首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Corneal dystrophies are genetic disorders resulting in progressive corneal clouding due to the deposition of amyloid fibrils derived from keratoepithelin, also called transforming growth factor β-induced protein (TGFBI). The formation of amyloid fibrils is often accelerated by surfactants such as sodium dodecyl sulfate (SDS). Most eye drops contain benzalkonium chloride (BAC), a cationic surfactant, as a preservative substance. In the present study, we aimed to reveal the role of BAC in the amyloid fibrillation of keratoepithelin-derived peptides in vitro. We used three types of 22-residue synthetic peptides covering Leu110-Glu131 of the keratoepithelin sequence: an R-type peptide with wild-type R124, a C-type peptide with C124 associated with lattice corneal dystrophy type I, and a H-type peptide with H124 associated with granular corneal dystrophy type II. The time courses of spontaneous amyloid fibrillation and seed-dependent fibril elongation were monitored in the presence of various concentrations of BAC or SDS using thioflavin T fluorescence. BAC and SDS accelerated the fibrillation of all synthetic peptides in the absence and presence of seeds. Optimal acceleration occurred near the CMC, which suggests that the unstable and dynamic interactions of keratoepithelin peptides with amphipathic surfactants led to the formation of fibrils. These results suggest that eye drops containing BAC may deteriorate corneal dystrophies and that those without BAC are preferred especially for patients with corneal dystrophies.  相似文献   

2.
Human serum amyloid A (SAA) is a precursor protein of the amyloid fibrils that are responsible for AA amyloidosis. Of the four human SAA genotypes, SAA1 is most commonly associated with AA amyloidosis. Furthermore, SAA1 has three major isoforms (SAA1.1, 1.3, and 1.5) that differ by single amino acid variations at two sites in their 104-amino acid sequences. In the present study, we examined the effect of amino acid variations in human SAA1 isoforms on the amyloidogenic properties. All SAA1 isoforms adopted α-helix structures at 4 °C, but were unstructured at 37 °C. Heparin-induced amyloid fibril formation of SAA1 was observed at 37 °C, as evidenced by the increased thioflavin T (ThT) fluorescence and β-sheet structure formation. Despite a comparable increase in ThT fluorescence, SAA1 molecules retained their α-helix structures at 4 °C. At both temperatures, no essential differences in ThT fluorescence and secondary structures were observed among the SAA1 isoforms. However, the fibril morphologies appeared to differ; SAA1.1 formed long and curly fibrils, whereas SAA1.3 formed thin and straight fibrils. The peptides corresponding to the central regions of the SAA1 isoforms containing amino acid variations showed distinct amyloidogenicities, reflecting their direct effects on amyloid fibril formation. These findings may provide novel insights into the influence of amino acid variations in human SAA on the pathogenesis of AA amyloidosis.  相似文献   

3.
4.
Real-time monitoring of fibril growth is essential to clarify the mechanism of amyloid fibril formation. Thioflavin T (ThT) is a reagent known to become strongly fluorescent upon binding to amyloid fibrils. Here, we show that, by monitoring ThT fluorescence with total internal reflection fluorescence microscopy (TIRFM), amyloid fibrils of beta2-microgobulin (beta2-m) can be visualized without requiring covalent fluorescence labeling. One of the advantages of TIRFM would be that we selectively monitor fibrils lying along the slide glass, so that we can obtain the exact length of fibrils. This method was used to follow the kinetics of seed-dependent beta2-m fibril extension. The extension was unidirectional with various rates, suggesting the heterogeneity of the amyloid structures. Since ThT binding is common to all amyloid fibrils, the present method will have general applicability for the analysis of amyloid fibrils. We confirmed this with the octapeptide corresponding to the C terminus derived from human medin and the Alzheimer's amyloid beta-peptide.  相似文献   

