首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The soil-borne bacterial pathogen Ralstonia solanacearum invades a broad range of plants through their roots, resulting in wilting of the plant, but no effective protection against this disease has been developed. Two bacterial wilt disease-inhibiting compounds were biochemically isolated from tobacco and identified as sclareol and cis-abienol, labdane-type diterpenes. When exogenously applied to their roots, sclareol and cis-abienol inhibited wilt disease in tobacco, tomato and Arabidopsis plants without exhibiting any antibacterial activity. Microarray analysis identified many sclareol-responsive genes in Arabidopsis roots, including genes encoding or with a role in ATP-binding cassette (ABC) transporters, and biosynthesis and signaling of defense-related molecules and mitogen-activated protein kinase (MAPK) cascade components. Inhibition of wilt disease by sclareol was attenuated in Arabidopsis mutants defective in the ABC transporter AtPDR12, the MAPK MPK3, and ethylene and abscisic acid signaling pathways, and also in transgenic tobacco plants with reduced expression of NtPDR1, a tobacco homolog of AtPDR12. These results suggest that multiple host factors are involved in the inhibition of bacterial wilt disease by sclareol-related compounds.  相似文献   

2.
Major cell wall-bound phenolic compounds were detected and identified in roots of tomato at different stages of growth. Alkaline hydrolysis of the cell wall material of the root tissues yielded ferulic acid as the major bulk of the phenolic compounds. Other phenolic compounds identified were 4-hydroxybenzoic acid, vanillic acid, 4-hydroxybenzaldehyde, vanillin and 4-coumaric acid. All the six phenolic acids were higher in very early stage of plant growth. Ferulic acid, 4-hydroxybenzoic acid and 4-coumaric acid exhibited a decreasing trend up to 60 days and then the content of these phenolic acids increased somewhat steadily towards the later stage of growth. Total phenolics, phenylalanine ammonia-lyase (PAL) activity and peroxidase (POD) activity were in tandem match with the occurrence pattern of the phenolic acids. Ferulic acid showed highest antifungal activity against tomato wilt pathogen Fusarium oxysporum f. sp. lycopersici. The results of this study may be interpreted to seek an explanation for high susceptibility of tomato plants at flowering stage to Fusarium wilt. It may also be concluded that greater amounts of ferulic acid in combination with other phenolics and higher level of PAL and POD activities after 60 days of growth may have a role in imparting resistance against Fusarium wilt at a late stage of plant growth.  相似文献   

3.
Bacterial wilt, caused by Ralstonia solanacearum , is responsible for severe losses in tomato crops in the world. In the present study, the effect of temperature, cultivars of tomato, injury of root system and inoculums load of R. solanacearum to cause bacterial wilt disease under control conditions was undertaken. Three strains UTT-25, HPT-3 and JHT-5 of R. solanacearum were grown at 5–40?°C in vitro to study, the effect of temperature on the growth of bacteria and maximum growth was found at 30?°C after 72?h in all the strains. Twenty-one days old seedlings of two cultivars of tomato i.e. N-5 (moderately resistant) and Pusa Ruby (highly susceptible) were transplanted into the pots and inoculated with R. solanacearum strain UTT-25 (5 × 108?cfu/ml), mechanically injured and uninjured roots of the plant. The plants were allowed to grow at 20, 25, 30 and 35?°C at National Phytotron Facility, IARI, New Delhi to study the effect of temperature on intensity of bacterial wilt disease. Maximum wilt disease intensity was found 98.73 and 95.9 % in injured roots of Pusa Ruby and N-5 cultivars of tomato at 35?°C on 11th days of inoculation, respectively. However, no wilt disease was observed in both the cultivars at 20?°C up to 60?days. For detection of R. solanacearum from asymptomatic tomato plants, hrpB-based sequence primers (Hrp_rs2F and Hrp_rs2R) amplified at 323?bp was used in bio-PCR to detect R. solanacearum from crown, mid part of stem and upper parts of the plant. Another experiment was conducted to find out the inoculum potential of R. solanacearum strain UTT-25 to cause bacterial wilt in susceptible cultivar Pusa Ruby. The bacteria were inoculated at concentration of bacterial suspension 10 to 1010?cfu/ml in injured and uninjured roots of the plants separately and injured root accelerated wilt incidence and able to cause wilt disease 63.3% by 100?cfu/ml of R. solanacearum, while no disease appeared at 10?cfu/ml on the 11th day of inoculation in injured and uninjured roots of the plant.  相似文献   

