首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
2.
Zhao LJ  Zhao P  Chen QL  Ren H  Pan W  Qi ZT 《Cell proliferation》2007,40(4):508-521
OBJECTIVE: Hepatitis C virus (HCV) is a major pathogenic factor of liver diseases. During HCV infection, interaction of the envelope protein E2 of the virion, with target cells, is a crucial process for viral penetration into the cell and its propagation. We speculate that such interaction may trigger early signalling events required for HCV infection. MATERIALS AND METHODS: Human liver cell line L-02 was treated with HCV E2. The kinase phosphorylation levels of mitogen-activated protein kinase (MAPK) signalling pathways in the treated cells were analyzed by Western blotting. The proliferation of the E2-treated cells was evaluated by MTT assay. RESULTS: HCV E2 was shown to be an efficient activator for MAPK pathways. Levels of phosphorylation of upstream kinases Raf-1 and MEK1/2 were seen to be elevated following E2 treatment and similarly, phosphorylation levels of downstream kinases MAPK/ERK and p38 MAPK also increased in response to E2 treatment, and specificity of kinase activation by E2 was confirmed. E2-induced MAPK/ERK activation was inhibited by the MEK1/2 inhibitor U0126 in a concentration-dependent manner. Blockage of relevant cellular receptors reduced activation of Raf-1, MEK1/2, MAPK/ERK and p38 MAPK by E2, indicating efflux of the E2 signal from extracellular to the intracellular spaces. Thus, kinase cascades of MAPK pathways were continuously affected by E2 presence. Moreover, enhancement of cell proliferation by E2 appeared to be associated with the dynamic phosphorylation of MAPK/ERK and p38 MAPK. CONCLUSION: These results suggest that MAPK signalling pathways triggered by E2 may be a potential target for prevention of HCV infection.  相似文献   

3.
4.
Elevated levels of prostaglandins (PGs), products of cyclooxygenases (COXs), are found in the plasma and stool of rotavirus-infected children. We sought to determine the role of COXs, PGs, and the signal transduction pathways involved in rotavirus infection to elucidate possible new targets for antiviral therapy. Human intestinal Caco-2 cells were infected with human rotavirus Wa or simian rotavirus SA-11. COX-2 mRNA expression and secreted PGE2 levels were determined at different time points postinfection, and the effect of COX inhibitors on rotavirus infection was studied by an immunofluorescence assay (IFA). To reveal the signal transduction pathways involved, the effect of MEK, protein kinase A (PKA), p38 mitogen-activated protein kinase (MAPK), and NF-kappaB inhibitors on rotavirus infection was analyzed. In infected Caco-2 cells, increased COX-2 mRNA expression and secreted PGE2 levels were detected. Indomethacin (inhibiting both COX-1 and COX-2) and specific COX-1 and COX-2 inhibitors reduced rotavirus infection by 85 and 50%, respectively, as measured by an IFA. Indomethacin reduced virus infection at a postbinding step early in the infection cycle, inhibiting virus protein synthesis. Indomethacin did not seem to affect viral RNA synthesis. Inhibitors of MEK, PKA, p38 MAPK, and NF-kappaB decreased rotavirus infection by at least 40%. PGE2 counteracted the effect of the COX and PKA inhibitors but not of the MEK, p38 MAPK, and NF-kappaB inhibitors. Conclusively, COXs and PGE2 are important mediators of rotavirus infection at a postbinding step. The ERK1/2 pathway mediated by PKA is involved in COX induction by rotavirus infection. MAPK and NF-kappaB pathways are involved in rotavirus infection but in a PGE2-independent manner. This report offers new perspectives in the search for therapeutic agents in treatment of severe rotavirus-mediated diarrhea in children.  相似文献   

5.
6.
Lysophosphatidic acid (LPA) is a lipid growth factor that exerts diverse biological effects through its cognate receptor-mediated signaling cascades. Recently, we reported that LPA stimulates cAMP response element-binding protein (CREB) through mitogen- and stress-activated protein kinase-1 (MSK1). Previously, LPA has been shown to stimulate c-fos mRNA expression in Rat-2 fibroblast cells via a serum response element binding protein (SRF). However, involvement of CREB in LPA-stimulated c-fos gene expression is not elucidated yet. To investigate the CREB-mediated c-fos activation by LPA, various c-fos promoter-reporter constructs containing wild-type and mutated SRE and CRE were tested for their inducibility by LPA in transient transfection assays. LPA-stimulated c-fos promoter activation was markedly decreased when SRE and CRE were mutated. A dominant negative CREB significantly down-regulated the LPA-stimulated c-fos promoter activation. Chromatin immunoprecipitation assay revealed that LPA induced an increased binding of phosphorylated CREB and CREB-binding protein (CBP) to the CRE region of the endogenous c-fos promoter. Immunoblot analyses with various pharmacological inhibitors further showed that LPA induces up-regulation of c-fos mRNA level by activation of ERK, p38 MAPK, and MSK1. Taken together, our results suggest that CREB plays an important role in up-regulation of c-fos mRNA level in LPA-stimulated Rat-2 fibroblast cells.  相似文献   