5.
Amyloid fibril formation plays a role in more than 20 diseases including Alzheimer's disease. In vitro detection of these fibrils is often performed using Thioflavin T (ThT), though the ThT binding mode is largely unknown. In the present study, spectral properties of ThT in binding environments representing beta-sheet-rich and non-beta-sheet cavities were examined. Acetylcholinesterase and gamma-cyclodextrin induced a characteristic ThT fluorescence similar to that with amyloid fibrils, whereas beta-cyclodextrin and the beta-sheet-rich transthyretin did not. The cavities of acetylcholinesterase and gamma-cyclodextrin were of similar diameter and only these cavities could accommodate two ThT ions according to molecular modelling. Binding stoichiometry studies also showed a possible binding of two ThT ions. Thus, the characteristic ThT fluorescence is induced in cavities with a diameter of 8-9A and a length able to accommodate the entire length of the ThT ion. The importance of a cavity diameter capable of binding two ThT ions, among others, indicates that an excimer formation is a plausible mechanism for the characteristic fluorescence. We propose a similar ThT binding mode in amyloid fibrils, where cavities of an appropriate size running parallel to the fibril axis have previously been proposed in several amyloid fibril models.  相似文献   

6.
Plasma apolipoproteins show alpha-helical structure in the lipid-bound state and limited conformational stability in the absence of lipid. This structural instability of lipid-free apolipoproteins may account for the high propensity of apolipoproteins to aggregate and accumulate in disease-related amyloid deposits. Here, we explore the properties of amyloid fibrils formed by apolipoproteins using human apolipoprotein (apo) C-II as a model system. Hydrogen-deuterium exchange and NMR spectroscopy of apoC-II fibrils revealed core regions between residues 19-37 and 57-74 with reduced amide proton exchange rates compared to monomeric apoC-II. The C-terminal core region was also identified by partial proteolysis of apoC-II amyloid fibrils using endoproteinase GluC and proteinase K. Complete tryptic hydrolysis of apoC-II fibrils followed by centrifugation yielded a single peptide in the pellet fraction identified using mass spectrometry as apoC-II(56-76). Synthetic apoC-II(56-76) readily formed fibrils, albeit with a different morphology and thioflavinT fluorescence yield compared to full-length apoC-II. Studies with smaller peptides narrowed this fibril-forming core to a region within residues 60-70. We postulate that the ability of apoC-II(60-70) to independently form amyloid fibrils drives fibril formation by apoC-II. These specific amyloid-forming regions within apolipoproteins may underlie the propensity of apolipoproteins and their peptide derivatives to accumulate in amyloid deposits in vivo.  相似文献   

7.
Halophilic proteins are characterized by high net negative charges and relatively small fraction of hydrophobic amino acids, rendering them aggregation resistant. These properties are also shared by histidine‐rich metal binding protein (HP) from moderate halophile, Chromohalobacter salexigens, used in this study. Here, we examined how halophilic proteins form amyloid fibrils in vitro. His‐tagged HP, incubated at pH 2.0 and 58°C, readily formed amyloid fibrils, as observed by thioflavin fluorescence, CD spectra, and transmission or atomic force microscopies. Under these low‐pH harsh conditions, however, His‐HP was promptly hydrolyzed to smaller peptides most likely responsible for rapid formation of amyloid fibril. Three major acid‐hydrolyzed peptides were isolated from fibrils and turned out to readily form fibrils. The synthetic peptides predicted to form fibrils in these peptide sequences by Waltz software also formed fibrils. Amyloid fibril was also readily formed from full‐length His‐HP when incubated with 10–20% 2,2,2‐trifluoroethanol at pH 7.8 and 25°C without peptide bond cleavage.  相似文献   