4.
The wheat rhizosphere-inhabiting nonpathogenic Fusarium sambucinum isolate FS-94 protected tomato from Fusarium wilt (F. oxysporum f. sp. lycopersici) in laboratory experiments. Seed soaking or immersion of seedling roots in a FS-94 spore suspension prior to inoculation with the pathogen delayed the appearance of wilt symptoms and significantly reduced disease severity in plants of a susceptible tomato cultivar. Quantification of fungal ergosterol in infected tomato showed that protection against wilt agent was related to limitation of the pathogen growth in plants exposed to FS-94. Incubation of tomato seedlings in a FS-94 spore suspension for 48 or 72 h led to plant protection and increased the salicylic acid (SA) concentration in their roots, suggesting that this isolate was involved in a plant-mediated mode of action and induced resistance. Soaking tomato seeds in the spore suspension did not induce SA accumulation in seedling roots, but nevertheless resulted in a significant reduction in wilt severity when the seedlings were challenged with the pathogen. In response to pathogen attack, the SA content in susceptible seedlings grown from FS-94-treated seeds started to increase within 1 day and remained elevated for 72 h. This suggests that F. sambucinum isolate FS-94 primed a SA-dependent signaling system in tomato.  相似文献   

5.
We studied (a) the extent adhesion of Penicillium oxalicum conidia to tomato roots after application of P. oxalicum conidial formulations with or without stickers, (b) the relationship between the extent of conidial adhesion to roots and biocontrol of the conidial formulations against tomato wilt, and (c) colonisation of roots by P. oxalicum. Adhesion of P. oxalicum conidia to tomato roots occurred within the first minute of contact between the root and the conidial formulation and the bonding strength was sufficiently strong to prevent conidial removal from the roots. In addition, some formulations with stickers that increased conidial adhesion to roots improved the biocontrol of tomato wilt, when compared to that of formulations without stickers. A “dried conidia without stickers” with 0.025% Nu-Film 17 had no effect on the biocontrol of tomato wilt, despite good adherence of the conidia to the roots. The numbers of P. oxalicum conidia that adhered to the roots was constant for 60 days after application of a “dried conidia without stickers” conidial formulation. The significance of these results (speed of adhesion, number of adhered conidia, and variability of conidial external surface) are discussed in relation to the biocontrol success of tomato wilt using different types of conidial formulations with and without stickers.  相似文献   

6.
The nucleocapsid gene of tomato spotted wilt virus Hawaiian L isolate in a sense orientation, and the GUS and NPTII marker genes, were introduced into peanut (Arachis hypogaea cv. New Mexico Valencia A) using Agrobacterium-mediated transformation. Modifications to a previously defined transformation protocol reduced the time required for production of transformed peanut plants. Transgenes were stably integrated into the peanut genome and transmitted to progeny. RNA expression and production of nucleocapsid protein in transgenic peanut were observed. Progeny of transgenic peanut plants expressing the nucleocapsid gene showed a 10- to 15-day delay in symptom development after mechanical inoculations with the donor isolate of tomato spotted wilt virus. All transgenic plants were protected from systemic tomato spotted wilt virus infection. Inoculated non-transformed control plants and plants transformed with a gene cassette not containing the nucleocapsid gene became systemically infected and displayed typical tomato spotted wilt virus symptoms. These results demonstrate that protection against tomato spotted wilt virus can be achieved in transgenic peanut plants by expression of the sense RNA of the tomato spotted wilt virus nucleocapsid gene  相似文献   