7.
Yang X  Gabuzda D 《Journal of virology》1999,73(4):3460-3466
ERK1 and ERK2 mitogen-activated protein kinases (MAPK) play a critical role in regulation of cell proliferation and differentiation in response to mitogens and other extracellular stimuli. Mitogens and cytokines that activate MAPK in T cells have been shown to activate human immunodeficiency virus type 1 (HIV-1) replication. Little is known about the signal transduction pathways that activate HIV-1 replication in T cells upon activation by extracellular stimulation. Here, we report that activation of MAPK through the Ras/Raf/MEK signaling pathway enhances the infectivity of HIV-1 virions. Virus infectivity was enhanced by treatment of cells with MAPK stimulators, such as serum and phorbol myristate acetate, as well as by coexpression of constitutively activated Ras, Raf, or MEK (MAPK kinase) in the absence of extracellular stimulation. Treatment of cells with PD 098059, a specific inhibitor of MAPK activation, or with a MAPK antisense oligonucleotide reduced the infectivity of HIV-1 virions without significantly affecting virus production or the levels of virion-associated Gag and Env proteins. MAPK has been shown to regulate HIV-1 infectivity by phosphorylating Vif (X. Yang and D. Gabuzda, J. Biol. Chem. 273:29879-29887, 1998). However, MAPK activation enhanced virus infectivity in some cells lines that do not require Vif function. The HIV-1 Rev, Tat, p17(Gag), and Nef proteins were directly phosphorylated by MAPK in vitro, suggesting that other HIV-1 proteins are potential substrates for MAPK phosphorylation. These results suggest that activation of the ERK MAPK pathway plays a role in HIV-1 replication by enhancing the infectivity of HIV-1 virions through Vif-dependent as well as Vif-independent mechanisms. MAPK activation in producer cells may contribute to the activation of HIV-1 replication when T cells are activated by mitogens and other extracellular stimuli.  相似文献   

8.
9.
10.
11.
12.
The mitogen activated protein (MAP) kinase module: (Raf -->MEK-->ERKs) is central to the control of cell growth, cell differentiation and cell survival. The fidelity of signalling and the spatio-temporal activation are key determinants in generating precise biological responses. The fidelity is ensured by scaffold proteins - protein kinase 'insulators' - and by specific docking sites. The duration and the intensity of the response are in part controlled by the compartmentalization of the signalling molecules. Growth factors promote rapid nuclear translocation and persistent activation of p42/p44 MAP kinases, respectively and ERK2/ERK1, during the entire G1 period with an extinction during the S-phase. These features are exquisitely controlled by the temporal induction of the MAP kinase phosphatases, MKP1-3. MKP1 and 2 induction is strictly controlled by the activation of the MAP kinase module providing evidence for an auto-regulatory mechanism. This negative regulatory loop is further enhanced by the capacity of p42/p44 MAPK to phosphorylate MKP1 and 2. This action reduces the degradation rate of MKPs through the ubiquitin-proteasomal system. Whereas the two upstream kinases of the module (Raf and MEK) remain cytoplasmic, ERKs (anchored to MEK in the cytoplasm of resting cells) rapidly translocate to the nucleus upon mitogenic stimulation. This latter process is rapid, reversible and controlled by the strict activation of the MAPK cascade. Following long-term MAPK stimulation, p42/p44 MAPKs progressively accumulate in the nucleus in an inactive form. Therefore we propose that the nucleus represents a site for ERK action, sequestration and signal termination. With the generation of knockdown mice for each of the ERK isoforms, we will illustrate that besides controlling cell proliferation the ERK cascade also controls cell differentiation and cell behaviour.  相似文献   

13.
The ERK cascade     
Sequential activation of protein kinases within the mitogen-activated protein kinase (MAPK) cascades is a common mechanism of signal transduction in many cellular processes. Four such cascades have been elucidated thus far, and named according to their MAPK tier component as the ERK1/2, JNK, p38MAPK, and ERK5 cascades. These cascades cooperate in transmitting various extracellular signals, and thus control cellular processes such as proliferation, differentiation, development, stress response, and apoptosis. Here we describe the classic ERK1/2 cascade, and concentrate mainly on the properties of MEK1/2 and ERK1/2, including their mode of regulation and their role in various cellular processes and in oncogenesis. This cascade may serve as a prototype of the other MAPK cascades, and the study of this cascade is likely to contribute to the understanding of mitogenic and other processes in many cell lines and tissues.  相似文献   

14.
15.
16.
17.
Quiescent primary B lymphocytes and Epstein-Barr virus (EBV)-immortalized lymphoblastoid cell lines express components of the extracellular response kinase arm of the mitogen-activated protein kinase (MAPK(ERK)) signal transduction pathway and transmit signals through the pathway when exposed to appropriate stimuli. Although the MAPK(ERK) pathway is activated following infection with EBV, MAPK/ERK kinase (MEK1) activity is not required to drive the proliferation of infected cells. However, MEK1 contributes to EBV latency control.  相似文献   

18.
19.
20.
In cells from the adrenal medulla, angiotensin II (AII) regulates both the activity and mRNA levels of catecholamine biosynthetic enzymes whose expression is thought to be under the control of cAMP-responsive element (CRE) binding protein (CREB). In this study, we evaluated the effect of AII stimulation on CREB phosphorylation at Ser133 (pCREB) in bovine adrenal chromaffin cells (BACC). We found that AII produces a rapid and AII type-1 receptor (AT1)-dependent increase in pCREB levels, which is blocked by the MEK1/2 inhibitor U0126 but not by H-89, SB203580 or KN-93, suggesting that it is mediated by the extracellular-regulated protein kinases 1 and 2 (ERK1/2) and not by cAMP-dependent protein kinase (PKA), p38 mitogen-activated protein kinase (p38MAPK) or Ca(2+)/calmodulin-dependent protein kinases (CaMKs) dependent pathways. Gel-shift experiments showed that the increase in pCREB levels is accompanied by an ERK1/2-dependent upregulation of CRE-binding activity. We also found that AII promotes a rapid and reversible increase in the activity of the non-receptor tyrosine kinase Src and that the inhibition of this enzyme completely blocks the AII-induced phosphorylation of ERK1/2, the CREB kinase (p90)RSK and CREB. Our data support the hypothesis that in BACC, AII upregulates CREB functionality through a mechanism that requires Src-mediated activation of ERK 1/2 and (p90)RSK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号