8.
BetaIGH3 protein has been recently involved in the pathogenesis of blinding corneal diseases, some of which have characteristic amyloid corneal deposits. The 124 codon of the betaig-h3 gene seems to be crucial for the amyloidogenicity of the protein product. We presently report an in vitro system that reproducibly forms amyloid fibrils from betaIGH3((110-131)) derived peptides. We also assessed the differences in fibril formation of two 22-amino acid peptides centered on the 124 residue: the native form and the Arg124Cys peptide (mutation linked to lattice corneal amyloid dystrophy type 1). After dialysis of Arg124Cys peptide against PBS 1/15 M pH 7.4 for 72 hours, Congo red staining and electron microscopy demonstrated the presence of abundant material fulfilling the criteria of amyloid. Quantitative analysis with thioflavine T fluorescence studies confirmed the high capacity of Arg124Cys peptide to form amyloid fibrils when compared to the native form.  相似文献   

9.
Amyloid fibrils are filamentous aggregates of peptides and proteins implicated in a range of neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. It has been known almost since their discovery that these β-sheet-rich proteinacious assemblies bind a range of specific dyes that, combined with other biophysical techniques, are convenient probes of the process of amyloid fibril formation. Two prominent examples of such dyes are Congo red (CR) and Thioflavin T (ThT). It has been reported that in addition to having a diagnostic role, CR is an inhibitor of the formation of amyloid structures, and these two properties have both been explained in terms of the same specific noncovalent interactions between the fibrils and the dye molecules. In this article, we show by means of quartz-crystal microbalance measurements that the binding of both ThT and CR to amyloid fibrils formed by the peptide whose aggregation is associated with Alzheimer's disease, Aβ(1-42), can be directly observed, and that the presence of CR interferes with the binding of ThT. Light scattering and fluorescence measurements confirm that an interaction exists between these dyes that can interfere with their ability to reflect accurately the quantity of amyloid material present in a given sample. Furthermore, we show that CR does not inhibit the process of amyloid fibril elongation, and therefore demonstrate the ability of the quartz-crystal microbalance method not only to detect and study the binding of small molecules to amyloid fibrils, but also to elucidate the mode of action of potential inhibitors.  相似文献   

10.
The studies on the determination of the characteristics of the amyloid fibril interaction with the dye were based on the analysis of the dependence of the ThT fluorescence intensity on its concentration in the solution containing the amyloid fibrils. In the present work, we revealed that this intuitive approach provided erroneous data. We propose a new approach which provides a means for characterizing the interaction of thioflavin T (ThT) with amyloid fibrils and for determining the binding stoichiometry and binding constants, absorption spectrum, molar extinction coefficient, and fluorescence quantum yield of the ThT bound to the sites of different binding modes of fibrils. The key point of this approach is sample preparation by equilibrium microdialysis. The efficiency of the proposed approach is demonstrated via the examination of the ThT binding to insulin and Aβ42 fibrils as well as to the native form of the Electrophorus electricus acetylcholinesterase. We show that the peculiarities of ThT interaction with amyloid fibrils depend on the amyloidogenic protein and on the binding mode. This approach is universal and can be used for the analysis of binding mechanism of any dye that interacts with its receptor. Therefore, the proposed approach represents an important addition to the existing arsenal of means for the diagnostics and therapy of the neurodegenerative diseases.  相似文献   

11.
Although the amyloid dye thioflavin-T (ThT) is among the most widely used tools in the study of amyloid fibrils, the mechanism by which ThT binds to fibrils and other β-rich peptide self-assemblies remains elusive. The development of the water-soluble peptide self-assembly mimic (PSAM) system has provided a set of ideal model proteins for experimentally exploring the properties and minimal dye-binding requirements of amyloid fibrils. PSAMs consist of a single-layer β-sheet (SLB) capped by two globular domains, which capture the flat, extended β-sheet features common among fibril-like surfaces. Recently, a PSAM that binds to ThT with amyloid-like affinity (low micromolar Kd) has been designed, and its crystal structure in the absence of bound ThT was determined. This PSAM thus provides a unique opportunity to examine the interactions of ThT with a β-rich structure. Here, we present molecular dynamics simulations of the binding of ThT to this PSAM β-sheet. We show that the primary binding site for ThT is along a shallow groove formed by adjacent Tyr and Leu residues on the β-sheet surface. These simulations provide an atomic-scale rationale for this PSAM's experimentally determined dye-binding properties. Together, our results suggest that an aromatic-hydrophobic groove spanning across four consecutive β-strands represents a minimal ThT binding site on amyloid fibrils. Grooves formed by aromatic-hydrophobic residues on amyloid fibril surfaces may therefore offer a generic mode of recognition for amyloid dyes.  相似文献   