7.
The objective of this study was to examine the effects of Bacillus amyloliquefaciens Y1 on the control of Fusarium wilt disease and subsequent improvement in the growth of tomato plants. The Y1 strain strongly inhibited Fusarium oxysporum f. sp. lycopersici in vitro and also produced indole-3-acetic acid (IAA) in both the presence and absence of tryptophan. Over 96% of tomato seeds germinated when treated with either water, tryptone soy broth, or Y1 cultures, whereas root (5.40?cm) and shoot (5.15?cm) lengths were greatest in tomato seedlings treated with Y1 cultures that lacked tryptophan. Three experimental treatments – Black White medium (BW), BW medium with a commercial fungicide (BW?+?F), and Y1 culture inoculated in BW medium (Y1) – were applied to control Fusarium wilt disease under in vivo conditions. Application of Y1 culture and BW?+?F led to significantly lower disease incidence than did BW; moreover, shoot length and fresh and dry weight of both roots and shoots were greater in plants treated with Y1 than in plants treated with either BW or BW?+?F. A similar trend was observed for chitinase and β-1,3-glucanase activities in roots and leaves of tomato plants in all treatment groups over most of the experimental period. Finally, the presence of Y1 in the rhizospheric soils of Y1-treated plants resulted in a significant reduction in the populations of other bacteria. The results of our study demonstrated the effectiveness of Y1 not only in the control of Fusarium wilt disease but also for the enhancement of plant growth in cultivated tomato.  相似文献   

8.
广西番茄内生细菌的多样性和数量动态   总被引:8,自引:0,他引:8  
为了探明内生细菌在番茄中的分布和数量变化规律,有目的地筛选防治番茄青枯病的内生细菌,我们对广西可培养的番茄内生细菌的类群和数量动态进行了调查。从广西部分县市采集的303个番茄样本中分离到624株内生细菌菌株,初步确定有芽孢杆菌(Bacillus)、假单胞菌(Pseudomonas)、黄单胞菌(Xanthomonas)、棒杆菌(Corynebacterium)、土壤杆菌(Agrobacterium)、微杆菌(Microbacterium)、肠杆菌(Enterobacter)和欧文氏菌(Erwinia)8个属,其中以芽孢杆菌、假单胞菌和土壤杆菌为芽孢杆菌为优势类群。番茄内生细菌在植株器官中的分布以根部数量最多,其次是茎和叶。内生细菌的总量在番茄生育期的变化趋势是从苗期到花期数量上升,而从结果期到成熟期数量逐渐下降。多数内生细菌种群的数量变化动态符合细菌总量的变化趋势,只有微杆菌在番茄植株整个生育期中始终保持下降的趋势。春季种植的番茄植株的内生细菌类群数量比秋季种植的少。  相似文献   

9.
The responses of young tomato plants to infection with tomato spotted wilt virus were studied at constant temperatures. The plants were grown in nutrient solutions and given three daylength treatments.
The length of the incubation period was positively correlated with temperature and a regression equation for this relationship is given. The calculated temperature at which this period becomes infinite is 6.7°C. The temperature coefficient ( Q 10) varied from 1.7 to 2.9.
Dry-weight determinations were made of stems, leaves and roots. In healthy plants the leaf/stem ratio generally fell with rise of temperature and the shoot/root ratio rose. Infection changed these ratios, which is interpreted as indicating that it interfered with supplies of carbohydrate to the growing regions.
Systemic symptoms are described for plants raised at 11.4°, 18.3°, 23.9°, and 29.4°C.
Changes in daylength did not affect the systemic symptoms or incubation period. With a 9 hr. day at 29.4°C., the virus content of sap was significantly lower than with 12 or 15 hr., and with a 12 hr. day was significantly higher than with a 15 hr. day.  相似文献   

10.
The susceptibility of tomato plants to systemic infection by tomato spotted wilt virus was increased by increasing nitrogen supply to levels above that optimal for growth. The virus content, estimated by local-lesions counts, was also raised by increasing nitrogen. The period between inoculation and the appearance of systemic symptoms was decreased by increasing nitrogen to a point slightly greater than the optimal level for growth, but increased by additional applications.
Infected plants receiving more nitrate or ammonium compounds than were needed for optimal growth showed abnormal leaf symptoms and no bronzing. N, P and Mg analyses showed that these symptoms were related primarily to nitrogen content. Such leaves contained more virus than bronzed leaves.  相似文献   

11.
THE DESTRUCTION OF DIDYMELLA LYCOPERSICI KLEB. IN TOMATO HAULM COMPOSTS   总被引:1,自引:0,他引:1  
Experiments have been carried out to assess the possibility of the destruction by composting of mycelium of Didymella lycopersici in diseased tomato haulms. The results of laboratory trials with agar cultures and with infested tomato stems and fruits suggest that the fungus is destroyed if kept under moist conditions at 35° C. for from 3 to 6 days. Agar cultures buried for approximately this length of time in composting material at this or higher temperatures were dead when recovered. When composts made from haulms of tomatoes affected by Didymella stem rot were tested by placing them round the stem bases of tomato plants, or by growing tomato plants in them, few of the test plants became diseased. It was concluded that D. lycopersici present in tomato refuse could be destroyed by careful composting.  相似文献   

