morrical  J Lee  M M Cox 《Biochemistry》1986,25(7):1482-1494
The single-stranded DNA binding protein of Escherichia coli (SSB) stimulates recA protein promoted DNA strand exchange reactions by promoting and stabilizing the interaction between recA protein and single-stranded DNA (ssDNA). Utilizing the intrinsic tryptophan fluorescence of SSB, an ATP-dependent interaction has been detected between SSB and recA-ssDNA complexes. This interaction is continuous for periods exceeding 1 h under conditions that are optimal for DNA strand exchange. Our data suggest that this interaction does not involve significant displacement of recA protein in the complex by SSB when ATP is present. The properties of this interaction are consistent with the properties of SSB-stabilized recA-ssDNA complexes determined by other methods. The data are incompatible with models in which SSB is displaced after functioning transiently in the formation of recA-ssDNA complexes. A continuous association of SSB with recA-ssDNA complexes may therefore be an important feature of the mechanism by which SSB stimulates recA protein promoted reactions.  相似文献   

13.
The helix-to-coil denaturation transition in DNA has been investigated in mixed solvents at high concentration using ultraviolet light absorption spectroscopy and small-angle neutron scattering. Two solvents have been used: water and ethylene glycol. The "melting" transition temperature was found to be 94 degrees C for 4% mass fraction DNA/d-water and 38 degrees C for 4% mass fraction DNA/d-ethylene glycol. The DNA melting transition temperature was found to vary linearly with the solvent fraction in the mixed solvents case. Deuterated solvents (d-water and d-ethylene glycol) were used to enhance the small-angle neutron scattering signal and 0.1M NaCl (or 0.0058 g/g mass fraction) salt concentration was added to screen charge interactions in all cases. DNA structural information was obtained by small-angle neutron scattering, including a correlation length characteristic of the inter-distance between the hydrogen-containing (desoxyribose sugar-amine base) groups. This correlation length was found to increase from 8.5 to 12.3 A across the melting transition. Ethylene glycol and water mixed solvents were found to mix randomly in the solvation region in the helix phase, but nonideal solvent mixing was found in the melted coil phase. In the coil phase, solvent mixtures are more effective solvating agents than either of the individual solvents. Once melted, DNA coils behave like swollen water-soluble synthetic polymer chains.  相似文献   

14.
Solution structure of a short DNA fragment studied by neutron scattering   总被引:2,自引:0,他引:2  
The solution structure of a DNA fragment of 130 base pairs and known sequence has been investigated by neutron small-angle scattering. In 0.1 M NaCl, the overall structure of the DNA fragment which contains the strong promoter A1 of the Escherichia coli phage T7 agrees with that expected for B-DNA. The neutron scattering curve is well fitted by that of a rigid rod with a length of 44 nm and a diameter of 2 nm. The results were confirmed by quasi-elastic light scattering and analytical centrifugation. The neutron measurements in H2O and D2O buffer reveal a cross-sectional inhomogeneity not detected by X-ray small-angle scattering. This inhomogeneity is caused by the hydration layer around the DNA core and not by the helical structure. The primary solvent shell has a density increased by at least 4-9% compared to bulk water.  相似文献   

15.
The distribution of divalent ions in semidilute solutions of high-molecular-mass DNA containing both sodium chloride and strontium chloride in near-physiological conditions is studied by small-angle x-ray scattering and by small-angle neutron scattering. Both small-angle neutron scattering and small-angle x-ray scattering reveal a continuous increase in the scattering intensity at low q with increasing divalent ion concentration, while at high q the scattering curves converge. The best fit to the data is found for a configuration in which DNA strands of cross-sectional radius 10 angstroms are surrounded by a counterion sheath of outer radius approximately 13.8 angstroms, independent of the strontium chloride concentration. When the strontium chloride is replaced by calcium chloride, similar results are obtained, but the thickness of the sheath increases when the divalent salt concentration decreases. These results correspond in both cases to partial localization of the counterions within a layer that is thinner than the effective Debye screening length.  相似文献   

16.
The interaction of recA protein with single-stranded (ss) phi X174 DNA has been examined by means of a nuclease protection assay. The stoichiometry of protection was found to be 1 recA monomer/approximately 4 nucleotides of ssDNA both in the absence of a nucleotide cofactor and in the presence of ATP. In contrast, in the presence of adenosine 5'-O-(thiotriphosphate) (ATP gamma S) the stoichiometry was 1 recA monomer/approximately 8 nucleotides. No protection was seen with ADP. In the absence of a nucleotide cofactor, the binding of recA protein to ssDNA was quite stable as judged by equilibration with a challenge DNA (t1/2 approximately 30 min). Addition of ATP stimulated this transfer (t1/2 approximately 3 min) as did ADP (t1/2 approximately 0.2 min). ATP gamma S greatly reduced the rate of equilibration (t1/2 greater than 12 h). Direct visualization of recA X ssDNA complexes at subsaturating recA protein concentrations using electron microscopy revealed individual ssDNA molecules partially covered with recA protein which were converted to highly condensed networks upon addition of ATP gamma S. These results have led to a general model for the interaction of recA protein with ssDNA.  相似文献   

17.
The inactive form of recA protein: the 'compact' structure.   总被引:4,自引:1,他引:3       下载免费PDF全文
When recA protein is enzymatically inactive in vitro, it adopts a more compact helical polymer form than that of the active protein polymerized onto DNA in the presence of ATP. Here we describe some aspects of this structure. By cryo-electron microscopy, a pitch of 76 A is found for both the self-polymer and the inactive complex with ssDNA. A smaller pitch of 64 A is observed in conventional electron micrographs. The contour length of complexes with ssDNA was used to estimate the binding stoichiometry in the compact complex, 6 +/- 1 nt/recA. In addition, the compact structure was observed in vivo in Escherichia coli: inclusion bodies produced upon induction of recA expression in an overproducing strain have a fibrous morphology with the structural parameters of the compact polymer.  相似文献   

18.
19.
Complexes between lac repressor and DNA fragments from mononucleosomes have been studied by small-angle neutron scattering. Both the radius of gyration and the molecular weight of the complexes were measured, and the experimental results were interpreted according to a model with two types of complex (M. Charlier and J.-C. Maurizot, Biophys. Chem. 18 (1983) 303), and a statistical distribution of repressor on the DNA fragments. Good agreement between the model calculations and the experimental results was obtained. We concluded that there was an absence of strong cooperativity and of network formation between the complexes. The second type of binding, which does not induce any spectroscopic change, is marked by an increase in molecular weight of the complexes. Kinetic measurements were also made, which allowed the determination of the lifetime of the nonspecific DNA-repressor complexes.  相似文献   

20.
E A Hewat  R W Ruigrok    E DiCapua 《The EMBO journal》1991,10(9):2695-2698
The complex of recA protein with single-stranded DNA in the presence of ATP is the active species in the three enzymatic activities of recA: the initiation of strand exchange, the hydrolysis of ATP and the cleavage of repressors. Here we find by cryo-electron microscopy of unstained and unfixed samples that the helical structure of the protein coat in this complex differs slightly but significantly from the structure in the complex with double-stranded DNA. We discuss how the larger pitch of the complex with single strands (100 +/- 2 A compared with 95 +/- 2 A with double strands) could contribute to its higher enzymatic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号