12.
Binding mode of Thioflavin T in insulin amyloid fibrils   总被引:1,自引:1,他引:0  
Amyloid fibrils share various common structural features and their presence can be detected by Thioflavin T (ThT). In this paper, the binding mode of ThT to insulin amyloid fibrils was examined. Scatchard analysis and isothermal titration calorimetry (ITC) showed at least two binding site populations. The binding site population with the strongest binding was responsible for the characteristic ThT fluorescence. This binding had a capacity of about 0.1 moles of ThT bound per mole of insulin in fibril form. The binding capacity was unaffected by pH, but the affinity was lowest at low pH. Notably, presence of a third binding process prior to the other processes was suggested by ITC. Binding of ThT resulted in only minor changes in the fibril structure according to the X-ray diffraction patterns, where a slightly more dominant equatorial reflection at 16A relative to the intersheet distance of 11A was observed. No change in the interstrand distance of 4.8A was observed. On the basis of our results, we propose that ThT binds in cavities running parallel to the fibril axis, e.g., between the protofilaments forming the fibrils. Such cavities have been proposed previously in insulin fibrils and several other amyloid fibril models.  相似文献   

13.
14.
The ABri is a 34 residue peptide that is the major component of amyloid deposits in familial British dementia. In the amyloid deposits, the ABri peptide adopts aggregated beta-pleated sheet structures, similar to those formed by the Abeta peptide of Alzheimer's disease and other amyloid forming proteins. As a first step toward elucidating the molecular mechanisms of the beta-amyloidosis, we explored the ability of the environmental variables (pH and peptide concentration) to promote beta-sheet fibril structures for synthetic ABri peptides. The secondary structures and fibril morphology were characterized in parallel using circular dichroism, atomic force microscopy, negative stain electron microscopy, Congo red, and thioflavin-T fluorescence spectroscopic techniques. As seen with other amyloid proteins, the ABri fibrils had characteristic binding with Congo red and thioflavin-T, and the relative amounts of beta-sheet and amyloid fibril-like structures are influenced strongly by pH. In the acidic pH range 3.1-4.3, the ABri peptide adopts almost exclusively random structure and a predominantly monomeric aggregation state, on the basis of analytical ultracentrifugation measurements. At neutral pH, 7.1-7.3, the ABri peptide had limited solubility and produced spherical and amorphous aggregates with predominantly beta-sheet secondary structure, whereas at slightly acidic pH, 4.9, spherical aggregates, intermediate-sized protofibrils, and larger-sized mature amyloid fibrils were detected by atomic force microscopy. With aging at pH 4.9, the protofibrils underwent further association and eventually formed mature fibrils. The presence of small amounts of aggregated peptide material or seeds encourage fibril formation at neutral pH, suggesting that generation of such seeds in vivo could promote amyloid formation. At slightly basic pH, 9.0, scrambling of the Cys5-Cys22 disulfide bond occurred, which could lead to the formation of covalently linked aggregates. The presence of the protofibrils and the enhanced aggregation at slightly acidic pH is consistent with the behavior of other amyloid-forming proteins, which supports the premise that a common mechanism may be involved in protein misfolding and beta-amyloidosis.  相似文献   