12.
THE INFECTION OF PLANTS BY VIRUSES THROUGH ROOTS   总被引:1,自引:0,他引:1  
Roots of young tomato plants became infected when inoculated with tomato bushy stunt, tobacco mosaic, and potato X viruses. Root infections also occurred when these viruses were added to soil or culture solutions in which plants were growing.
The viruses were sometimes localized around their initial entry points in roots; sometimes they invaded the root system but not the shoots, and sometimes they produced full systemic infection of roots and shoots. In some experiments, but not all, systemic infections were more frequent when the upper tap root or superficial roots were inoculated than when fibrous roots were inoculated.
In both tomato and potato, virus X spread from diseased to healthy plants sharing the same culture solution, if their roots were in contact, but not otherwise. Infection of the roots of potato plants by inoculation, produced only one plant with virus-infected haulms, although several had infected tubers.  相似文献   

13.
Effects of treatment with phenylthiosemicarbazide (PTS) and its 4′-chloro-derivative (4′-chloro-PTS) on Fusarium wilt of pea and tomato plants were investigated. Depending on pH and availability of oxygen, PTS and 4′-chloro-PTS are converted to their corresponding phenylazothioformamides and phenylazothioformamide-S-oxides, which are the actual fungitoxic compounds. PTS and 4′-chloro-PTS were shown to inhibit growth of Fusarium oxysporum f. pisi and F. oxysporum f. lycopersici in liquid media as well as on agar plates at concentrations of 50–100 mg/1. Inhibition was greater at pH 7 than at pH 5. When administered to pea and tomato plants, both compounds caused severe phytotoxic effects, especially at temperatures favouring Fusarium wilt, thus almost entirely obscuring any protective activity against the diseases. All compounds were strongly adsorbed to loam, but readily released from sand. Neither in pea nor in tomato plants were PTS and 4′-chloro-PTS converted to any fungitoxic substance, not already present in the aqueous solutions administered.  相似文献   

14.
Pseudomonas fluorescens (two native strains, one collection strain and their strain mixtures in all possible combinations) when applied through seed, seedling dip, soil and on leaf significantly reduced the tomato spotted wilt virus (TSWV) disease. InP. fluorescens-treated plants, the peroxidase and phenylalamine ammonia-lyase activity increased. Accumulation of phenolic compounds and lignin were shown to be increased in theP. fluorescens-treated plants. Isoperoxidase native PAGE indicated that the peroxidase isoforms in tomato plants induced by fluorescent pseudomonads were different from the control plants; this suggests that the general phenylpropanoid pathway is probably stimulated in tomato plants treated which in turn led to significant reduction in TSWV.  相似文献   

15.
The role of nitrate-nitrogen (NO3-N) in relation to the development of tomato wilt caused by Fusarium oxysporum f. sp. lycopersici R1 was studied. Plants receiving 284 μg/ml nitrogen in the nutrient solution exhibited the same severe wilt symptoms as the control plants in soil. Disease decreased with increasing nitrogen levels (420, 630 and 1050 μg/ml). Apparently, the plants were also less susceptible to the disease when the concentration of nitrogen was 70 μg/ml, i. e. below the optimal level (284 μg/ml). Protein content in tissues of plants grown with different amounts of nitrogen was also determined. High nitrogen levels, which decreased disease severity, increased the protein content in leaf tissues. Of 17 amino acids only proline content increased with increasing nitrogen supply. High doses of NO3–N decreased the phenol content and the activity of peroxidase in stem and leaf tissues of tomato plants. It is suggested that phenolic compounds and the activity of peroxidase are not significant in the resistance of tomato to Fusarlum wilt associated with high nitrogen supply.  相似文献   

16.
Fusarium oxysporum f. sp. lycopersici, the causal agent of tomato vascular wilt, produces an array of pectinolytic enzymes, including at least two exo-alpha1,4-polygalacturonases (exoPGs). A gene encoding an exoPG, pgx4, was isolated with degenerate polymerase chain reaction primers derived from amino acid sequences conserved in two fungal exoPGs. pgx4 encodes a 454 amino acid polypeptide with nine potential N-glycosylation sites and a putative 21 amino acid N-terminal signal peptide. The deduced mature protein has a calculated molecular mass of 47.9 kDa, a pI of 8.0, and 51 and 49% identity with the exoPGs of Cochliobolus carbonum and Aspergillus tubingensis, respectively. The gene is present in a single copy in different formae speciales of F. oxysporum. Expression of pgx4 was detected during in vitro growth on pectin, polygalacturonic acid, and tomato vascular tissue and in roots and stems of tomato plants infected by F. oxysporum f. sp. lycopersici. Two mutants of F. oxysporum f. sp. lycopersici with a copy of pgx4 inactivated by gene replacement were as virulent on tomato plants as the wild-type strain.  相似文献   

17.
The inhibitory activity of selected invasive alien species leaf extracts against tomato bacterial wilt was studied in vitro and greenhouse. In vitro inhibitory activity was undertaken in a disc diffusion sensitivity test. Furthermore, aqueous extracts of Eichhorina crassipes, Mimosa diplotricha and Lantana camara and methanolic extract of Prosopis juliflora which showed better inhibitory effect in vitro were evaluated against R. solanacearum in greenhouse on tomato. The plant extracts were applied and evaluated at three different times of application (at the time of inoculation; two days before pathogen inoculation; and two days after pathogen inoculation). The result showed that most of the treatment combinations significantly reduce disease incidence and area under disease progress curve and increase biomass of tomato plants, but the effectiveness of tested plant species depends on the type of plant species and application time. The application of plant extracts at the time of pathogen inoculation resulted in highest reduction of disease development on tomato plants. Aqueous extract of E. crassipes was found to be the most effective plant extract in disease suppression and increase above-ground biomass compared to inoculated control. The study revealed that the tested plant species have a potential of inhibiting the development of bacterial wilt on tomato.  相似文献   

18.
番茄抗青枯病基因的AFLP分子标记   总被引:12,自引:0,他引:12  
寿森炎  冯壮志  苗立祥  廖芳滨 《遗传》2006,28(2):195-199
用番茄高抗青枯病品种“T51A”与高感青枯病品种“T9230”配制杂交组合,接种鉴定其正反交F1代及F2代分离群体的青枯病发生情况。结果表明,T51A对青枯病的抗性属于细胞质遗传,受1对杂合基因加性控制。用64个EcoRI/seI引物组合对“T51A”、“T9230”两个亲本及其F2代抗病和感病基因池进行AFLP分析,共扩增出约4200条可分辨的带,其中2条为稳定的差异。用“T51A”和“T9230”杂交产生的F2代分离群体对2个特异条带与目的基因的遗传连锁性进行分析,发现特异条带AAG/CAT与暂定名为RRS-342的抗青枯病基因紧密连锁,二者之间的遗传距离为6.7 cM。将AAG/CAT片段回收、克隆和测序,成功地将其转化为SCAR标记,可以更加方便地用于对番茄青枯病基因的标记辅助选择。   相似文献   

19.
20.
The effects of micro-organisms on plant growth   总被引:1,自引:1,他引:0  
Summary Subterranean clover, tomato, phalaris, and radiata pine were grown with a complete plant- nutrient solution in sterile sand and agar and inoculated with soil suspensions prepared from unsterilized and from sterilized soil.The presence of micro-organisms reduced primary-root growth in all plants and total root growth in most plants. The total numbers of secondary roots were lower in non-sterile treatments but there was a tendency for an increase in the concentrations of secondary roots with the non-sterile plants. Under the test conditions only radiata pine grown in sterile sand produced significantly greater top growth than those grown in the presence of micro-organisms. Root-stunting micro-organisms were shown to occur in each of four different soil types used in the studies but the extent of stunting varied with the soil. In agar, root stunting was observed at 5 days and 9 days after planting (and inoculation) with subterranean clover and tomato respectively.Production and growth of root hairs by subterranean clover was markedly reduced by organisms from all four soils tested, the reduction varying with the soil. In contrast to root-stunting organisms, root-hair suppressing micro-organisms were abundant in soil. Root-hair suppression was apparent in sand after 3 days and is an inhibition of root-hair development rather than microbial digestion of existing root hairs. Only slight root-hair reduction was observed for tomato and phalaris.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号