15.
The accumulation of amyloid fibrils is a feature of amyloid diseases, where cell toxicity is due to soluble oligomeric species that precede fibril formation or are formed by fibril fragmentation, but the mechanism(s) of fragmentation is still unclear. Neutrophil-derived elastase and histones were found in amyloid deposits from patients with different systemic amyloidoses. Neutrophil extracellular traps (NETs) are key players in a death mechanism in which neutrophils release DNA traps decorated with proteins such as elastase and histones to entangle pathogens. Here, we asked whether NETs are triggered by amyloid fibrils, reasoning that because proteases are present in NETs, protease digestion of amyloid may generate soluble, cytotoxic species. We show that amyloid fibrils from three different sources (α-synuclein, Sup35, and transthyretin) induced NADPH oxidase-dependent NETs in vitro from human neutrophils. Surprisingly, NET-associated elastase digested amyloid fibrils into short species that were cytotoxic for BHK-21 and HepG2 cells. In tissue sections from patients with primary amyloidosis, we also observed the co-localization of NETs with amyloid deposits as well as with oligomers, which are probably derived from elastase-induced fibril degradation (amyloidolysis). These data reveal that release of NETs, so far described to be elicited by pathogens, can also be triggered by amyloid fibrils. Moreover, the involvement of NETs in amyloidoses might be crucial for the production of toxic species derived from fibril fragmentation.  相似文献   

16.
Thioflavine T (ThT) associates rapidly with aggregated fibrils of the synthetic beta/A4-derived peptides beta(1-28) and beta(1-40), giving rise to a new excitation (ex) (absorption) maximum at 450 nm and enhanced emission (em) at 482 nm, as opposed to the 385 nm (ex) and 445 nm (em) of the free dye. This change is dependent on the aggregated state as monomeric or dimeric peptides do not react, and guanidine dissociation of aggregates destroys the signal. There was no effect of high salt concentrations. Binding to the beta(1-40) is of lower affinity, Kd 2 microM, while it saturates with a Kd of 0.54 microM for beta(1-28). Insulin fibrils converted to a beta-sheet conformation fluoresce intensely with ThT. A variety of polyhydroxy, polyanionic, or polycationic materials fail to interact or impede interaction with the amyloid peptides. This fluorometric technique should allow the kinetic elucidation of the amyloid fibril assembly process as well as the testing of agents that might modulate their assembly or disassembly.  相似文献   

17.
The recently published microcrystal structures of amyloid fibrils from small peptides greatly enhanced our understanding of the atomic-level structure of the amyloid fibril. However, only a few amyloid fibrils can form microcrystals. The dansyl-tryptophan fluorescence resonance energy transfer (FRET) pair was shown to be able to detect the inter-peptide arrangement of the Transthyretin (105-115) amyloid fibril. In this study, we combined the known microcrystal structures with the corresponding FRET efficiencies to build a model for amyloid fibril structure classification. We found that fibrils with an antiparallel structural arrangement gave the largest FRET signal, those with a parallel arrangement gave the lowest FRET signal, and those with a mixed arrangement gave a moderate FRET signal. This confirms that the amyloid fibril structure patterns can be classified based on the FRET efficiency.  相似文献   

18.
The ΔE693 (Japanese) mutation of the β-amyloid precursor protein leads to production of ΔE22-Aβ peptides such as ΔE22-Aβ(1-39). Despite reports that these peptides do not form fibrils, here we show that, on the contrary, the peptide forms fibrils essentially instantaneously. The fibrils are typical amyloid fibrils in all respects except that they cause only low levels of thioflavin T (ThT) fluorescence, which, however, develops with no lag phase. The fibrils bind ThT, but with a lower affinity and a smaller number of binding sites than wild-type (WT) Aβ(1-40). Fluorescence depolarization confirms extremely rapid aggregation of ΔE22-Aβ(1-39). Size exclusion chromatography (SEC) indicates very low concentrations of soluble monomer and oligomer, but only in the presence of some organic solvent, e.g., 2% (v/v) DMSO. The critical concentration is approximately 1 order of magnitude lower for ΔE22-Aβ(1-39) than for WT Aβ(1-40). Several lines of evidence point to an altered structure for ΔE22-Aβ(1-39) compared to that of WT Aβ(1-40) fibrils. In addition to differences in ThT binding and fluorescence, PITHIRDS-CT solid-state nuclear magnetic resonance (NMR) measurements of ΔE22-Aβ(1-39) are not compatible with the parallel in-register β-sheet generally observed for WT Aβ(1-40) fibrils. X-ray fibril diffraction showed different D spacings: 4.7 and 10.4 ? for WT Aβ(1-40) and 4.7 and 9.6 ? for ΔE22-Aβ(1-39). Equimolar mixtures of ΔE22-Aβ(1-39) and WT Aβ(1-40) also produced fibrils extremely rapidly, and by the criteria of ThT fluorescence and electron microscopic appearance, they were the same as fibrils made from pure ΔE22-Aβ(1-39). X-ray diffraction of fibrils formed from 1:1 molar mixtures of ΔE22-Aβ(1-39) and WT Aβ(1-40) showed the same D spacings as fibrils of the pure mutant peptide, not the wild-type peptide. These findings are consistent with extremely rapid nucleation by ΔE22-Aβ(1-39), followed by fibril extension by WT Aβ(1-40), and "conversion" of the wild-type peptide to a structure similar to that of the mutant peptide, in a manner reminiscent of the prion conversion phenomenon.  相似文献   

19.
Beta(2)-microglobulin (beta(2)m) is a major component of amyloid fibrils deposited in patients with dialysis-related amyloidosis. Although full-length beta(2)m readily forms amyloid fibrils in vitro by seed-dependent extension with a maximum at pH 2.5, fibril formation under physiological conditions as detected in patients has been difficult to reproduce. A 22-residue K3 peptide of beta(2)m, Ser(20)-Lys(41), obtained by digestion with Acromobacter protease I, forms amyloid fibrils without seeding. To obtain further insight into the mechanism of fibril formation, we studied the pH dependence of fibril formation of the K3 peptide and its morphology using a ThT fluorescence assay and electron microscopy, respectively. K3 peptide formed amyloid fibrils over a wide range of pH values with an optimum around pH 7 and contrasted with the pH profile of the seed-dependent extension reaction of full-length beta(2)m. This suggests that once the rigid native-fold of beta(2)m is unfolded and additional factors triggering the nucleation process are provided, full-length beta(2)m discloses an intrinsic potential to form amyloid fibrils at neutral pH. The fibril formation was strongly promoted by dimerization of K3 through Cys(25). The morphology of the fibrils varied depending on the fibril formation conditions and the presence or absence of a disulfide bond. Various fibrils had the potential to seed fibril formation of full-length beta(2)m accompanied with a characteristic lag phase, suggesting that the internal structures are similar.  相似文献   

20.
Alzheimer??s disease (AD) is among the most important health-care problems in the world. The two pathological hallmarks of AD are extracellular neuritic amyloid plaques and intracellular neurofibrillary tangles. The aggregation of A?? and ??-sheet formation are considered to be the critical events which render these peptides neurotoxic. AD is affecting a large percentage of the elderly around the world. Many studies have been done on drugs to cure or at least slow Alzheimer??s disease. Most drugs produced for this disease aim at compensating for the performance of specific cell groups affected by the disease or restoring the function of these cells.This study examined the interaction of crocin, the main pigment of saffron, with the amyloid-?? peptides 1?+?40 (A?? 40) to determine the effects on peptide conformation and fibril formation using fluorescence spectroscopy, CD spectroscopy and electron microscopy. ThT data demonstrated the appearance of well-defined amyloid fibrils indicating an enhanced nucleation of A??40. Incubation of pre-formed A??40 fibrils with crocin resulted in extensive lateral aggregation and precipitation of the fibrils. Consistent with this, electron microscopy data indicated that crocin decreased the number of fibrils formed and significantly reduced the average fibril length of A??40 as assessed by low levels of thioflavin T binding data. The mechanism by which, crocin prevented fibril formation was demonstrated by ANS binding assay and CD spectroscopy. In summary, crocin interacts with A?? peptides and prevents amyloid formation. This means that it has the potential to be an important therapeutic drug against AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号